Vessing ben Leistung bei eine Vila an America

Pavare:= & Mo A

A in die durdskömmt Fleile; A= TTD2

für eine hourssleibe

	1380	1381	1356	1535	2 000	? ou 5
6	15 m	20 m	Jom	46m	gom	115 m
P	30 k U	go u w	25026	0.611 W	1.5716	ς η _ω

TECHNIK

Prof. Dr. Ing. Peter Pelz Wintersemester 2011/12 Optimierung und Skalierung von Fluidsystemen Vorlesung 3

11 technipale Arseit

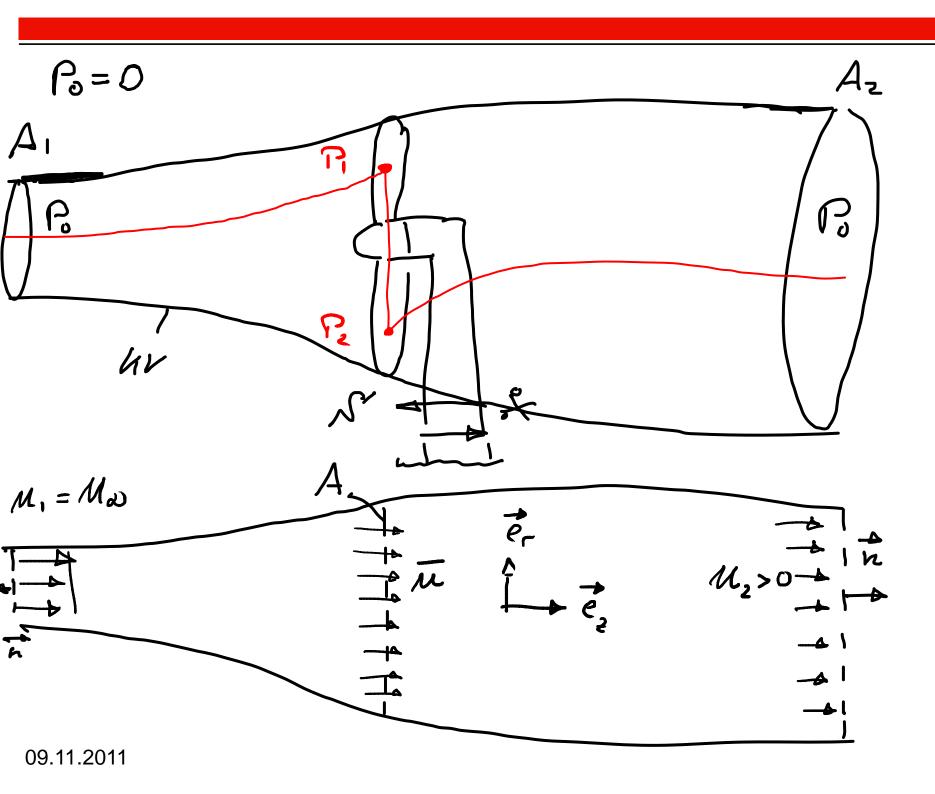
Retable Ceseta

Selbst für einen ligdranlinde od.

aerodynominde Virhapprol Z=1;

d.h. heim Dissipetion und damirt

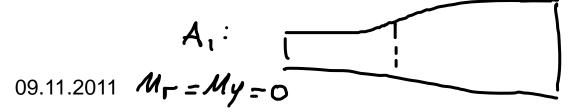
heim Entropication, it hour nur


trad 60% on vafigbere Gestung

in Welle City ungestel orde.

Grend: 1. Kinehicher Fleys in der Abstrang

> 2. Aufsland & Ströng durch des Vindres.

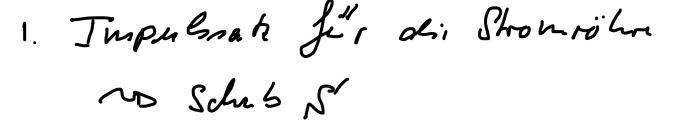

Optimierung und Skalierung von Fluidsystemen

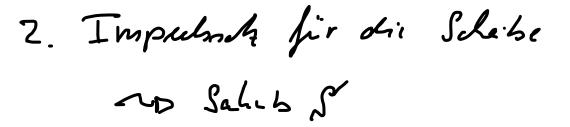
Ideal Gistupunsolg:

Annehm llein Drell histr der Nesdin.

