
Connectivity and
Attribute Compression

of Triangle Meshes

Bachelor's Thesis

Maximilian Alexander von Bülow
March 2017

Technische Universität Darmstadt
Department of Computer Science

Graphics, Capture and Massively Parallel Computing

Supervisors: Dr. rer. nat. Stefan Guthe
Dr.-Ing. Michael Goesele

01001
1110100
0111010
01100GCC

Graphics, Capture and
Massively Parallel Computing

Declaration of Authorship

I certify that the work presented here is, to the best of my knowledge and belief, origi-

nal and the result of my own investigations, except as acknowledged, and has not been

submitted, either in part or whole, for a degree at this or any other University.

Darmstadt, 13.03.2017

Maximilian Alexander von Bülow

I

Abstract

Triangle meshes are used in various fields of applications and are able to consume a vo-

luminous amount of space due to their sheer size and redundancies caused by common

formats. Compressing connectivity and attributes of these triangle meshes decreases the

storage consumption, thus making transmissions more efficient. I present in this thesis a

compression approach using Arithmetic Coding that predicts attributes and only stores

differences to the predictions, together with minimal connectivity information. It is ap-

plicable for arbitrary triangle meshes and compresses to use both of their connectivity

and attributes with no loss of information outside of re-ordering the triangles. My ap-

proach achieves a compression rate of approximately 3.50:1, compared to the original

representations and compresses in the majority of cases with rates between 1.20:1 to

1.80:1, compared to GZIP.

Keywords: Compression, Data structures, Mesh representation, Algorithms, Graphics

Zusammenfassung

Dreiecksnetze sind in verschiedenen Anwendungsbereichen zu finden und können auf-

grund ihrer schieren Größe und Redundanzen, die übliche Formate erzeugen, großen

Speicherbedarf verursachen. Kompression der Konnektivität und Attribute dieser Drei-

ecksnetze verringert den Speicherbedarf und macht die Übertragung effizienter. In die-

ser Arbeit präsentiere ich einen Kompressionsansatz, der Attribute abschätzt und an-

schließend die Fehler zu den Schätzwerten zusammen mit minimalen Konnektivitätsin-

formationen mithilfe eines arithmetischen Kodierers komprimiert. Er ist anwendbar auf

beliebigen Dreiecksnetzen und komprimiert Konnektivität und Attribute ohne Verlust

von Informationen, mit Ausnahme einer Neuanordnung der Dreiecke. Mein Ansatz er-

reicht Kompressionsraten von ungefähr 3.50:1 gegenüber der Originalrepräsentationen

und komprimiert in den meisten Fällen besser als GZIP mit Raten zwischen 1.20:1 bis

1.80:1.

Titel: Konnektivitäts- und Attributkompression von Dreiecksnetzen

III

Contents

1 Motivation and Introduction 1

1.1 Motivation . 1

1.2 Introduction . 2

2 Related Work 3

2.1 Comparisons . 3

2.2 Connectivity compression . 3

2.3 Attribute compression . 4

2.4 Implementations . 5

3 Background 7

3.1 Arithmetic Coding . 7

3.2 Preliminaries on meshes . 9

3.3 Connectivity compression . 12

4 Algorithm 15

4.1 Overview . 15

4.2 Cut-Border Machine extensions . 16

4.3 Non-manifold meshes . 18

4.4 Attribute compression . 20

5 Results and Discussion 23

5.1 Evaluation . 25

5.2 Comparison against existing implementations 28

5.3 Graphical inspector . 29

6 Conclusion 31

6.1 Future work . 31

Bibliography 35

V

1 Motivation and Introduction

1.1 Motivation

Triangle meshes are used in very different areas of application, e.g. 3D rendering, recon-

structing and printing, CAD modeling or physical simulations. They can become very

space consuming for high resolutions and come with the additional space consumptions

from lots of redundancies caused by common mesh formats. Their total space consump-

tion can be for example thousands times higher compared to the corresponding raw

texture data, which nevertheless can be compressed very easily as they can be stored

using state of the art image formats. In order to address all this areas of applications

and solve the former explained problems, developing a general compression algorithm

of high effectiveness is mandatory.

Simple mesh formats store the attributes in either binary or ASCII format by concate-

nating them into simple lists. The connectivity is usually stored using an indirect indexed

approach, which uses integer numbers as indices referencing to the vertices. Because of

the local similarity of attributes and the global indexing used for the connectivity, this is

a very redundant way of storing meshes.

A very common way to compress meshes is to use dictionary coders like GZIP to reduce

this simple mesh formats to about the half size. The problem with this method is, that

GZIP treats all data the same way, making no differences between connectivity and

different types of attributes. In order to improve compression rates, more specialized

algorithms need to be developed. Other existing compressors either suffer in terms of

generality, ineffective connectivity compression algorithm or bad attribute prediction

schemes. To be precise in terms of generality, some compressors enforce quantization

of attributes and no current compressor supports arbitrary attributes.

1

1 Motivation and Introduction

1.2 Introduction

The algorithm proposed in this thesis makes very few assumptions about the input mesh,

in order to be able to address as many areas of application as possible. Due to these few

assumptions and no further parameters, the algorithm is highly integrable into existing

applications. Most applications working on triangle meshes already implement data

structures for adjacency lookups, that are as well required by the algorithm I present in

this thesis. The only effort of integrating comes from combining the data structures of

these applications with the data structures of my algorithm efficiently.

There are no restrictions for the type and size of any attribute, as long as they are

either a combination of integer or real numbers and equal in size for each primitive

during compression. Currently, the algorithm is restricted to the compression of tri-

angles, but it could easily be extended to encode arbitrary polygons (Section 6.1). To

make the algorithm as general as possible, it makes no assumptions about the required

precision of the attributes and compresses everything losslessly. In terms of geometry

and connectivity, the algorithm I present does not make any changes to the mesh out-

side of re-ordering the primitives, vertices and attributes. Thus, there is not any loss on

adjacency information.

2

2 Related Work

2.1 Comparisons

In 2005 two complete comparisons of mesh compression approaches were published by

Alliez and Gotsman [AG05] and Peng et al. [PKK05]. A decade later, in 2015, the work

of Maglo et al. [Mag+15] gave an updated overview about mesh compression in the

fields of mesh geometry, attributes and connectivity. Their work defines and compares

existing approaches and also yields trends for the future.

Another related work is the one of Limper et al. [Lim+13], which compares different

compressed and uncompressed mesh representations against decompression and net-

work transmission time on different types of devices. It also shows that on mobile de-

vices with very limited computational resources, some algorithms are taking more time

to decompress meshes than receiving the uncompressed mesh through the network.

2.2 Connectivity compression

Traditional mesh formats like PLY, OBJ or OFF use vertex index lists representing the

connectivity information indirectly. Because this type of storing connectivity information

is very redundant, different connectivity algorithms were established in the past decades,

which can be distinguished into two categories: the single-rate and the progressive ones.

The operations generated by this algorithms can be passed to an entropy coder like the

Arithmetic Coder described in Section 3.1.

Single-rate Single-rate algorithms are compressing the mesh successively by traversing

it. The mesh is divided by a cyclic border into an inner part, which is already compressed

and an outer part, which is outstanding for compression. This cyclic border is traversed

and extended at each iteration step. The current element on the border, where the

extension takes place, is called the gate. Single rate algorithms can be distinguished

into valence based and triangle based, which both encode the connectivity with a rate

3

2 Related Work

of approximately two bits per vertex, although valence based are slightly more effective

than triangle based algorithms.

