Communication Networks Il
Application Layer

www.httc.de

[}
=
S

©

@
£
©
?
2
£
o
<
3
s
S

Prof. Dr.-Ing. Ralf Steinmetz

TU Darmstadt - Technische Universitat Darmstadt,
Dept. of Electrical Engineering and Information Technology, Dept. of Computer Science
KOM - Multimedia Communications Lab
Merckstr. 25, D-64283 Darmstadt, Germany, Ralf.Steinmetz@KOM.tu-darmstadt.de
Tel.+49 6151 166151, Fax. +49 6151 166152

httc - Hessian Telemedia Technology Competence-Center e.V
Merckstr. 25, D-64283 Darmstadt, Ralf.Steinmetz@httc.de

5 e.fm 1 26.November.04

www. httc.de

[H)
S
S

©

@

£

@©
?
2

£

o
<

3

s

S

5 e.fm 2 26.November.04

LS

L4

L3

L2

L1

KN 11l (Mobile Networking), Distributed Multimedia Systems (MM | and MM II),

(Sicherung)

High-Speed LAN

Telecooperation ILIII. ...; Embedded Systems
Applications T 0 w | — S o IP-Tel.
=4 vy || L Ty S
. . — ()] —
Application Layer) E 9 T g £ = 800-) S SIP &
(Anwendung)) QL c | W o 2| H.323
Transport Layer Internet: 7 Transport
(Transport) UDP, TCP, SCTP | S o> QO0S-RTP
2| x|
Network Layer Internet: % E a1 Network
(Vermittlung) IP =18 g QoS
N2
Data Link Layer LAN, MAN % 2
z

Physical Layer
(Bittibertragung)

Queueing Theory & Network Calculus

Introduction

Legend:

KN |

KN Il

Overview

www.httc.de

Application-Oriented Communication Services
Session Concept

[H)
S
S
©
@
£
@©
?
2
£
o
<
3
s
S

3. Data Presentation

4. Client / Server and Remote Procedure Call

5. Middleware - CORBA

6. Other: E.g. Microsoft .NET

5 e.fm 3 26.November.04

www.httc.de

[}
S
S
©
@
£
©
?
2
£
o
<
3
s
S

5 e.fm 4 26.November.04

1. Application-Oriented Communication Services

Peer to Peer
Protocols

Various
Client/Server

Applications

SMTP, MIME
Electronic Mall

% On-line
. Services
\ /@
nfs,..)

'\

LS

Application-oriented
services

L4

Transport layer

L3

Network layer

L2

Data link layer

L1

Physical layer

2. Session Concept

(O]

Ep Approaches for developing distributed programs
%% 1. COMMUNICATION ORIENTED approach

3 - to define messages and formats

§ - to use e.g. client-server design

2 - defined as reaction to incoming messages

=

« 10 use sockets
= evaluation:
 benefits
« when all communication is executed on an equal basis
« disadvantages
e program design depends on type of communication

« an error in the protocol may lead to
complete redesign of the program

« development of communication protocols may be complex

2. APPLICATION ORIENTED approach

« to use conventional program development

« to transfer modular approach to distributed programming

« functionality located in procedures/objects, not in communications

« communications between systems independent of programs
e.g. by using the Remote Procedure Call concept

5 e.fm 5 26.November.04

Session: Example

0 3
g S Main
£
2 ReadDisk Decode ShowVideo
Error
Ouput Showlmage
System A - System B
(Server) o Main (Client)
- -
ReadDisk Decode ShowVideo
Error
Output Showlmage

5 e.fm 6 26.November.04

Session: Task

To provide well understood data presentation
for any communications between open systems

www.httc.de

; Presentation .
Prejsegrtatlon Service Presentation

Access Point User

_____ ém Service

[H)
S
S
©
@
£
@©
?
2
£
o
<
3
s
S

Presentation ~_ Presentation = Presentation
Entity ~ Protocol > Entity

Session|Service

Session Provider

5 e.fm [26.November.04

www.httc.de

(]
=
g

©

17
£
©
©
2
£
o
<
S
S
S

5 e.fm 8 26.November.04

Session: Task

Functions:

e to transfer communication control services

- to allow the specification of complex data structures
- negotiation of required data structures

« to convert the local representation into a global one

Because
e connection does not mean communication
« communication implies a common understanding

Example:
« understanding the words
- Igel (German) - eagle (English)

(2)

Session: Task (3)

