Report B03

Constraining nuclear matrix elements for fundamental symmetries

Outline

- Introduction
- Constraining nuclear matrix elements for 0υββ-decay
 - Motivation
 - Scissors mode and shape mixing
 - Status
- Constraining WIMP-nucleus structure factors
 - Motivation
 - Status
- Summary

Introduction

- project B03 dedicated to test fundamental symmetries
- via key experiments at

- Darmstadt superconducting linear electron accelerator S-DALINAC
- High Intensity γ -ray Source HI γ S, Duke University, NC, U.S.A.
- using electron scattering and nuclear resonance fluorescence
- providing crucial input for theoretical considerations

Outline

- Introduction
- Constraining nuclear matrix elements for 0υββ-decay
 - Motivation
 - Scissors mode and shape mixing
 - Status
- Constraining WIMP-nucleus structure factors
 - Motivation
 - Status
- Summary

Motivation

- observation of 0υββ-decay implies
 Majorana character of neutrinos
 - virtual neutrinos annihilate during process
- NME proportional to neutrino masses $\frac{0^+}{76 \mathrm{Ge}}$

NME only from theory

J.Phys. G42 (2015) no.11, 115201

Scissors Mode...

- first applicable prediction within IBM-2 in 1981 by Iachello
- isovector rotational mode of valence proton and neutrons
- excited via M1 transition
- quadrupole collective
- correlated to
 E0 transition strength
 van Isacker, NDS 120 (2014) 119–122

Pietralla et al., Phys. Rev. C 58 (1998) 184

...and Shape Mixing

- significant contribution of deformation to gs wave function
- scissors mode excited from spherical-deformed mixed state
- search for scissors mode
 branching to excited 0+ state
- E0 transition strength as complementary observable

Scissors Mode and Shape Mixing II

same happens for mother and daughter nucleus

Scissors Mode and Shape Mixing III

Nuclear Matrix Elements from IBM-2

- IBM-2 suitable to describe scissors mode by distinguishing protons and neutrons
- parameters fixed by branching ratio and excitation energy

• new findings for corrections: $0\nu\beta\beta$ NMEs change

Methods of Choice

- nuclear resonance fluorescence (NRF)
 - preferred method for extracting scissors mode observables
 - selectively sensitive to dipole excitation e.g. M1
- electron scattering
 - sensitive to
 electric monopole
 transitions E0

NRF Experiments at DHIPS

- measurements of 0υββ candidates 82Se, 82Kr and 150Nd at DHIPS @ S-DALINAC
- utilizing high photon flux and energy range from bremsstrahlung
- extracting spin quantum numbers and transition strengths
- up to 4 weeks
 beam time

NRF Experiments at HIγS

- additional measurements $HI\gamma S$
- utilizing quasi-monoenergetic polarized photon beam
- extracting parity quantum numbers
- and decay behaviour
- up to 2 weeks beam time

Status NRF Experiments

- targets bought
- DHIPS beam time planned after commissioning of S-DALINAC and subsequent electron scattering campaign: summer 2017
- HIγS beam time currently running on ⁸²Se, ⁸²Kr and ¹⁵⁰Nd

Electron Scattering Experiments at QCLAM

- measurements of $0\nu\beta\beta$ partners ⁷⁶Ge and ⁷⁶Se at QCLAM spectrometer at S-DALINAC
- utilizing large acceptance
- extracting form factors of 0^+_1 and 0^+_{gs}
- E0 transition strength
- up to 3 weeks beam time

Status QCLAM Experiments

- QCLAM under reconstruction
 - new electronics ordered
- target production difficult due to geometric requirements and chemical properties:
 - desired target thickness 5-10 mg/cm²
 - 76Se: powder, highly poisonous, low melting temperature
 - ⁷⁶Ge: powder
 - in contact with target laboratories at GSI and ELI-NP

Outline

- Introduction
- Constraining nuclear matrix elements for 0υββ-decay
 - Motivation
 - Scissors mode and shape mixing
 - Status
- Constraining WIMP-nucleus structure factors
 - Motivation
 - Status
- Summary

Motivation

- weakly interacting massive particles (WIMPs) as candidates for dark mater
- attempt to detect via elastic and inelastic scattering off nuclei
- promising detector material liquid xenon
- XENON100 collaboration provides limits for WIMP-nucleon cross section