Touma and Gotsman [TG98] describes a valence based algorithm, which defines the

cyclic border as a succession of vertices, called Vertex Cycle. The algorithm iterates over

the whole triangle fan of the gate vertex and encodes the valence of the not so far

compressed vertices.

On the other hand, the algorithm of Gumhold and Straßer [GS98] and Gumhold

[Gum99], called Cut-Border Machine is triangle based and defines the cyclic border

as a succession of edges, called cut-border. While iterating, the algorithm encodes dif-

ferent relations between the gate edge and the cyclic border. The algorithm of Rossignac

[Ros99] is very similar and calls the cyclic border Boundary. Gumhold et al. [GGS99]
are showing an implementation of the Cut-Border Machine for tetrahedral meshes.

Progressive Progressive algorithms, described by Hoppe [Hop96], incrementally sim-

plify the mesh into different levels of details. They encode a basic simplified mesh of the

smallest level of detail and refine the mesh by encoding operations like vertex split, edge

split or face split for each level of detail, which generate a more detailed surface at the

split position by adding more triangles. Progressive algorithms are suitable when dif-

ferent resolutions of the mesh are required. E.g. when a object is rendered in the scene

background, a lower resolution looks visually the same and it is sufficient to omit higher

levels of detail. Attributes of progressive algorithms are often quantized to around 12

bits [Mag+15]. Progressive meshes are not further discussed in this thesis, due to their

lossy encoding of both attributes and connectivity in all, except the highest, levels of

details and the less compression rates compared to single-rate algorithms.

2.3 Attribute compression

As described by Maglo et al. [Mag+15] the attributes are first quantized in the case of

lossy compression and then, in both lossy and lossless cases, they are delta coded against

a predicted attribute.

Prediction The main idea of predicting attributes is exploiting connectivity informa-

tion to make use of their locality and afterwards encode the differences to the original

values (delta coding). Adjacent triangles or vertices should have similar attributes, so

that differences can become very small. Prediction schemes are further described by

Deering [Dee95], Touma and Gotsman [TG98], and Gumhold et al. [GGS99].

4

2.4 Implementations

The simplest prediction is to assume that the attribute of the vertex is the same as

the one of the adjacent vertex. However, a more advanced prediction is to estimate the

adjacent vertex using a parallelogram. This approach gives better results because two

pairs of adjacent triangles often form approximately the shape of an parallelogram.

Quantization Quantization, described by Deering [Dee95], is done by subdividing a

range of integer or real, i.e. floating point, numbers into different cells identified by

unique integer numbers. In the case of a quantization of 3D positions, the range of

the positions can be seen as the Axis Aligned Bounding Box of the mesh. After subdi-

vision, all attributes are transformed into their respective cell identifier. This approach

of attribute compression is lossy, due to the grouping into a small amount of cells and

therefore not used in my implementation but further discussed in Section 6.1.

2.4 Implementations

There are a couple of fully featured compression implementations that have been re-

leased in the past years. In this section I want to give a short overview of these different

implementations and show whether their compression is either lossy or lossless. I also

show, whether the implementations are able to compress non-manifold meshes and ex-

plain which types of attributes they support. All of them use either an entropy or a

dictionary coder, which is called the compression backend, to encode the collected con-

nectivity information and the attribute data.

OpenCTM OpenCTM was released by Geelnard [Gee10] in 2009. It uses the dictionary

coder LZMA as its backend and the connectivity is encoded using a delta encoded vertex

index list. OpenCTM makes no predictions on the attributes but allows optional lossy

compression by using quantization with user defined precision. This format is limited

to encode positions, texture coordinates and normals as per-vertex attributes in 32 bit

floating point precision.

WebGL loader The WebGL loader, developed by Google [Goo11] in 2011, is part of

the Google Human Body Project and does not make use of any compression backend. In

practice it is meant to be combined with GZIP because it produces UTF-8 output, which

can be easily interpreted by JavaScript applications. The vertices are transformed using

a vertex cache and connectivity is encoded using a delta coded vertex index list to the

transformed vertices. All attributes are quantized, vertex positions are predicted using

5

2 Related Work

a parallelogram and normals using the cross product of the edges. WebGL loader is able

to encode positions and normals. Because of the enforced quantization, this format is

always lossy.

Open3DGC The Open3DGC project by AMD [AMD13], which was developed in 2013

is an implementation of the work of Mamou et al. [MZP09]. The connectivity is com-

pressed, by rotating the vertex indices of each triangle in a way, that the vertex in the

center of each triangle fan will only be encoded once. This is a similar but easier ap-

proach to the valence based algorithms. It uses an arithmetic coder as its backend,

the geometry data is predicted using a parallelogram and the attributes are quantized.

Open3DGC supports a variable number of floating point and integer attributes. Because

of the quantization, this format is, as the former implementation, lossy.

Google Draco Google Draco was released by Google [Goo17] in early 2017 and uses

the entropy coder ANS [Dud13], which is a combination of Arithmetic Coding and Huff-

man Coding, as its backend for attribute data and static Huffman Coding for connectivity.

The connectivity is compressed using the Edgebreaker [Ros99] algorithm. Positions are

predicted using multiple parallelograms, texture coordinates are predicted using the ver-

tex positions and all other attributes are delta coded. Draco supports compressing ver-

tex positions, colors, normals and texture coordinates but cannot encode non-manifold

meshes without losing adjacency information. The loss of adjacency information is due

to the inability of the used Edgebreaker algorithm to encode non-manifold meshes. To

fix this issue, Draco copies vertices and its attributes on every non-manifold edge or

vertex to ensure a 2-manifold mesh.

6

3 Background

In this chapter I describe the basic concepts used for compressing triangle meshes. This

thesis is structured as follows: Section 3.1 describes a method to encode a stream of

symbols and a way for efficient handling of cumulated frequencies. Section 3.2 gives an

overview about meshes, shows how they are defined and consist of and describes a data

structure for efficient adjacency lookup. Finally, in Section 3.3, I present an algorithm

for compressing triangle mesh connectivity.

3.1 Arithmetic Coding

A

B

C

A

B

C

2

3

A

B

C

2

2.25

A

B

C

2.
15

2.25

Figure 3.1: Arithmetic Coder with an adaptive frequency model encoding the character sequence CAC.

The Arithmetic Coder is a lossless entropy coder, which is able to archive nearly optimal

compression rates, i.e. the size of the result is nearly the size of the entropy. The main

difference to Huffman Coding is, that coded symbols are not required to have an integral

amount of bits, which enables a better compression rates. The main idea is to subdivide

an interval into different parts representing the alphabet and periodically reducing it to

7

3 Background

the part representing the current symbol. Major challenges are to efficiently implement

this interval reduction for computers with limited decimal number precision.

Algorithm According to Rissanen and Langdon [RL79] a bit stream can be seen as a

single fractional number or alternatively as an interval containing all bit streams with the

same prefix. The implementation used in this thesis is based on the work of Moffat et al.

[MNW98]. I chose Arithmetic Coding because it archives better compression rates than

other entropy or dictionary based compression algorithms, despite of its comparably

worse compression speed.

Given a symbol si , a cumulated frequency range ri = [li , ui) exists. Also an interval

[L, L+R), describes the current state of the range coder, where initially L = 0, R= t and

t is the sum of all frequencies un. After encoding symbol s j , the algorithm reduces this

interval to L′ = L+R/t× l j and R′ = R/t×(u j− l j). When all symbols are processed, the

algorithm writes an arbitrary number from the interval [L, L + R), e.g. L, to the output

stream.