S3
58
8=
=< i . .
%% Unix-Workstation IBM-Mainframe
©
2 Integer: bO bl Integer: b1l b0
=
g Char: ASCII Layer 5 Char: EBCDIC
2
= .
= Connection

Situation:

« even though correct communication at lower layers
there is no further communication possible

= Semantics are lost
« heterogeneous software

= Coding regulations depend on compiler
« distributed objects
(Common Object Request Broker Architecture CORBA)

5 e.fm 9 26.November.04

Session Example

Ep Example:
23 struct {
3z int il;
% char c;
g Int 12
= }
« char: one byte, no alignment conditions
e int: 4 bytes, alignment according to an address divisible by 4

compilation with and without permutation strategy

11 C 12
| EEN e
Int char int
11 12 C
HEEEEEEEE with
| | | |
int int char permutation

5 e.fm 10 26.November.04

www.httc.de

(]
=
g
©
17
£
©
©
2
£
o
<
S
S
S

5 e.fm 11 26.November.04

Coding Regulations

Type (c)

Coding Rules

INT

Length
Coding type
Arrangement
Justification

(with word border)

FLOAT

Length of mantissa
Length of the exponential
Exponential basis
Coding type
Arrangement
Justification

CHAR

Coding type

3. Data Presentation

(O]

gg Sender and receiver need common data presentation to allow understanding
‘gg « ‘'communication’ of content not of bits

‘-;5 - needed for formats, data types, compression, coding, ...

£

g .

s Generic view:

=

« Universe of Discourse

- part of the real world which is to be processed in the system
« Conceptual scheme

« formal description of the universe of discourse

Represented by
conceptual schenie

s Organisation A
\ Organisation A e.g. Travel agency
\ e.g. Travel agency Concap
Universe of scheme
Discourse o e
Organisation B rganisation
e.gq Airline e.g. Airline

« Requirements
« relation to the same universe of discourse
e common conceptual scheme

- comprehensible representation of the conceptual scheme’s objects (i.e. data
conversion) to both communication parties

5 e.fm 12 26.November.04

Data Presentation: Methods

TS : ..

= Local presentation of a communication partner W
23 - n x (n-1) conversion routines

o « amaximum of one conversion per relationship

g « local format f1 directly to local format f2

E

=

=

Local

e 2 X N Cconversion routines

« 2 conversions per relationship

Global presentation x %

« local f1 to global g,

- global g to local 2 Global
e scheme:
Application Data Application Data
A
Encoding /|Marshalling Decoding / Demarshalling

Data (transfered)

« standards: XDR, ASN.1

5 e.fm 13 26.November.04

XDR, the Representation , Layer” of the Internet

Ep XDR: External Data Representation

gg « presentation layer with very low functionality

8=

5_ Example for a conversion issue: integers

s

g 1.BIG-ENDIAN (byte O as the most significant (i.e. left)) versus LITTLE-ENDIAN

(byte O as the least significant (i.e. right))
- comment: usually also relates to bits

- Motorola 68x0, IBM 370 (Big Endian)

more significant less significant

byte 1 byte 2 byte 3 byte 4

« below the excerpt from a respective configuration header=file of an IBM
RS6000:

/* Definitions for byte order, */

/* according to byte significance from low address to high. */

#define LITTLE ENDIAN 1234 /* least-significant byte first
(vax) */

#define BIG_ENDIAN 4321 /* most-significant byte first
(1BM, net) */

#define PDP_ENDIAN 3412 /* LSB first in word, MSW first
in long (pdp) */

#define BYTE_ORDER BIG_ENDIAN

5 e.fm 14 26.November.04

XDR, the Representation ,Layer® of the Internet (2)

23 2.Intel 80x86 (LITTLE ENDIAN)

8=

2 less significant more significant
€

é byte 1 byte 2 byte 3 byte 4

=

- all data are mapped to a pre-defined transfer syntax
(no negotiations)

- all integers as 4-byte big-endians
« floating-point numbers in IEEE format:
e mantissa 23 bits
e exponential 8 bits
« algebraic sign 1 bit
e texts in ASCII code
- all data elements aligned with 4-byte limit

Disadvantage:

= Two systems which are completely identical have to convert twice

5 e.fm 15 26.November.04

www.httc.de

(]
=
g
©
17
£
©
©
2
£
o
<
S
S
S

5 e.fm 16 26.November.04

XDR, the Representation ,Layer® of the Internet

Essential component: XDR compiler

e generates
- C data structures compatible with the XDR definition and
 program pieces for coding and decoding

