

Communication Networks II Introduction and Overview

Prof. Dr.-Ing. Ralf Steinmetz

TU Darmstadt - Technische Universität Darmstadt,
Dept. of Electrical Engineering and Information Technology, Dept. of Computer Science
KOM - Multimedia Communications Lab
Merckstr. 25, D-64283 Darmstadt, Germany, Ralf.Steinmetz@KOM.tu-darmstadt.de
Tel.+49 6151 166151, Fax. +49 6151 166152

httc - Hessian Telemedia Technology Competence-Center e.V Merckstr. 25, D-64283 Darmstadt, Ralf.Steinmetz@httc.de

Scope

	KN III (Mobile Networking), Distributed Multimedia Systems (MM I and MM II), Telecooperation II,III; Embedded Systems								
	Applications	nal ss	SS		b	to- ir		Isg.	IP-Tel.
L5	Application Layer (Anwendung)	Terminal	File	E-mail	Meb	Peer-to	Pee	InstMsg.	SIP & H.323
L4	Transport Layer (Transport)	Internet: UDP, TCP, SCTP Internet: IP			itions	Security	ng	Transport QoS - RTP	
L3	Network Layer (Vermittlung)				Netw. Transitions		Addressing	Network QoS	
L2	Data Link Layer (Sicherung)	LAN, MAN High-Speed LAN		Ad					
L1	Physical Layer (Bitübertragung)	Queueing Theory & Network Calculus							
	Introduction								
	Legend:	KNI				KN II			

Overview

- 1. Communication Networks and Computer Networks: Objectives
- 2. ISO Reference Model for Open Systems
- 3. Layer Concepts
- 4. 5-Layer-Model Used Here

1. Communication Networks and Computer Networks: Objectives

Shared usage of resources

- (resource sharing: programs, data, devices)
- share data
- share load
- share operation

High reliability

Cost reduction

e.g. shared usage of a data server (a.o. with X-terminal)

Extensibility

High-performance communication media

- person to person (e.g. E-mail, interactively)
- person to machine (e.g. data bases, WWW, video server)
- machine to machine (e.g. often Peer-to-Peer)

2. ISO Reference Model for Open Systems

Problem: engineering communication means

- multitude of partially very complex tasks
- interaction of differing systems and components

Simplification:

- to introduce abstraction levels of varying functionalities
- general module, preferable: layer, level

Example (here using OSI-OSI reference model, later 5 layers

biologists with translator and FAX-office

OSI (Open Systems Interconnection) Reference Model

- model for layered communication systems
- defines fundamental concepts and terminology
- defines 7 layers and their functionalitites

7	Application Layer
6	Presentation Layer
5	Session Layer
4	Transport Layer
3	Network Layer
2	Data Link Layer
1	Physical Layer

OSI Architecture

OSI Layers: Functions

Layer	Function					
1 Physical	sending bit 1 is also received as bit 1 (and not as bit 0): • mechanics: connector type, cable/medium, • electronics: voltage, bit length, • procedural: • unidirectional or simultaneously bidirectional • initiating and terminating connections					
2 Data Link	 reliable data transfer between neighbouring stations with frames introducing data frames and acknowledgement frames error recognition and correction within the frame: manipulation, loss, duplication fast sender, slow receiver: flow control distribution network requires access control: Medium Access Control (MAC) 					

Layer	Function					
3 Network	connection endsystem with endsystem (subnets) with packets • routing, i.e. among others • fixed, defined during connect, dynamic • congestion control (too many packets on one path) • quality of service dependent • varying subnets, Internetworking, i.e. among others • addressing and packet size • comment distribution network: routing often simplified or non-existent, i.e. this layer often does not exist here • example: IP					
4 Transport	 connection end/source (application/process) to end/drain (application/process) optimize required quality of service and costs 1 L4 connection corresponds to 1 L3 connection increase througput: 1 L4 connection uses several L3 connections (splitting) minimize costs: several L4 connections multiplexed onto 1 L3 connection process addressing, connection management fast sender, slow receiver: flow control 					

Layer	Function
5 Session	 support "session" over a longer period synchronization (during interrupted connection) token management (coordinate simultaneous processing of different applications)
6 Presenta- tion	 data presentation independent from the end system negotiating the data structure, conversion into a global data structure examples: data types: date, integer, currency, ASCII, unicode,
7 Application	 application related services example: electronic mail, directory service file transfer, WWW,