Theoretically a high number of bits is required to represent L and R correctly, which

makes the reduction of the interval very hard and inefficient. To solve this issue, the in-

terval is represented using fixed precision numbers and renormalized repeatedly. Renor-

malization of the interval keeps R in the range (2b−2, 2b−1], where b is the number of

bits chosen to represent L and R. When R≤ 2b−2, the interval [L, L+R) must be scaled

by halving it. Additionally, if L + R ≤ 2b−1, the algorithm writes a zero to the output

stream and if L ≥ 2b−1, it writes an one and moves L 2b−1 left before scaling the inter-

val. If none of this cases happen, for the interval applies 2b−1 ∈ [L, L+R), the algorithm

remembers the number of consecutive occurrences and appended such many opposite

bits of the following one or zero, i.e. it writes a value slightly above or below 0.5 in such

case.

The cumulated frequencies are maintained by the so called model. In our case, the

model simply counts the frequencies of each symbol and outputs the cumulated fre-

quency. The later described connectivity compression uses conditional frequencies, which

requires multiple sub-models for each condition. The combination of encoding and

maintaining an adaptive model is demonstrated in Figure 3.1. The basic idea behind

any model is that it tries to predict the next symbol’s probability as efficient as possible

in order to maximize the compression rate.

Managing cumulated frequencies Since the extraction of cumulated frequency hap-

pens at each encoding step, the implementation of Moffat et al. [MNW98] focuses on

8

3.2 Preliminaries on meshes

optimizing it. A naive implementation would require n steps for calculating the cu-

mulated frequencies by iterating through the frequency values and adding them. The

reverse lookup, which is required for decompression, also requires n steps to find the

symbol for a given cumulated frequency. However, an optimization of the extraction

of cumulated frequencies can be applied by managing an array of the cumulated fre-

quencies directly, which enables constant time extraction. Again, this solution requires

n steps for updating a frequency, which makes this a useless optimization.

0 1 2 3 4 5 6 7

Figure 3.2: Visualization of the Fenwick Tree [Fen93] and the traversal of it.

To solve this problems and realize fast extraction, update and reverse lookup of cu-

mulated frequencies, Moffat et al. [MNW98] implemented the Fenwick Tree [Fen93],
that stores the frequencies of each symbol in a binary tree as can seen in Figure 3.2.

This way, logarithmic time is archived for extracting and updating frequencies [Fen95]
in both directions. In addition, it possesses, linear storage complexity, like the former

presented techniques.

3.2 Preliminaries on meshes

Figure 3.3: A triangle mesh.

According to Maglo et al. [Mag+15], a mesh consists of geometry, connectivity and

attributes. Due to the structure of my algorithm I make no distinction between the

geometry and the attributes. The geometry can always be seen as the position attribute

of a vertex and can be optional as well as described by Isenburg et al. [IGG01].

9

3 Background

(a) (b) (c)

Figure 3.4: (a) A vertex attribute, (b) triangle attributes and (c) triangle-vertex attributes demonstrated

using different types of normals.

An attribute can be seen as a vector of real or integral scalar numbers, that can be

either empty, i.e. has a dimension of zero, or not. For example, the position p of a

vertex is a vector (px , py , pz). Multiple attributes that always occur in a union can be

grouped together. For example, if the mesh has no hard edges, the vertex normals n

are always bound to the vertex positions and form the attribute (px , py , pz , nx , ny , nz).
Attributes with the same signature form a series, called attribute list.

The series of vertices is represented by exactly one attribute list, called vertex at-

tributes. Triangles are formed by another attribute list, called triangle attributes, and

the combination of three indices to the vertex list for every corner point of each trian-

gle. All other attribute lists, called triangle-vertex attributes are bound to the corners

of triangles and can be shared between different vertices or triangles. Edges can have

attributes attached to them as well, but they will not further be discussed in this thesis

due to their rare use. The different types of attributes can be seen in Figure 3.4. The

connectivity of the mesh can be either represented directly by storing all neighbors for

each triangle or indirectly using the vertex indices at the corners of each triangle. In the

latter approach all triangles that share a pair of vertex indices, called edge, are adjacent

to each other.

(a) (b) (c) (d)

Figure 3.5: 2-Manifold and non-manifold triangle fans: (a) a closed triangle fan (2-manifold), (b) an open

triangle fan (2-manifold), (c) a not opened/closed triangle fan (non-manifold) and (d) more

than one adjacent edge (non-manifold).

The mesh connectivity can be seen as the topology of the mesh, which forms the

surface of it as visualized in Figure 3.3. As it can be seen in Figure 3.5, surfaces are

10

3.2 Preliminaries on meshes

2-manifold when all triangles of a vertex attached to it form an either closed or open

triangle fan. When this is not the case, a vertex is connected to multiple triangle fans

and the surface is called non-manifold.

Data structure for triangle connectivity Most mesh formats, like PLY, OBJ or OFF, which

are assumed as the input mesh formats, are storing the triangle connectivity information

using the indirect approach, which stores indices for each corner of a triangle. This way

of storing connectivity information requires a linear-time lookup for finding an adjacent

triangle because the whole triangle list has to be traversed for it. Since connectivity

compression algorithms make aggressive use of adjacency information, an efficient di-

rect connectivity data structure should be used to allow faster access.

half edge

t
w

i n
next

Figure 3.6: Visualization of the Half Edge Data Structure.

An efficient direct connectivity data structure to allow constant-time lookup of adja-

cent triangles is the Half Edge Data Structure [CKS98]. A half edge is a directed edge

within a triangle and the direction is defined by the order of the indices to the vertex

attribute list described above. The Half Edge Data Structure maintains a next pointer for

each half edge referencing to the next half edge of the triangle forming a circle of three

edges. Each edge, which is not on a mesh border, has a twin pointer attached to it, which

is pointing to the reverse edge, i.e. the edge of the adjacent triangle. A visualization of

this can be seen in Figure 3.6. Vertex attributes can be referenced from the beginning

of each half edge and triangle attributes can be referenced from each half edge of the

triangle. The Half Edge Data Structure comes with the problem, that each half edge can

only be bound to exact one triangle, which makes non-manifold edges unrepresentable.

Nevertheless, most triangle meshes have some non-manifold edges.

11

3 Background

triangle edge

fn
e

x
t

enext

Figure 3.7: Visualization of the Triangle Edge Data Structure.

In order to also support non-manifold meshes, I chose the Triangle Edge Data Struc-

ture [Müc93], which extends the Half Edge Data Structure. In this data structure, the

half edges form a tuple with their triangle, called triangle edge, and reference their adja-

cency using a ring with all half edges equal or reverse to it. This is done by maintaining

the twin pointers in a way that they are referencing all adjacent Triangle Edges in cyclic

way. The next pointer is here called enext and the circular twin pointers are called fnext.

The Triangle Edge Data Structure is visualized in Figure 3.7.

3.3 Connectivity compression

The Cut-Border Machine of Gumhold and Straßer [GS98] and Gumhold [Gum99] is

used to compress triangle mesh connectivity. By traversing the mesh in a structured

way and writing only information required for correct traversal during decoding, nearly

optimal compression can be performed.

gate-adjacent vertex
gate-adjacent edges
gate-adjacent triangle
gate
cut-border

Figure 3.8: Terms of the Cut-Border Machine using the example of the new vertex operation.

The main part of the Cut-Border Machine is the so called cut-border. The cut-border

splits the mesh into an encoded and decoded part and is stored as a circular data struc-

ture, that contains the half edges that are currently on this circle. For each iteration, the

Cut-Border Machine stores a reference to the current cut-border element, the so called

gate. The gate leads from the compressed to the uncompressed region and is the only

part of the cut-border where new triangles are appended to the cut-border. In the fol-

lowing, I define multiple terms (Figure 3.8) for better understanding of the algorithm. I

12

3.3 Connectivity compression

call the triangle of the twin of the gate gate-adjacent triangle and the vertex of the gate-

adjacent triangle, which is actually not connected to the gate, gate-adjacent vertex. The

two edges of the gate-adjacent triangle, which are not the gate, are called gate-adjacent

edges.