Drell.

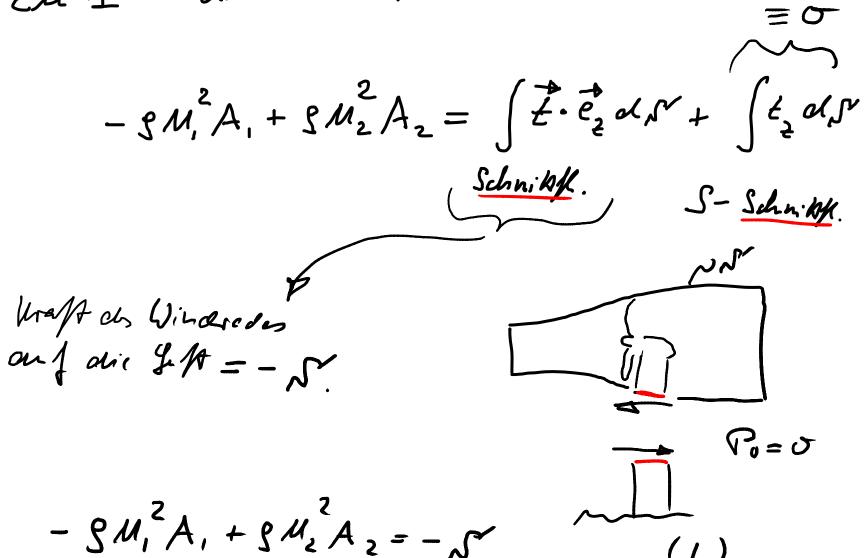
$$\frac{3}{2} \vec{M} \cdot \vec{M} = \frac{3}{2} \vec{M}^2 + \vec{M}^2 + \vec{M}^3 + \vec{M}^3$$




 $A_{2}: M_{r} = \sigma$ $M_{2}, M_{y} \neq 0$

Optimierung und Skalierung von Fluidsystemen

Ideal Unsetz, My an Az Las rall idea kind Null sein.



3. Benoulli O - 1

4. Benoulli 2 - 0

Zu 1 axiale llomponen 4.

Optimierung und Skalierung von Fluidsystemen

$$\mathcal{N} = (P_1 - P_2)A \tag{2}$$

$$\frac{g}{2}\mu_{1}^{2} = \frac{g}{2}\mu + P_{1}$$
(3)

24. Danoulli va 2 + 0

TECHNIK

Optimierung und Skalierung von Fluidsystemen

Aus (3) und (4) felgt die Druchähder, übr der Vindered

$$P_1 - P_2 = \frac{9}{2} \left(\mu_1^2 - \mu_2^2 \right)$$

$$=\frac{s}{z}(u_1-u_2)(u_1+u_2)$$

$$S = A \frac{3}{2} (M_1 - M_2) (M_1 + M_2) (M_2 + M_2) (M_1 - M_2) (M_2 - S A_2 M_2 + S A_1 M_1)$$

$$= S A M (M_1 - M_2) V$$

Optimierung und Skalierung von Fluidsystemen

1. Etglamis

Die Scheibe Wird frade Muit dan aniKanskinke Mikk am An - und Abströmgedwirdig Get And Ströhet P

Veranssetz : Mein Drell in der Abström. Amdernfells Beidsicher; in der Dena Mind (Rich P

$$\mathcal{M} = \frac{M_1 + M_2}{2}$$

Fluidsystemen

vo Gistenpunst.

Paul = guiA

$$P_{S} = 2 \int_{S} M$$

$$= 2 \int_{S} M^{2} (M_{1} - M_{2})$$

$$= 2 \int_{A} M^{2} (M_{1} - M_{2})$$

$$= 2 \int_{A} M^{2} (M_{1} + M_{2})^{2} (M_{1} - M_{2})$$

$$P_{Ava:1} = 2 \int_{A} (1 + \frac{M_{2}}{M_{1}})^{2} (1 - \frac{M_{2}}{M_{1}}) = 6$$

Optimierung und Skalierung von Fluidsystemen

In de Optimier geine unelhörin Voor de Rich, manneil dus Cadaidis lubul.

