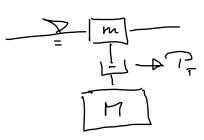

Vaser wellen

Prof. Dr. Ing. Peter Pelz Wintersemester 2011/12 Optimierung und Skalierung von Fluidsystemen Vorlesung 11

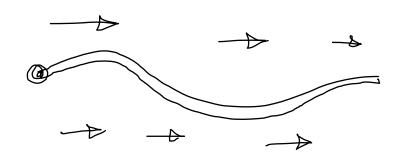
3. Teil du Vorlesung

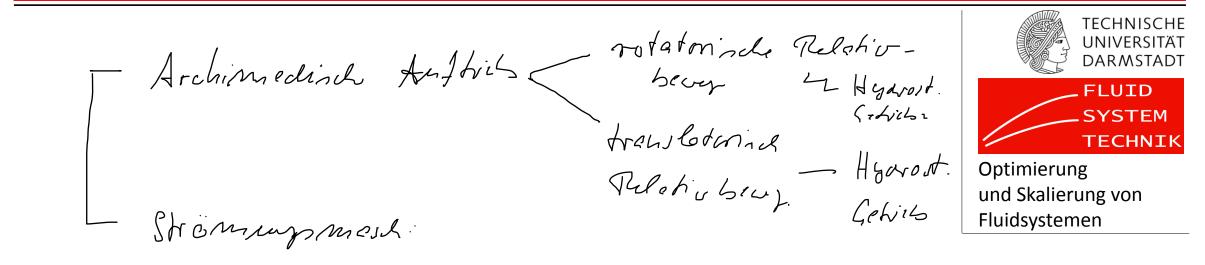
Wellen Waft.

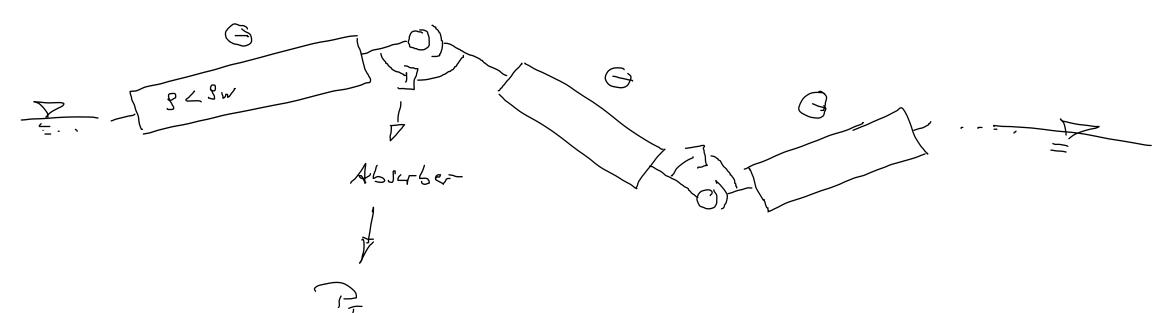
Optimierung und Skalierung von Fluidsystemen

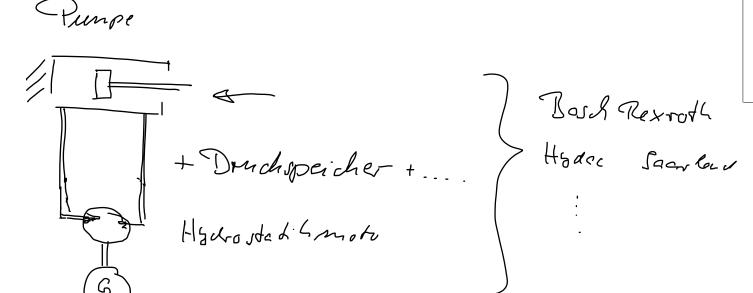

Mustemmah (oushers)