Check gate

Write operation

Update cut-border

Invoke

attribute compressor

Set gatefound a gate

Initialize

cut-border

triangles left to compress

no cut-border edge left

no
triangles

left

Figure 3.9: Flow chart of the Cut-Border Machine.

new vertex conn. forward conn. backward border spliti unionp,i

Figure 3.10: Cut-border operations [Gum99]. The current cut-border is marked blue, the gate is marked

as a bold blue arrow and the gate-adjacent triangle is shaded dark grey.

Traversal At the beginning, the Cut-Border Machine chooses a triangle from the set of

triangles, initializes the cut-border to the three edges of it and sets the gate to its first

edge. Now, the Cut-Border Machine checks the gate-adjacent vertex, which can meet

the following conditions visualized in Figure 3.10.

The first case is that this vertex simply does not exist because the gate is on a mesh

border. For this case a border operation will be written and the cut-border edge of the

gate will be deactivated. If the gate-adjacent vertex is not part of the cut-border, the

gate-adjacent edges will be added to the cut-border and a new vertex operation will be

written.

13

3 Background

The last case is, that the gate-adjacent vertex is part of the cut-border. This behavior

can be split again into multiple different sub-cases. If the vertex is the next vertex on

the cut-border after the gate, the gate will be directly connected to the edge after the

next element and a connect forward operation will be encoded. Analogous, a connect

backward operation will be encoded, when the gate-adjacent vertex is the previous one.

If the vertex is as well not the previous as the next on the cut-border, the cut-border must

be split up into two parts, the part in traversal direction from the gate to the adjacent

vertex and the part in opposite direction. This will be encoded as a split, or alternatively

called connect, operation, followed by the offset of the adjacent vertex on the cut-border.

Due to the splitting of the cut-border, a new condition can occur. When the adjacent

vertex is part of another cut-border, they have to be concatenated at this vertex using

the union operation, followed by the offset and the part index. After each operation, the

attribute encoder is invoked to encode the attributes of the current triangle, vertices or

combinations of it.

After checking the conditions, updating the cut-border and encoding the cut-border

operations, a new gate is determined in a way that a breadth-first search is performed.

This happens by choosing the new gate as the following edge of the gate. Regardless

of that, in Section 4.2 will be described, that a depth-first search archives better com-

pression efficiency in combination with a Arithmetic Coder [Gum99]. When there is no

edge left on the cut-border, the Cut-Border Machine tries to find a distinct edge con-

nected component of the mesh and repeats the previous steps. If all edge connected

components are encoded, the Cut-Border Machine stops. The whole algorithm flow is

visualized in Figure 3.9.

14

4 Algorithm

In this chapter I describe the algorithm of a fast triangle mesh compressor that is able to

encode arbitrary non-manifold triangle meshes with arbitrary structured attribute data.

4.1 Overview

Input mesh

Triangle Mesh

data structure

Cut-Border Machine

Attribute

data structure

Attribute compression

Arithmetic Coder

connectivity attributes

connectivity data

Figure 4.1: Algorithm structure: Data flow of the connectivity and the attributes.

For my algorithm, I chose the Cut-Border Machine (Section 3.3) for connectivity com-

pression because it has very good compression rates and allows easy implementation

of extensions (Section 4.2), e.g. to allow compression of non-manifold meshes (Sec-

tion 4.3). Modification of valence based systems to allow non-manifold meshes would

be extremely complicated due to their heavy use of closed triangle fans. The handling of

borders is also much more difficult in valence based algorithms, where holes are filled

15

4 Algorithm

with a dummy vertex to form a triangle fan. The Edgebreaker algorithm on the other

hand requires the entire mesh border to be encoded up front.

Arbitrary attribute data is predicted using adjacency or history information gathered

from the connectivity of the mesh (Section 4.4) and delta coded against the prediction.

As mentioned above, the mesh connectivity is traversed by the Cut-Border Machine,

which also manages binding the attributes to the corresponding vertices or triangles.

All gathered information, that is, Cut-Border Machine operations, offsets and delta

coded attribute data, will finally be compressed using an Arithmetic coder (Section 3.1)

as the backend. This could potentially use different output streams for different at-

tributes and connectivity information.

A visualization of the whole algorithm structure described above can be seen in Fig-

ure 4.1.

4.2 Cut-Border Machine extensions

I have implemented multiple extensions to the Cut-Border Machine, which are reducing

the encoded size of the connectivity.

Arithmetic Coding As described by Gumhold [Gum99], the basic optimization was to

encode the cut-border operations using the Arithmetic Coder Section 3.1 with adaptive

frequencies for each operation. To make Arithmetic Coding efficient for the Cut-Border

Machine several changes have to be applied. The basic idea is to make the compression

as effective as possible by having few operations with high frequencies and a majority

of operations with very low frequencies. This keeps the number of renormalizations of

the interval of the Arithmetic Coder low and increases the coding efficiency.

16

4.2 Cut-Border Machine extensions

(a) breadth-first search (b) depth-first search

Figure 4.2: Visualization of the (a) breadth-first search and the (b) depth-first search traversal order. Tri-

angles compressed by the new vertex operation are marked blue, connect backward operations

light green, connect forward operations dark green, initial operation red and split operations

magenta.

Traversal order Gumhold [Gum99] mentions that the number of connect forward and

connect backward operations are almost the same when performing a breadth-first search.

As mentioned before, it would be better to find a traversal technique where either con-

nect backward or connect forward operations have a low frequency. When traversing the

mesh in a way that a depth-first search is performed, by choosing the gate as the first

newly created cut-border edge, the number of connect forward symbols overwhelm the

connect backward symbols as can be seen in Figure 4.2. This keeps the start vertex of

the gate as long as possible static and a traversal around the triangle fan of this vertex

happens as long as new vertex operations occur. When the last triangle of the triangle

fan is about to be encoded, a connect forward operation closes the triangle fan and fi-

nally changes the start vertex of the gate to traverse a new triangle fan. This traversal

order is locally equal to the traversal orders used in valence based systems described in

Section 2.2.

Conditional frequencies An observation of Gumhold [Gum99] was, that it is much

more likely that a connect operation occurs, when the so called order of a vertex, is big

and a new vertex occurs more likely when the order is small. The order is defined as

the current number of encoded faces, which are connected to the given vertex, i.e. the

valence of the mesh up to this point. To make the Cut-Border Machine more efficient,

conditional frequencies are used for encoding the operations. The different conditions

are bound to the order of the vertex, which enables distinct frequency gathering for all

17

4 Algorithm

different orders. Due to the low frequencies of all operations, that are not a new vertex

and connect backward operation, the implementation makes no distinction on the orders

of those.

Condition Operations

Cut-border contains no edges initial possible

Cut-border contains edges initial impossible

Previous element on Cut-border was pre-

viously encoded as a mesh border

connect backward impossible

Next element on Cut-border was previ-

ously encoded as a mesh border

connect forward impossible

Cut-border is not split union impossible

Table 4.1: Impossible operations and their conditions.