3. Layer Concepts

N-Layer

abstraction layer with defined tasks

N-Entity

- active elements in a layer
- process or intelligent I/O module
- peer entities: corresponding entities on different systems

N-Service Access Point, N-SAP

service identification

N-Protocol:

• amount of rules for transfering data between N-entities

Layer Concepts: Service and Protocol

(2)

Service

- amount of primitives/operations/functions which one layer offers to the next superior one
- characterized by the "interface"
- does not reveal anything about the implementation
- analogy: programming, service corresponds to
 - abstract data type
 - object

Protocol

- rules for the syntax (format) and the semantics (contents) of the data transfer (frames, packet, message) occuring between the peer entities
- analogy: programming, protocol corresponds to
 - realizing the data type (procedures,etc.)
 - the "interior" of the object

Layer Concepts: Service and Protocol

(3)

Service Provider
Service User

3.1 Connection Oriented Service

Connection oriented:

3 phases:

- 1. connect
- 2. data transfer
- 3. disconnect

Analog: telephone service

- applications (preferentially):
 - 1. regularly recurring data units
 - 2. longer period
 - 3. quality of service guarantees (time, bandwidth)

3.2 Connectionless Service

Connectionless (Datagram Service)

• transfer of isolated unit data

Analog: letter delivery

- applications (preferentially):
 - one-time data transfer
 - short duration

3.3 Communication between Layers

- 1 = Logical Peer-Peer communication
- (2) = Physical Adjacent Layer Communication

Between peers: Protocol

Between layers: SERVICE PRIMITIVES

Service Primitives

Service primitives

- define a service in an abstract manner
- are usually parametrized

Types:

- service. REQUEST
- service, INDICATION
- service. RESPONSE
- service. CONFIRMATION

Example:

Connect. REQUEST

Connect. INDICATION

Connect. RESPONSE

Connect. CONFIRMATION

3.4 Confirmed Service

3.5 Unconfirmed Service

Example:

4. 5-Layer-Model Used Here

ISO-OSI

- standardized too late
- implementations usually worse than those of Internet protocols
- in general, however, mainly good concepts

TCP/IP (Internet)

- TCP/IP already prevalent, SMTP also, now e.g. WWW
- integrated into UNIX

To be considered herein:

	Layer	Function					
5	Application	application related services incl. ISO-OSI L5 and L6 (as far as necessary)					
4	Transport	connection end/source (application/process) to end/drain (application/process)					
3	Network	connection end-system to end-system					
2	Data Link	reliable data transfer between neighbouring stations					
1	Physical	sending bit 1 is also received as bit 1					

5-Layer-Model: Some Details

	KN III (Mobile Networking), Distributed Multimedia Systems (MM I and MM II), Telecooperation II,III; Embedded Systems								
	Applications	nal ss	ss ss		b	ţ	ŗ	ısg.	IP-Tel.
L5	Application Layer (Anwendung)	Terminal	File access	E-mail	Web	Peer-to-	Pee	InstMsg	SIP & H.323
L4	Transport Layer (Transport)	Internet: UDP, TCP, SCTP Internet: IP			itions	Security	ng	Transport QoS - RTP	
L3	Network Layer (Vermittlung)				Netw. Transitions		Addressing	1	Network QoS
L2	Data Link Layer (Sicherung)	LAN, MAN High-Speed LAN		Ad					
L1	Physical Layer (Bitübertragung)	Queueing Theory & Network Calculus							
	Introduction								
	Legend:	KN I KN II			KN II				

Layers: Conception vs. Implementation

Concept

- each layer has its own process or a multitude of processes (entities, because of multiplexing/splitting)
- buffers between layers (incl. buffer management)

Experiences with communication systems

- changing the context of processes takes a lot of time
- most of the processing time is used up for copying (despite e.g. DMA)
 - adapter -> main memory
 - within the main memory (layer to layer)
 - main memory -> adapter
- difficult to review for correctness
 - parallelism, many potential states

Implementation

- pooling several layers to one process
- using dedicated buffer management
 - copying is logical copying (pointer operations)
- specification methods with conformance testing