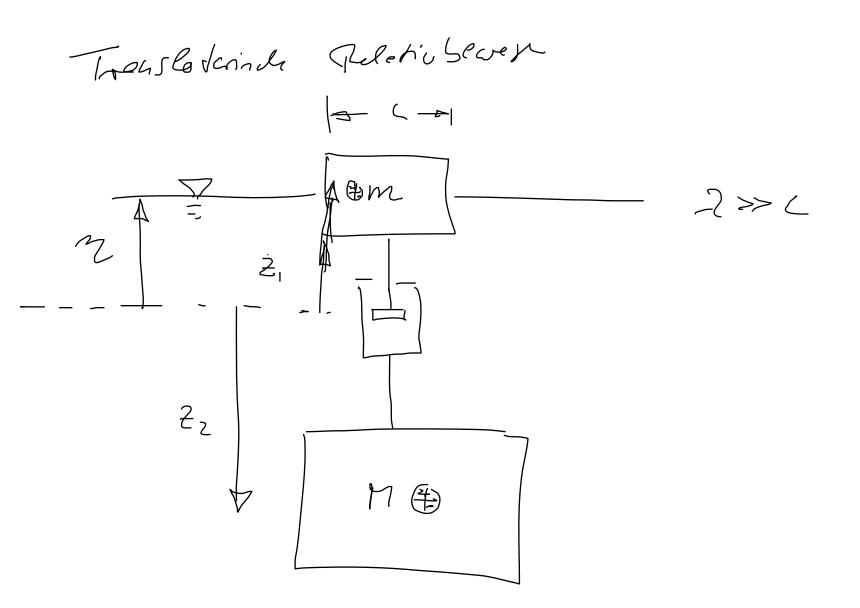
Offs have


endlide Fre Lah grad

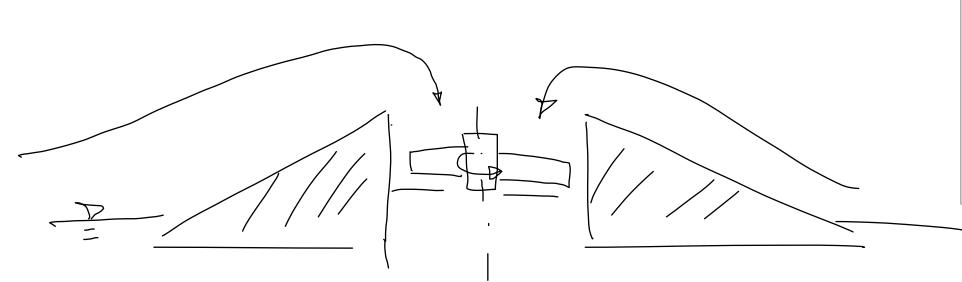

-une dlide Freihehmeen


Oscillations Wat Column




Peramis - System in den Roben it ein 25.01.2012 hydrostokale (chilsi Urba.

Zem hydrostobal (66.650



Optimierung und Skalierung von Fluidsystemen

Fluidsystemen

Zvinderfozit:

- 1.) Viele Honhuriera de Design Caseuge Tupid for Technolopia in Rines solo forte Prihplose
- 2.) Transport de Enerje ist emplohårt
- 3.) Grøfst Araus forder: Robseste Gasieng. Massink Mosch in ban Vrikk, Bost Rexroth,...
- 4.) OWC ~ Yout
- 5.) Vile Schalbton vid Lower.

Optimierung und Skalierung von Fluidsystemen

Rehphen Optimi und Skir Fluidsy

Weller L.

Theme for de tod Inderd.

Prof. Dr. Ing. Peter Pelz Wintersemester 2011/12 Vorlesung 11 F 163

25.01.2012

Was it das Encheanplot

La Wasse wellen Je Schwercelles Schwholle it die richtelled Urste it die richtelled urste

Richtelle de brott it die Obeffielespa. Lo Ripples

Optimierung und Skalierung von Fluidsystemen

Sir James Lighthill: Theary of Woves 4 Messinhs That Cambridge University Press

Jahannes Falnes: Ocean Your and Oscillating system.

R.S. Johnson: A Modern Fratroduction +6 Al

Maxemakial Theory of O-K Con

Prof. Dr. Ing. Peter Pelz Wintersemester 2011/12 Vorlesung 11 F 164

25.01.2012

Annahme Rototions hee Swing

not the 5

nongenes Dilsfeld

P= Const.

Optimierung und Skalierung von Fluidsystemen

$$\frac{\partial \mathcal{U}_{i}}{\partial x_{i}} = \frac{\partial \mathcal{U}_{i}}{\partial x_{i}}, da \operatorname{rotations} \operatorname{hz}. \operatorname{Sworn} 2 = 2 \operatorname{hz}.$$

Vola hul.

$$\frac{D}{D} + \frac{3}{3} = -\frac{3}{4} \frac{3x}{3x} + \frac{3}{3} \frac{3x}{3x} + \frac{3$$

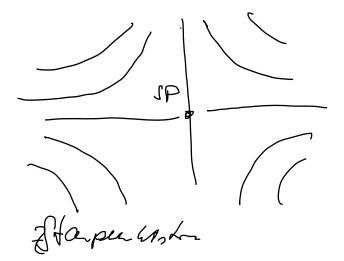
Diwylt oh Spanskyn.