Impossible operations In some cases some operations are impossible to occur as it can

be seen in Table 4.1. E.g. a connect backward operation can never happen, when the

previously encoded edge was a mesh border. This cases can again be used as conditions

for the Arithmetic Model and the frequencies of the corresponding impossible operations

can be set to zero. Gumhold [Gum99] however, solves this task by renaming infrequent

operations to impossible operations. An observation was, that executing a connect back-

ward or connect forward operation over an already encoded border just removes the

gate which has exactly the same behavior as a border operation. In that special case, the

border operation can just be renamed to the corresponding connect operation to reduce

number of border operations, which is more efficient in speed than handling conditional

frequencies.

4.3 Non-manifold meshes

An important thing the traditional Cut-Border Machine of Gumhold and Straßer [GS98]
lacks, is capability of encoding all non-manifold edges and vertices. In this section, I

propose a generalized compression scheme, that works for arbitrary input meshes.

The basic Cut-Border Machine [Gum99] can only encode non-manifold vertices on

mesh borders and non-orientable vertices which forces the approach to cut meshes into

manifold edge connected components while losing adjacency information at the cuts.

18

4.3 Non-manifold meshes

→ → → →
?

Figure 4.3: Traversal of a non-manifold mesh using the Cut-Border Machine. The current gate is marked

blue.

When analysing why the Cut-Border Machine cannot encode non-manifold vertices

or edges, I observed that it assumes every gate-adjacent vertex to be located on the cut-

border when it was flagged as previously encoded. This is exactly the condition for any

connect operation. On 2-manifold meshes, this is always the case because each edge is

only handled twice during compression – once when it is added to the cut-border and

again when it becomes the gate or some gate connects to that edge. During the second

encounter, the edge is always removed from the cut-border. On non-manifold meshes,

an edge can get connected or become the gate multiple times. Due to the removal of

the edge this can no longer be encoded. However the deletion is required to ensure a

correct traversal order. The problems caused by the traversal of non-manifold meshes

can be seen in Figure 4.3.

My approach solves this task by handling the case where a gate-adjacent vertex was

flagged as already encoded but does not exist on the cut-border as a new vertex operation.

During encoding the global vertex offset is transmitted instead of transmitting the whole

vertex attribute as this is already in the stream. Using this technique, the mesh is split

into multiple pieces implicitly that are compressed separately but the decoder is able to

to concatenate those pieces correctly using the global vertex offset. I call the modified

new vertex operation non-manifold new vertex. Transmitting the global vertex offset is an

acceptable efficiency loss, due to the few occurrences of non-manifold vertices or edges.

This solution does not need any costly preprocessing steps to recognize non-manifold

vertices or edges by analysing all triangle fans.

Similar to Gumhold [Gum99], I further introduced three new initial operations to

initialize a new edge-connected mesh component with the offsets of one, two or three

already encoded (non-manifold) vertices to keep adjacency information.

19

4 Algorithm

4.4 Attribute compression

Data structure for attributes As described in Section 3.2, attributes are represented

as a series of vectors. To support vectors of variable in size and type, a dynamic data

structure must be implemented.

To realize this data structure, without the need of many memory allocations and wast-

ing memory, only one single byte array that will be reinterpreted to the corresponding

types of the different attributes during the run-time. The size s of each tuple can be

computed in before, by calculating the size of each tuple element. To encode n tuples,

s× n bytes need to be allocated for such an array.

Duplicates In order to achieve high compression rates and to keep all adjacency infor-

mation, the algorithm avoids encoding any duplicates of attributes.

write triangle attr.

write vertex attr.

write local offset of TVA1

write global offset of TVA

write Tri.-Vtx. attr.

for all operations

initial / new vertex operation

all ops., for every

corner and attr

already seen

at this vertex

already seen

at some vertex

not seen yet

Figure 4.4: Decision tree of the attribute compressor.

Triangle attributes can be encoded after all cut-border operations and vertex attributes

can be encoded for each initial and new vertex operation without any duplicates. Triangle-

vertex attributes come with a little more overhead.

Gumhold and Straßer [GS98] describe an algorithm, that subdivides the triangle fan

of each vertex into regions with equal triangle-vertex attributes. This is done by sav-

ing a reference to the attribute of the left and right triangle for each cut-border vertex

corresponding to a backward and forward traversal order. The references change dur-

ing the traversal of the cut-border if the cut-border edge is on a crease. Those changes

are encoded using control bits for each added edge. Another bit is required to encode

1Triangle-Vertex attribute

20

4.4 Attribute compression

whether the attribute data must be transmitted or the added edge closes the triangles

fan whereby the data can be used from the right reference.

This approach comes with the disadvantage in cases where the same triangle-vertex

attribute is included in multiple regions, whereby triangle-vertex attributes will be du-

plicated for each region (local redundancies). Additionally, it duplicates triangle-vertex

attributes if they are attached to multiple triangles (global redundancies).

To avoid local redundancies, my algorithm stores references of all already encoded

triangle-vertex attributes for each vertex into a linked list, which I call local history.

When the algorithm encodes a triangle-vertex attribute, it searches the attribute index

in this list and only encodes the local offset to it. If the attribute was not found, it is added

the local history. Additionally, to avoid global redundancies, the algorithm encodes the

global offset to the global history of attribute in case it is already encoded by a previous

vertex. The entire behavior of attribute coding can be seen in Figure 4.4.

(a) (b) (c)

Figure 4.5: Predictions of (a) a vertex position using a parallelogram, (b) a triangle color using the differ-

ence to its neighbor and (c) a triangle-vertex normal using the difference to an already encoded

attribute of the vertex. The difference is marked as a red arrow and the cut-border is marked

in blue.

Predict attribute Compute difference Encode difference

hi
st

or
y

co
nn

ec
ti

vi
ty

or
ig

in
al

at
tr

ib
ut

e

Figure 4.6: Flow chart of attribute prediction.

Prediction To keep the number of distinct symbols low, I decided to encode only dif-

ferences to a predicted attribute [Mag+15] as can be seen in Figures 4.5 and 4.6. In

order to achieve maximum coding efficiency, the differences should require as few bits

21

4 Algorithm

as possible and should be similar to each other. The prediction algorithms need to be

different for each attribute type.

• Vertex attributes are predicted using a parallelogram to the opposite gate-adjacent

vertex [TG98; GGS99].

• Triangle attributes are encoded as the difference to one of their neighbors.

• Triangle-vertex attributes are encoded as the difference to a former encoded at-

tribute of that vertex.

Because computing differences in floating point arithmetic suffers from loss of accu-

racy, a transformation to a signed integer representation happens that should be order-

able according to the ordering of the number it represents. An observation from floating

point numbers is, that the concatenation of the exponent and mantissa is always already

ordered because of their partial ordering and the higher significance of the exponent.

Thus, to allow integer arithmetic ordering of the whole floating point number, inclusive

the sign bit, the bits of the exponent and mantissa must be flipped, when number is

negative, which was described by Lindstrom and Isenburg [LI06]. Positive and negative

infinity representations are also ordered correctly due to their exponent, which is cho-

sen to be greater than all others. This keeps differences between a positive and negative

number, as expected, close to zero.

Because the Arithmetic Coder can only handle unsigned integer values efficiently, an

additional transformation from signed to unsigned integers is needed. This is done by

rotating the bits of the signed integer representation left and inverting all bits, in the

case of a negative number. After this transformation, the signed integer numbers with

the same absolute numbers are arranged side by side, which makes their difference is

as small as possible. Google calls this mechanism ZigZag encoding for their ProtoBuf

application but it was initially described by Elias [Eli55] in a less formal way.

22

5 Results and Discussion

I evaluated my algorithm on a variety of different 3D models. The models vary in their:

• origin (modeled, 3D reconstruction, etc.)