 $\frac{\mathcal{M}_2}{\mathcal{M}_1}$

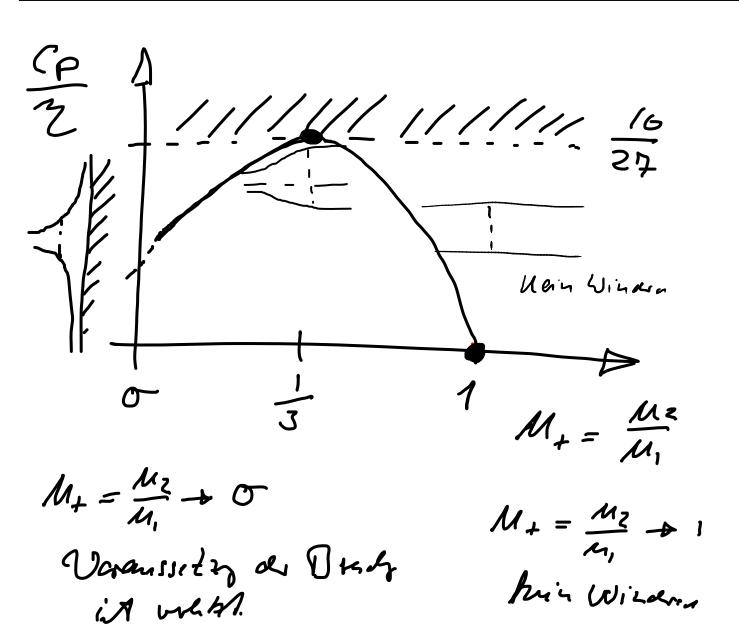
Fluidsystemen

$$C_{\mathcal{P}}(M_{+}, \mathcal{I}) = \mathcal{I}_{\mathcal{P}} \left(1 + M_{+}\right)^{2} \left(1 - M_{+}\right)$$

$$\mathcal{I} = const Annology.$$

$$\frac{\partial C_{\varphi}}{\partial M_{+}} \stackrel{!}{=} 0 \sim 2 \left(1 + M_{+}\right) \left(1 - M_{+}\right) \stackrel{?}{=} \left(1 + M_{+}\right)^{2}$$

$$2 - 2M_{+} = 1 + M_{+}$$

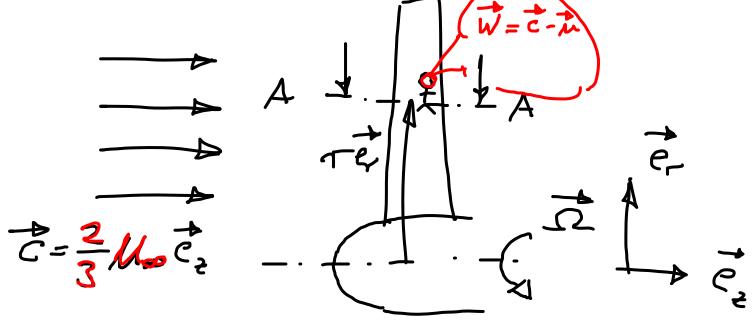

$$M_{tord} = \frac{1}{2}$$

$$C_{Popt} = C_{p}(\mu_{+opt}) = 2\frac{1}{4}(1+\frac{1}{3})(\frac{2}{3})$$

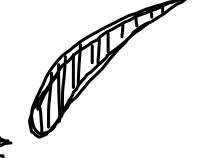
$$=\frac{7}{24}$$

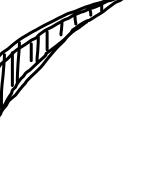
Optimierung und Skalierung von Fluidsystemen

Fluidsystemen

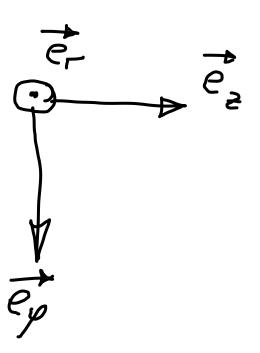

Nutrem de Detende (esches Zui Ausley eines Vindredes.

$$\overline{\mathcal{M}}_{opt} = \frac{1}{2} \left(\mathcal{U}_{o} + \frac{1}{3} \mathcal{U}_{o} \right) = \frac{3}{3} \mathcal{U}_{o}$$


Fluidsystemen


Ab jettet kochreh Rachius, møinses ein Turbomeschin.