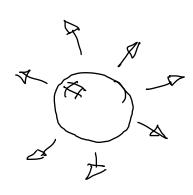
$$\frac{\partial \mathcal{M}_{i}}{\partial t} + \mathcal{M}_{i} \frac{\partial \mathcal{M}_{i}}{\partial x_{i}} = -\frac{1}{3} \frac{\partial \mathcal{P}}{\partial x_{i}} + \frac{\partial^{2} \mathcal{M}_{i}}{\partial x_{i}} - \frac{\partial^{2} \mathcal{P}}{\partial x_{i}}$$

$$= \mathcal{F} \lim_{n \to \infty} \operatorname{Tot} \mathcal{M}_{i} = -\frac{1}{3} \frac{\partial \mathcal{P}}{\partial x_{i}} + \frac{\partial^{2} \mathcal{M}_{i}}{\partial x_{i}} - \frac{\partial^{2} \mathcal{P}}{\partial x_{i}} + \frac{\partial^{2} \mathcal{P}}{\partial x_{i}} - \frac{\partial^{2} \mathcal{P}}{\partial x_{i}} = -\frac{\partial^{2} \mathcal{P}}{\partial x_{i}} + \frac{\partial^{2} \mathcal{P}}{\partial x_{i}} - \frac{\partial^{2} \mathcal{P}}{\partial x_{i}} - \frac{\partial^{2} \mathcal{P}}{\partial x_{i}} - \frac{\partial^{2} \mathcal{P}}{\partial x_{i}} + \frac{\partial^{2} \mathcal{P}}{\partial x_{i}} - \frac{\partial^{2} \mathcal{$$

$$\frac{\partial M_i}{\partial \xi} + \frac{\partial}{\partial x_i} \left(\frac{M_i M_i}{z} \right) = -\frac{1}{8} \frac{\partial P}{\partial x_i} - \frac{\partial Y}{\partial x_i}$$

Wohalam Bosher
$$\int \frac{\partial u_i}{\partial x_j \partial x_j} = 0$$
 for $\frac{\partial u_i}{\partial x_j} = \frac{\partial u_j}{\partial x_j}$





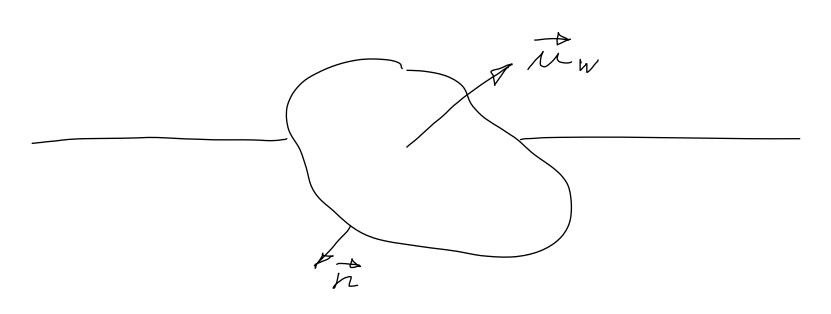
Optimierung und Skalierung von Fluidsystemen

$$\frac{\partial}{\partial x_{i}} \left(\frac{\mathcal{U}_{i} \mathcal{U}_{i}}{2} \right) = \mathcal{U}_{i} \frac{\partial \mathcal{U}_{i}}{\partial x_{i}} = \mathcal{U}_{i} \frac{\partial \mathcal{U}_{i}}{\partial x_{i}}, \quad \text{old} \quad \frac{\partial \mathcal{U}_{i}}{\partial x_{i}} = \frac{\partial \mathcal{U}_{i}}{\partial x_{i}}.$$

Hihmis: Es jibt reibungsbehaltet rodations her

Quella L.

$$\frac{2}{3x_i} \left[\frac{3\phi}{3t} + P + \frac{1}{2} \frac{3\phi}{3x_i} \frac{3\phi}{3x_i} + V \right] = 0$$



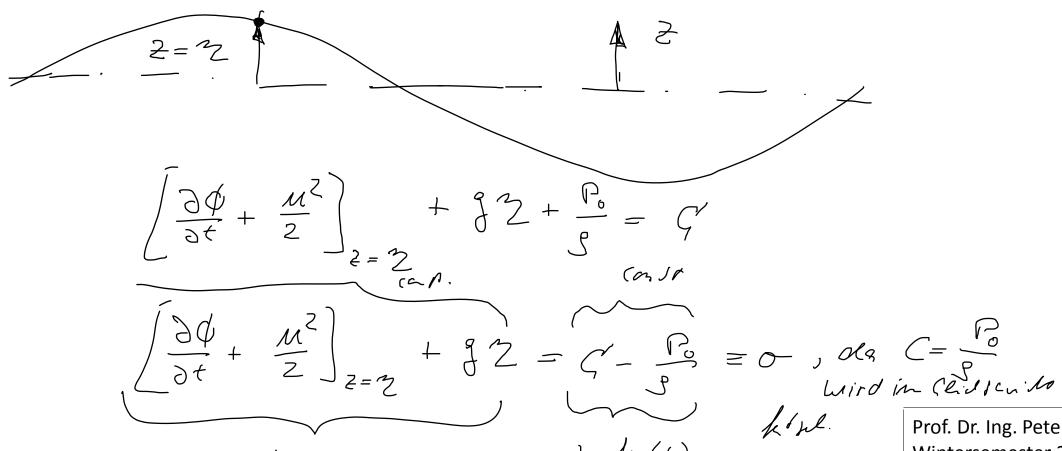
Optimierung und Skalierung von Fluidsystemen