Constraining WIMP-

- measurement of form factors in
 129Xe and 131Xe
- providing crucial information for dark matter detection

130Ba ≥3.5E+14 Y 0.106% 2∈	131Ba 11.50 D e: 100.00%	132Ba >3.0E+21 Y 0.101% 2∈	133Ba 3841 D e: 100.00%	134Ba STABLE 2.417%
129Cs 32.06 H €: 100.00%	130Cs 29.21 M ε: 98.40% β-: 1.60%	131Cs 9.689 D e: 100.00%	132Cs 6.480 D ε: 98.13% β-: 1.87%	133Cs STABLE 100%
128Xe STABLE 1.910%	129Xe STABLE 26.40%	130Xe STABLE 4.071%	131Xe STABLE 21.232%	132Xe STABLE 26.909%
127I STABLE 100%	128I 24.99 M β−: 93.10% ε: 6.90%	129I 1.57E+7 Υ β-: 100.00%	130I 12.36 H β-: 100.00%	131I 8.0252 D β-: 100.00%
126Te STABLE 18.84%	127Te 9.35 H β-: 100.00%	128Te 8.8E+18 Y 31.74% 2β-: 100.00%	129Te 69.6 M β-: 100.00%	130Te >5E+23 Y 34.08% 2β-: 100.00%

http://www.nndc.bnl.gov/

Spin-dependent Cross Section

- spin-dependency of WIMP interaction unknown
- only odd mass number Xe isotopes interact
- large-scale shell-model calculations
- form factors for spin-dependent interaction

L. Baudis et al., Phys. Rev. D 88, 115014 (2013)

Spin-dependent Cross Section II

- significant contribution from inelastic WIMP-nucleon scattering
- at low momentum transfer ~100MeV
- range of operation of S-DALINAC

L. Baudis et al., Phys. Rev. D 88, 115014 (2013)

Electron Scattering Experiments at LINTOTT

- utilizing exceptional energy resolution in energy-loss mode of LINTOTT-spectrometer
- measuring form factors for gs and first excited states in ¹²⁹Xe and ¹³¹Xe at 40 and 80 keV resp.
- beam energies at 50, 65 and 80 MeV
- angles from 69° to 165°
- up to 5 weeks beamtime

Status LINTOTT Experiments

- LINTOTT-spectrometer ready for operation
- 129Xe and 131Xe targets ready
- planned for electron scattering campaign end of winter

Outline

- Introduction
- Constraining nuclear matrix elements for 0υββ-decay
 - Motivation
 - Scissors mode and shape mixing
 - Status
- Constraining WIMP-nucleus structure factors
 - Motivation
 - Status
- Summary

Summary

- motivation of the research program in B03
- contributing to exciting and recent research
 - neutrinoless double-beta decay
 - dark matter detection
- status report on B03
 - $HI\gamma S$ measurements up and running
 - first electron scattering experiments ready for operation

Thank you for your attention

QCLAM Experiments

- measurement of double beta decay partners
 ⁷⁶Ge and ⁷⁶Se at QCLAM spectrometer
- form factor for gs and first excitet 0+ states
- both E0 Transition
 strengths 0⁺₁ → 0⁺_{gs}

76Br 16.2 H e: 100.00%	77Br 57.036 H e: 100.00%	78Br 6.46 M ∈≥99.99%	79Br STABLE 50.69%	80Br 17.68 M β-:91.70%
75Se	76Se	β-≤ 0.01% 77Se	78Se	e: 8.30% 79Se
119.79 D €: 100.00%	STABLE 9.37%	STABLE 7.63%	STABLE 23.77%	2.95E+5 Y β-: 100.00%
74As 17.77 D €: 66.00%	75As STABLE 100%	76As 1.0942 D β-: 100.00%	77As 38.83 H β-: 100.00%	78As 90.7 M β-: 100.00%
β-: 34.00%				
73Ge STABLE 7.76%	74 Ge STABLE 36.73%	75Ge 82.78 M β-: 100.00%	76Ge 1.78E+21 Υ 7.83% 2β-	77Ge 11.30 H β-: 100.00%
72Ga 14.095 H	73Ga 4.86 H	74Ga 8.12 M	75Ga 126 S	76Ga 32.6 S
β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00%

http://www.nndc.bnl.gov/

S-DALINAC