Summary/example of a typical data packet
start of the packet

Ethernet header
IP header
UDP header
RPC header
User data in XDR format

Ethernet checksum

end of the packet

Comment: XDR does NOT need any own header

(3)

4. Client / Server and Remote Procedure Call

33

g¢ Server

EE - provides services

¢ = « waits for incoming service requests from clients

g « processes requests and sends results as response

§ « may use other servers to process request (becomes client in that case)
=

Client

« uses services provided by server

« sends requests to server

« (typically) waits for response from server

For client conceptually similar to PROCEDURE CALL
- call procedure
- wait for result

5 e.fm 17 26.November.04

Remote Procedure Call - RPC

G) GJ T [13 "

23 Location “X” Location ™Y

gg Process P1 Process P2

€<)

3= =

g S accepta (...)
|

k¥ |

: T

=

= |

\
/ply (...)
|

end P1 end P2

calla(...)
|
|
|
|
|
|

Vit

Concept
e synchronization between client and server

- synchronous Remote Service Invocation (SRSI)
« characteristic: e.g. limited parallelism

Basic idea:

- application cannot differentiate between
« remote procedure call and
« local procedure call

5 e.fm 18 26.November.04

RPC Example

53
£9
8=
£ |
G 3 iCaII of stub function - Server waits
2 .
S ClientStub Call procedure
= arameter conver5| n > Sae{g’,%r&‘g?'gg%r\‘,ers,cn
s Marshalling) DeMarshalling)
- | Execute
. Client waits proceaure
ClientStub Return result ServerSkeleton
arameter conversicis arameter conversmn
DeMarshaling) Marshalling)

Result is returned ? Server waits

5 e.fm 19 26.November.04

Asynchronous Remote Service Invocation (aRSlI)

(O]

Ep Alternatively to RPC

ZE Location "X Location “Y”
= Process P1 Process P2
2 o ’

£ >

g +—

3 G accepta (...)
s

=

Characteristics (among others)
 parallelism between client and server possible
e associating requests and respective results more difficult

5 e.fm 20 26.November.04

www.httc.de

5]
=
g

]
17

£

©
2

2
£
o
<
3
s
S

15 e.fm 21 26.November.04

RPC: Cycle

Application

Procedure call Procedure returnet

Client Stub

all marshalling

demarshalling

Transport System

ReSL_JIt
received

Application

RetLJ n Req u Jst
result executed

Server Stub

Result
marshalling

Request
demarshalling

Transport System

Result

Request
transfer

received

www.httc.de

(]
=
g
©
17
£
©
©
2
£
o
<
S
S
S

5 e.fm 22 26.November.04

RPC: Cycle (2)

Tasks of the “Stub” procedures:
e to locate and bind server with/and client

 Server registers its service at database (server) by providing its name
(ASCII), network address and service number (any 32 bit number) (export)

- client-stub sends request to database
- its name (which is also the name of the server) in ASCII

- database service returns
network address and unique server identification (binding)

- marshalling/demarshalling (parameter arrangement)
of parameters and results (guarantees transparency)

e client
« collects all parameters of an RPC call and packs them into a message
 server

e unpacks the parameters, performs function(s) and
packs results into a message

e client unpacks results
e error treatment, error semantics
e cOmmunications

« transport system interface

- data representation

« authentication/encryption

www.httc.de

[H)
S
S

©

@
£
@©
?
2
£
o
<
3
s
S

5 e.fm 23 26.November.04

RPC: Error Semantics

Various errors may occur, e.g.

« requests or replies get lost or are garbled during data transfer
- client or server crashes while RPC is ongoing

Several error classes can be distinguished

Maybe-semantics
- server process may have been executed once

At-least-once-semantics
- server process is executed error-free at least once (if not more)

At-most-once-semantics
e Server process is executed error-free at most once

Exactly-once-semantics

e Server process is executed error-free exactly once (guaranteed)
including transmission

RPC: Idea and Reality

S5 ..

g2 Basic idea:

‘gg « application cannot differentiate between
‘-;5 - remote procedure call and

g « local procedure call

é Problems:

- transparency:

« parameter treatment
(“call by reference”, “pointer”, procedures ...)