• attribute count and type

• triangle and vertex count

• manifoldness

(a) Bronze Akt (b) Textured Bronze Akt

(c) Power Plant (d) Stanford Bunny (e) Mushroom

Figure 5.1: Renderings of the models.

23

5 Results and Discussion

Bronze Akt The Bronze Akt (Figure 5.1a) is a 3D reconstruction using the MVE pipeline

[FLG14]. Its vertex attributes are (px , py , pz , cr , cg , cb, x , s), where p is the position as 32

bit floating point numbers and c the color value as 8 bit integer numbers. x is the vertex

confidence and s the scale of the vertex, both in 32 bit floating point representation. It

contains 3.76 millions of vertices and 7.52 millions of triangles. This model contains

non-manifold vertices and edges.

Textured Bronze Akt The textured [WMG14] version of the same Bronze Akt model

(Tex Akt, Figure 5.1b). Its vertex attributes are (px , py , pz) and it has two groups of

triangle-vertex attributes, one for representing normals (nx , ny , nz) and one for the tex-

ture coordinates (tu, tv). All values are real numbers with no specified data type due to

the ASCII representation, which are internally handled as 32 bit floating point values.

This model is, like the Bronze Akt model, non-manifold.

Power Plant The Power Plant model (Figure 5.1c) is published by the University of

North Carolina and has (px , py , pz , nx , ny , nz , cr , cg , cb) as its vertex attributes and (cr , cg , cb)
as its face attributes. It is a modeled dataset containing 11.07 millions of vertices and

12.75 millions of triangles. This model contains a bigger amount of non-manifold ver-

tices and edges compared to the previously presented models.

Stanford Bunny The Stanford Bunny (Figure 5.1d), published by the Stanford Uni-

versity, is a small model reconstructed from a 3D scanning. Its vertex attributes are

(px , py , pz , x , i), where p is the position and x and i is the vertex confidence and the

intensity, all represented as 32 bit floating point numbers. It contains 35.95k vertices

and 69.45k triangles and is 2-manifold.

Mushroom The Mushroom (Figure 5.1e) is a triangulation of a voxel mesh with (px , py , pz)
as its vertex attributes and (nx , ny , nx , cr , cg , cb) as its triangle attributes representing the

normal and color of a triangle. The attributes are as well represented as 32 bit floating

numbers except the color, which is represented as 8 bit integer numbers. The mesh con-

tains 1306 vertices and 2672 triangles and contains non-manifold edges due to its voxel

structure.

24

5.1 Evaluation

5.1 Evaluation

Model soriginal smy sgzip rmy rgzip rgzip:my

Bronze Akt 184.21M 51.93M 93.71M 3.55:1 1.97:1 1.80:1

Tex Akt 414.68M 102.86M 173.71M 4.03:1 2.39:1 1.69:1

Power Plant 502.88M 145.69M 118.87M 3.45:1 4.23:1 0.82:1

Bunny 1622.05k 473.02k 816k 3.43:1 1.99:1 1.73:1

Mushroom 90.81k 13.92k 16.54k 6.53:1 5.49:1 1.19:1

Table 5.1: Comparison against GZIP, where s is the total size in bytes and r is the compression rate.

Compression rates As it can be seen in Table 5.1, my algorithm compresses with rates

between 3.43:1 and 6.53:1 on the selected models. Compared to GZIP, my algorithm

compresses with a rate of between 1.69:1 and 1.80:1 on scanned or reconstructed mod-

els and with a worse rate of between 0.82:1 and 1.73:1 on synthetic models. The Power

Plant model is the only model, which has worse compression rates on my algorithm than

GZIP. This is due to the structure of the mesh that contains very few different normals

because of many perfectly planar surface parts. Normals are replicated for each vertex

and attached to it. The Cut-Border Machine traverses the mesh independently from the

surface parts, which results in encoding many different delta values, although it has only

few different normals. GZIP can handle this better because it does not do any predic-

tions and difference calculations on the normals. The problem can be solved by storing

the topology properly by assigning the normals as triangle-vertex attributes instead of

vertex attributes.

Conn. Vertex attributes Tri. attr. Tri.-Vtx. attr.

Model ∼c ∼pos ∼n ∼col ∼other ∼n ∼col ∼n ∼tex

Br. Akt 2.29% 45.51% 8.43% 43.77%

Tex Akt 1.26% 25.34% 41.18% 32.22%

Pw. Pl. 2.67% 43.57% 49.07% 2.41% 2.27%

Bunny 1.39% 59.20% 39.41%

Mush 6.44% 25.16% 60.81% 7.59%

Table 5.2: The distribution (∼) of connectivity and each attribute.

Due to the strong variation of attributes, I measured how the compression performs on

different types of attributes. As mentioned in Section 4.1, multiple output streams can

be used for different attributes or connectivity, so the compressed size can be measured

25

5 Results and Discussion

separately. The distribution on the compressed data of each attribute can be seen in

Table 5.2.

Conn. Vertex attributes Tri. attr. Tri.-Vtx. attr.

Model rc rpos rn rcol rother rn rcol rn rtex

Br. Akt 75.89:1 1.91:1 2.58:1 1.32:1

Tex Akt 75.84:1 1.89:1 3.49:1 4.00:1

Pw. Pl. 39.28:1 2.09:1 1.86:1 9.45:1 11.54:1

Bunny 126.49:1 1.54:1 1.54:1

Mush 36.07:1 4.51:1 3.82:1 7.65:1

Table 5.3: Compression rates of connectivity and attributes. r is the compression rate of the connectivity

data (rc), vertex position (rpos), normals (rn), colors (rcol) and texture coordinates (rtex).

Conn. Vertex attributes Tri. attr. Tri.-Vtx. attr.

Model bpvc bpvpos bpvn bpvcol bpvoth. bptn bptcol bptvn bptvtex

Br. Akt 2.53 16.77 3.11 16.12

Tex Akt 2.53 50.79 13.76 10.76

Pw. Pl. 2.81 15.29 17.22 0.85 2.08

Bunny 1.47 31.15 20.74

Mush 5.45 21.29 12.57 1.57

Table 5.4: Amount of bits required to encode the connectivity or attributes of a vertex (bpv), a triangle

(bpt) or a triangle-vertex (bptv) pair.

As can be seen in Table 5.4, the connectivity can be compressed with a rate of be-

tween 1.47 and 2.81 bpv, except for the Mushroom which requires 5.45 bpv. This is due

to its very huge amount of non-manifold new vertex operations compared to the total

mesh size that come from the voxel structure of the mesh. Another similar observation

is that the Stanford Bunny, which is a 2-manifold mesh, requires the fewest bits per

vertex. This is due to the additional cut-border operation introduced and the extra cost

of encoding global vertex offsets. The bpX values are computed as follows: 1bpv =
#bi ts/#ver t ices, 1bpt = #bi ts/#t r iangles and 1bptv = #bi ts/(#t r iangles ∗ 3),
where #bi ts is the amount of bits required to store the series of attributes divided by

the dimension of the attribute vectors and #t r iangles ≈ 2×#ver t ices for the selected

models.

The vertex position, which is always predicted using a parallelogram, is compressed

with a rate of between 1.50:1 and 2.10:1, as it can be seen in Table 5.3. Again, the

Mushroom dataset is the only exception with a rate of approximately 4.50:1 because

26

5.1 Evaluation

the parallelogram prediction is perfectly correct for most cases, again due to the voxel

structure. It can also be observed, that colors can be compressed with a rate of approx-

imately 2.5:1 for the real world Bronze Akt dataset and with a rate of about 10:1 for

synthetic models, due to their very static coloring compared to the real world models.