Schauphabnik A-A Rm Radius T



$$\vec{c} = \frac{2}{3} \mathcal{U}_{\omega} \vec{e}_{z}$$

und Skalierung von Fluidsystemen

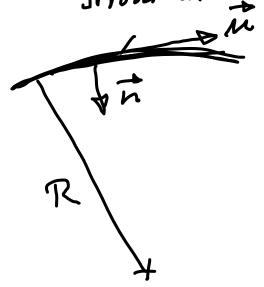
Weiker Montegekning de Mosdin

großer Teilenphichel = 277

2 Schanfelouzell.

i.d. R 7=3 ~ Teller Line = 37.

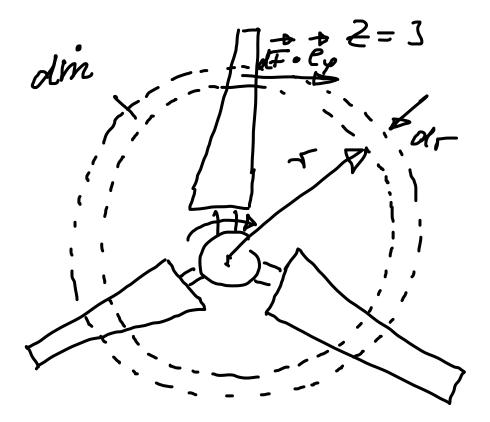
Ausleyeng mil Mellode der ferødgrænik.


Soust Ausleyn mi bels Drellse &.

Optimierung und Skalierung von Fluidsystemen

Wenn Stromline midt phrimm I sie, donn veskviget die Andry de Indes morned 741 Strom Rinic

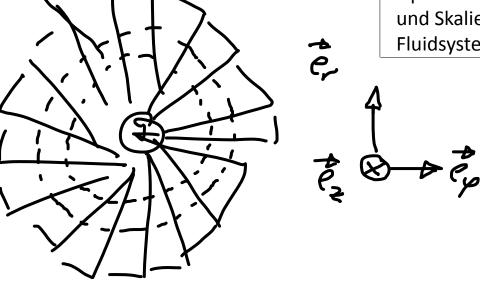
Off. Enlegleidg in Mothirlich.
Strombrig



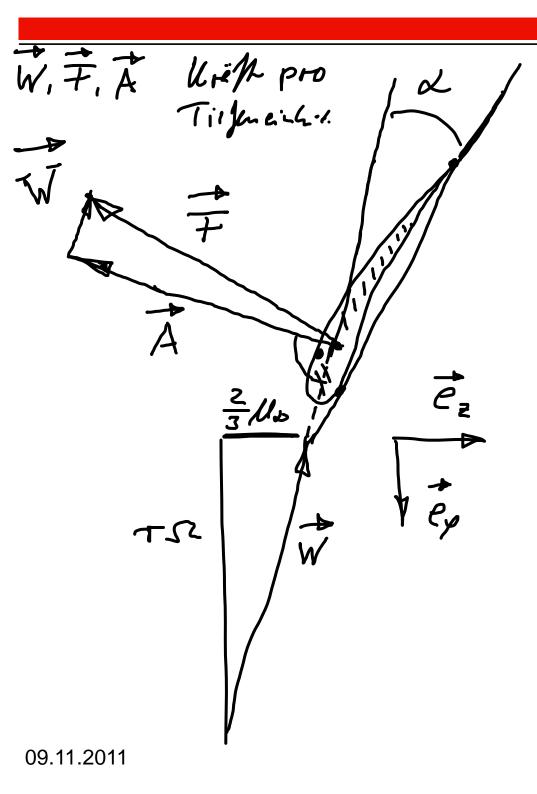
Fir Row Kelt

und Skalierung von Fluidsystemen

Tribu.


14,50

Optimierung und Skalierung von Fluidsystemen



Acrocy cuit

Ehland Tursinagers. (Drellnob)

$$\frac{dM_{2}}{d\dot{m}} = \tau \left(C_{M2} - C_{M1} \right)$$

$$M \stackrel{\triangle}{=} 9$$

Be. verleshtrin Ströng Alst die huft auf die Schaft senkrett zur Anströng.

Optimierung und Skalierung von Fluidsystemen

d'Alemberto des Perodox

Uichterds hap W.

Die Arpritshul A L out of oh lokely Austrians

4