$$M_i = \frac{\partial \phi}{\partial x_i}$$
 $P = \int \frac{dP}{P} = \frac{P}{P} \int_{P} \sin \beta = const.$

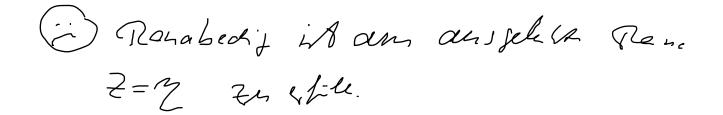
$$\frac{\partial \phi}{\partial t} + \frac{P}{g} + \frac{1}{2}m^2 + \frac{1}{g^2} = 9$$
Renoulling
Worstent.

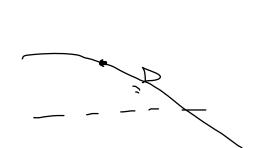
Optimierung und Skalierung von Fluidsystemen

Wihlmatish Roudbeding


Randbedigen fir die Ville:

Optimierung und Skalierung von Fluidsystemen


25.01.2012


44(+)

$$\frac{\partial \phi}{\partial t} + \frac{m^2}{z} + gz = \sigma \quad \text{an} \quad z = z$$
Randbeditjung and

frei Obefiel.

Prof. Dr. Ing. Peter Pelz Wintersemester 2011/12 Vorlesung 11 F 170

TECHNISCHE

UNIVERSITÄT DARMSTADT

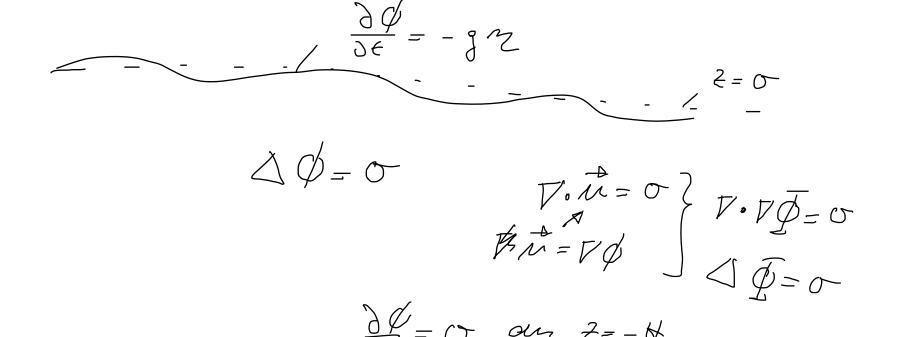
TECHNIK

FLUID

Optimierung

Fluidsystemen

und Skalierung von


25.01.2012

Ergebnis de Sinconier

$$\frac{\partial f}{\partial t} = -37$$
 an $z = 0$.

Optimierung und Skalierung von Fluidsystemen

$$Z = R \exp \left[i \left(\omega t - kx \right) \right]$$

$$\frac{\partial \phi}{\partial t} = -2 j \quad \text{an } t = 0$$

und die Dhortdelie

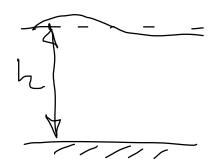
$$\frac{\partial x_{1}}{\partial x_{2}} = 0$$

L'hra sind, hang ibre Farion Le jed belisige Velle 25.01.2012 Olophild wa

Optimierung und Skalierung von Fluidsystemen

Einsehen des Garmonina Ansezs

$$Z = \operatorname{Rexp}\left[i\left(\omega t - kx\right)\right]$$


$$\Delta = \left\{(z) \exp\left[i\left(\omega t - kx\right)\right]\right\}$$

k Vellen Zall.

Optimierung und Skalierung von Fluidsystemen

$$-k^{2} + f = 0$$
Anser f $f = e$

A DD = O -> Ejumproben

Destimmen A liber du wet Randbeer.