Normals are compressed with a rate similar to the positions. Other attributes gener-

ated from 3D scanning or stereoscopic 3D reconstruction, are compressed with a rate of

about 1.40:1 to 1.70:1.

Compression Decompression

Model t ini t tmy tgzip tmy tgzip

Bronze Akt 8.39s 11.87s 33.60s 8.24s 2.04s

Tex Akt 32.79s 28.24s 176.81s 24.66s 5.48s

Power Plant 16.33s 29.31s 102.75s 25.3s 3.21s

Bunny 215ms 117ms 1.06s 126ms 51ms

Mushroom 14ms 5ms 39ms 4ms 3ms

Table 5.5: Timings of the initialization and the compression and decompression algorithm on a Intel Xeon

E5-2650 v2 CPU.

Compression performance To measure time, I left out the IO delays for both GZIP and

my algorithm and measured the time of parsing the mesh and building the adjacency

data structure separately from the actual compression. I did so, as most applications are

already using such a structure internally, which can be used directly with my compressor.

Additionally, while decompressing, my algorithm can build up such an data structure

with no additional cost, which is an advantage compared to traditional mesh formats.

This was also mentioned by Gumhold and Straßer [GS98].
As it can be seen in Table 5.5, I observed that my compression algorithm performs

faster compared to GZIP with its highest compression level. The decompression of the

mesh using my algorithm is only slightly faster than the compression. This is due to the

symmetric compression applied in the different components of my algorithm. All of them

doing approximately the same work for compression or decompression: The Cut-Border

Machine has to build up the same cut-border for both cases, the attributes have to be

predicted in both cases using the same algorithms and the Arithmetic Coder has to do the

same interval reductions in both cases. The only optimization done for decompression

is, that the upper interval limit has not to be computed for Arithmetic Coding because the

interval renormalization is done by the input bits, instead of analysing the the bounds

27

5 Results and Discussion

of the interval. The decompression of the GZIP archive is however way faster than the

compression of it because it is an asymmetric compressing approach.

5.2 Comparison against existing implementations

As described in Section 2.4 there are different fully featured compression tools: OpenCTM,

Draco, Open3DGC and WebGL loader. Due to the inability of Open3DGC and webgl-

loader to encode attributes losslessly, they cannot be tested against my implementation.

Implementing other algorithms proposed in Chapter 2 would be beyond the scope of

this thesis, so I only evaluate my implementation against OpenCTM and Draco. My im-

plementation works on the compressed and then decompressed output of the specific

implementation. Because OpenCTM and Draco are not able to encode arbitrary numbers

of attributes, my algorithm achieves different rates for the same model.

OpenCTM Draco

Model rmy rc tm rmy rdraco

Bronze Akt 11.86:1 6.50:1 5.28:1 3.04:1

Tex Akt 6.16:1 5.79:1 5.72:1 3.07:1

Power Plant 7.05:1 33.06:1 6.42:1 3.12:1

Bunny 8.96:1 5.48:1 4.63:1 3.10:1

Mushroom 10.95:1 8.65:1 12.53:1 3.06:1

Table 5.6: Comparison with existing compressor implementations.

In Table 5.6 the compression rates of the different tools can be seen. OpenCTM uses

LZMA, which is a dictionary coder like GZIP, that gives better results on the Power Plant

model (33.06:1), as also mentioned in Section 5.1. For the other models, my algorithm

gives better results with rates between 6.16:1 and 11.86:1, OpenCTM archives a rate

between 5.48:1 and 8.65:1. A integration of GZIP into my algorithm could possibly give

better results on the Power Plant model, as I mention in Section 6.1.

Draco compresses with rates of approximately 3.08:1. Compared to my algorithm,

which achieves rates of between 4.63:1 to 12.53:1 for this selection of attributes, this is

quite poor and due to their use of static Huffman Coding for connectivity data and bad

prediction schemes for attributes which are not positions.

28

5.3 Graphical inspector

5.3 Graphical inspector

Figure 5.2: Graphical inspector window.

During implementation of the Cut-Border Machine, it turned out to be a very helpful

to visualize the compression steps of the algorithm, which was also done by Gumhold

[Gum99]. This was due to its very general description of Gumhold and Straßer [GS98]
and to support analysing the algorithm for extending it to support non-manifold meshes.

To visualize the algorithm, I implemented a simple OpenGL window, as it can be seen in

Figure 5.2. It visualizes the triangles created by the Cut-Border Machine dynamically in

different colors while the algorithm runs. It marks mesh borders and shows the triangle

that is currently traversed by the Cut-Border Machine. It also allows to synthetically

slow down and pause the algorithm to allow iterating the mesh step by step. Also, as it

was shown in Section 4.2, it visualizes the differences between different traversal orders

very clear (Figure 4.2).

29

6 Conclusion

In this thesis I presented a lossless compression algorithm that provides high compres-

sion rates on arbitrary triangle meshes. It archives compression rates of between 3.43:1

to 6.53:1 and compared to GZIP rates of between 0.82:1 and 1.80:1. It is well suited for

real world models, i.e. 3D reconstructions, due to their smooth attributes, which can be

well predicted but can also be used in any area of application due to the few assump-

tions on the input mesh. The algorithm performs fast enough to allow for compression

in non real time areas, e.g. for archiving purposes or for transmission over rate or traffic

limited networks. However, faster algorithms can be developed based on this thesis with

a potential loss of compression efficiency, e.g. by replacing the Arithmetic Coder with a

faster compression backend.

6.1 Future work

In this section, I would like to mention a couple of changes that can be applied to the

presented compression algorithm in order to support arbitrary polygons and to achieve

better compression speed or rates.

Arbitrary polygons In some areas, like CAD modeling, quads are used as well as tri-

angles. This makes it useful to be be able to compress arbitrary polygons. For this the

connectivity data structures must be extended to support arbitrary polygon meshes and

the Cut-Border Machine must be extended as follows: When the gate reaches a polygon

that is not a triangle the Cut-Border Machine must cut this polygon into a triangle fan in

way that all triangles of the polygon are traversed consecutively. This is done by cutting

the polygon into a triangle fan beginning from the gate towards the direction of the new

gate, which results in consecutive traversal in case of depth-first traversal as mentioned

in Section 4.2. Additionally, a number must be encoded showing how many triangles

are included in this polygon to reconstruct the polygon successfully during decompres-

sion. This can be done by adding a symbol before every polygon. Thus pure triangle or

31

6 Conclusion

quad meshes will automatically omit this as the model only contains a single symbol.

Point clouds In many areas like 3D laser scanning or stereoscopic reconstruction algo-

rithms, it would be useful to encode point clouds as well. A point cloud can be seen as

a set of attributes with no connectivity. Compressing such data requires sorting of the

points by a feasible criteria to apply delta coding of the attributes. Furthermore, the im-

plementation of the attribute data structures presented in Section 4.4 can be integrated

into this point cloud compressor.

Materials Some meshes can be grouped into different sub-meshes that have equal ma-

terial properties for their triangles, e.g. texture maps. This requires the algorithm to

compress these components separately with the disadvantage of losing of connectiv-

ity between them. To support different materials of a mesh, an efficient way must be

found to restore connectivity between these components. This could possibly be done by

connecting whole borders instead of connecting each vertices between the sub-meshes

separately.

Predictions Some prediction schemes, I presented in Section 4.4 can be optimized in

order to achieve better compression rates. To predict vertex attributes, different pre-

dictions schemes can be applied instead of relying on the parallelogram for all types

of attributes. The current approach of predicting triangle-vertex attributes can be im-

proved further by including adjacency data as well as history data.