« side effects
o efficiency
- additional effort for “marshalling/demarshalling”
- error treatment, for e.g. recovery after a “server crash”
e conception
« client and server roles may change
e e.g. in streaming

Implementations
« e.g. SUN RPC (RFC 1057)

- e.g., RPC at Open Software Foundation’s (OSF) Distributed Computing
Environment (DCE)

5 e.fm 24 26.November.04

5. Middleware - CORBA

Common Object Request Broker Architecture - CORBA
e remark:

see also former slides in German (last German Version term WS 00/01)
Middleware is

« software/abstraction glue which allows separate applications to
communicate TRANSPARENTLY

- i.e. to inter-operate independently from
- hardware and system devices, operating systems capabilities
« communications infrastructure

www.httc.de

(]
=
g

©

17
£
©
©
2
£
o
<
S
S
S

History
« 1987 - Sun RPC

« 1988 - Distributed Computing Environment (DCE) of
Open Software Foundation (OSF)

 coined term “middleware”
- incl. naming service, fault semantics, Interface Definition Language (IDL)

 but: no object oriented model with inheritance, static binding of declared
procedure, ..

- today - Object oriented approach of Object Management Group (OMG)
« Object Management Architecture (OMA)

« Common Object Request Broker Architecture (CORBA)

5 e.fm 25 26.November.04

Object Oriented Software Development

(O]
58 Application Application
SE
s g
: o
£ 0
<
:
= Car
(] {
o o
network

Goals
- functionality, efficiency, robustness,
 reuse, future enhancements possible

Alternative (unfortunately too often used) development methods

« “to develop from scratch”

« “Copy, Paste and Adapt individual code”

« “Combine generic parts taken from libraries”

- “Use objects, inherit from and instantiate framework components”

5 e.fm 26 26.November.04

Objects in Distributed Systems

L O
Ep Abstraction
oS
+
3z Interface
2 .
S Request Object
: (_ j .
Result

Methods

\

Request specifies

Target Object Operation Parameter Context

Characteristics
« object addressed via
« unique system wide (location independent) identifier
« usage of Interface Definition Language IDL
« abstraction from local environment
« like the object oriented paradigm
- inheritance, instantiation of object classes, polymorphism

5 e.fm 27 26.November.04

Object Management Architecture OMA

www.httc.de

Healthcare

5]
S
g
]
17
£
©
7
2
£
o
<
3
s
S

User Info System Task
Interface Mgmt. Mgmt. Mgmt.

< Object Request Brokers

Object Management Group (OMG)
« 1989 established

- as independent group (more than 400 companies involved)

I5_e.fm 28 26.November.04

Object Management Architecture OMA (2)

éé OMA defines components:

gg - Object Request Broker (ORB)
e - Object Services

’g « Common Facilities

é‘ « Application Objects

=

« Notation via: Interface Definition Language (IDL)

Interface Definition Language
« Language to define the interfaces, syntax similar to C++

Object Request Broker (ORB)
 Client
« does NOT contact server directly
 contacts object bus
« Client does not care about
e transport services or protocols
« Object creation, management, storage at server side
« Server and client similar
« i.e. should be the same

5 e.fm 29 26.November.04

Interface Definition Language - Environment

L O
DT
ek IDL Declaration
£ 2 Y
82
S IDL Compiler
E / Basic
= Source Code of Object
\ /
I evel Languange ¢ |
Client IDL Server IDL Serverobje
Stubs Skeletons in binary
Interface -
Repository Implementation

Repository

N

Client Server

Interface Repository:
 stores interface information of objects used by clients at run-time

Implementation Repository:
- allows ORB to localize and activate object implementations

5 e.fm 30 26.November.04

6. Other: E.g. Microsoft .NET

NET
« Microsoft

- , As aresult of the changes in how businesses and consumers use the Web,
the industry is converging on a new computing model that enables a
standard way of building applications and processes to connect and
exchange information over the Web"“ — Bill Gates

www.httc.de

[}
=
S
©
@
£
©
2
2
£
o
<
3
s
S

NET: is a software platform
« new APIs and libraries
« .NET Framework with
« Common Language Runtime
« Unified Classes
« Application service provider: ASP.NET

NET: authentication system
 itis now called .NET MyServices
- e.g. rent software instead of license it

NET: standardized method by which applications can "talk" to each other
 via XML

« Web Services describe the way computers can exchange information
» regardless of the platform on which they run

5 e.fm 31 26.November.04

Microsoft .NET Structure

Web Services

www.httc.de

Building Blocks (e.g. for Services)

Office Net ..

.NET Applications

[}
=
S
©
@
£
©
2
2
£
o
<
3
s
S

Languages: Enterprise Servers

SOL Server B BizTalk -

Services: .NET and COM+

C#, Visual Basic, etc

.NET Framework

Operating System

5 e.fm 32 26.November.04