Quantization In Section 5.1 I showed, that most of resulting compressed data accounts

for the attributes. Since meshes often do not need to be compressed lossless, e.g. in the

areas of web 3D rendering or video games, a loss of attribute precision is acceptable to

gain faster transmission times. Therefore, an introduction of a quantization step would

make this algorithm more efficient but still allows generality on meshes by keeping it

optional.

Backend To gain more performance, the Arithmetic Coder could be replaced by Huff-

man Coding, which gives better compression speed but less compression rates. Alterna-

tively, the recently developed ANS coder by Duda [Dud13] could be used as a replace-

ment for the compression backend as it is done in the Draco project [Goo17], which

could speed up the algorithm and compress with rates similar to the Arithmetic Coder.

Unfortunately, the ANS coder has the disadvantage, that it is not easily integratable due

32

6.1 Future work

to its limitation of decompressing in reverse order. Another options is to use different

GZIP streams for each attribute and the connectivity. This change requires to rethink the

strategies used for conditional frequencies, which could possibly be replaced by further

different GZIP streams for each condition.

33

Bibliography

[Eli55] Peter Elias. “Predictive coding–I.” In: IRE Transactions on Information The-

ory 1.1 (1955), pp. 16–24.

[RL79] Jorma Rissanen and Glen G Langdon. “Arithmetic coding.” In: IBM Journal

of research and development 23.2 (1979), pp. 149–162.

[Fen93] Peter Fenwick. “A new data structure for cumulative probability tables.” In:

Software-Practice and Experience (1993).

[Müc93] Ernst Peter Mücke. “Shapes and implementations in three-dimensional ge-

ometry.” In: (1993).

[Dee95] Michael Deering. “Geometry compression.” In: Proceedings of the 22nd an-

nual conference on Computer graphics and interactive techniques. ACM. 1995,

pp. 13–20.

[Fen95] P Fenwick. A New Data sturcture for cumulative Probability Tables: an Im-

proved Frequency to Symbol Algorithm. Tech. rep. Department of Computer

Science, The University of Auckland, New Zealand, 1995.

[Hop96] Hugues Hoppe. “Progressive meshes.” In: Proceedings of the 23rd annual

conference on Computer graphics and interactive techniques. ACM. 1996,

pp. 99–108.

[CKS98] Swen Campagna, Leif Kobbelt, and Hans-Peter Seidel. “Directed edges—A

scalable representation for triangle meshes.” In: Journal of Graphics tools

3.4 (1998), pp. 1–11.

[GS98] Stefan Gumhold and Wolfgang Straßer. “Real time compression of triangle

mesh connectivity.” In: Proceedings of the 25th annual conference on Com-

puter graphics and interactive techniques. ACM. 1998, pp. 133–140.

[MNW98] Alistair Moffat, Radford M Neal, and Ian H Witten. “Arithmetic coding re-

visited.” In: ACM Transactions on Information Systems (TOIS) 16.3 (1998),

pp. 256–294.

35

Bibliography

[TG98] Costa Touma and Craig Gotsman. “Triangle Mesh Compression.” In: Pro-

ceedings of the Graphics Interface 1998 Conference, June 18-20, 1998, Van-

couver, BC, Canada. June 1998, pp. 26–34. URL: http://graphicsinterface.
org/wp-content/uploads/gi1998-4.pdf.

[Gum99] Stefan Gumhold. “Improved cut-border machine for triangle mesh com-

pression.” In: Erlangen Workshop. Vol. 99. 1999, pp. 261–268.

[GGS99] Stefan Gumhold, Stefan Guthe, and Wolfgang Straßer. “Tetrahedral mesh

compression with the cut-border machine.” In: Proceedings of the confer-

ence on Visualization’99: celebrating ten years. IEEE Computer Society Press.

1999, pp. 51–58.

[Ros99] Jarek Rossignac. “Edgebreaker: Connectivity compression for triangle meshes.”

In: IEEE transactions on visualization and computer graphics 5.1 (1999),

pp. 47–61.

[IGG01] Martin Isenburg, Stefan Gumhold, and Craig Gotsman. “Connectivity shapes.”

In: Proceedings of the conference on Visualization’01. IEEE Computer Society.

2001, pp. 135–142.

[AG05] Pierre Alliez and Craig Gotsman. “Recent advances in compression of 3D

meshes.” In: Advances in multiresolution for geometric modelling. Springer,

2005, pp. 3–26.

[PKK05] Jingliang Peng, Chang-Su Kim, and C-C Jay Kuo. “Technologies for 3D mesh

compression: A survey.” In: Journal of Visual Communication and Image

Representation 16.6 (2005), pp. 688–733.

[LI06] Peter Lindstrom and Martin Isenburg. “Fast and efficient compression of

floating-point data.” In: IEEE transactions on visualization and computer

graphics 12.5 (2006), pp. 1245–1250.

[MZP09] Khaled Mamou, Titus Zaharia, and Françoise Prêteux. “TFAN: A low com-

plexity 3D mesh compression algorithm.” In: Computer Animation and Vir-

tual Worlds 20.2-3 (2009), pp. 343–354.

[Gee10] Marcus Geelnard. OpenCTM - Compression of 3D triangle meshes. http:
//openctm.sourceforge.net/. Accessed: 2017-01-21. 2010.

[Goo11] Google. webgl-loader. https://code.google.com/archive/p/webgl-
loader/. Accessed: 2017-01-31. 2011.

[AMD13] AMD. Open 3D Graphics Compression (Open3DGC). https://github.com/
amd/rest3d/tree/master/server/o3dgc. Accessed: 2017-01-31. 2013.

36

http://graphicsinterface.org/wp-content/uploads/gi1998-4.pdf
http://graphicsinterface.org/wp-content/uploads/gi1998-4.pdf
http://openctm.sourceforge.net/
http://openctm.sourceforge.net/
https://code.google.com/archive/p/webgl-loader/
https://code.google.com/archive/p/webgl-loader/
https://github.com/amd/rest3d/tree/master/server/o3dgc
https://github.com/amd/rest3d/tree/master/server/o3dgc

Bibliography

[Dud13] Jarek Duda. “Asymmetric numeral systems as close to capacity low state

entropy coders.” In: CoRR abs/1311.2540 (2013). URL: http://arxiv.
org/abs/1311.2540.

[Lim+13] Max Limper et al. “Fast delivery of 3D web content: a case study.” In: Pro-

ceedings of the 18th International Conference on 3D Web Technology. ACM.

2013, pp. 11–17.

[FLG14] Simon Fuhrmann, Fabian Langguth, and Michael Goesele. “MVE-A Multi-

View Reconstruction Environment.” In: GCH. 2014, pp. 11–18.

[WMG14] Michael Waechter, Nils Moehrle, and Michael Goesele. “Let There Be Color!

— Large-Scale Texturing of 3D Reconstructions.” In: Proceedings of the Eu-

ropean Conference on Computer Vision. Springer, 2014.

[Mag+15] Adrien Maglo et al. “3d mesh compression: Survey, comparisons, and emerg-

ing trends.” In: ACM Computing Surveys (CSUR) 47.3 (2015), p. 44.

[Goo17] Google. Introducing Draco: compression for 3D graphics. https://opensource.
googleblog.com/2017/01/introducing-draco-compression-for-
3d.html. Accessed: 2017-01-21. 2017.

37

http://arxiv.org/abs/1311.2540
http://arxiv.org/abs/1311.2540
https://opensource.googleblog.com/2017/01/introducing-draco-compression-for-3d.html
https://opensource.googleblog.com/2017/01/introducing-draco-compression-for-3d.html
https://opensource.googleblog.com/2017/01/introducing-draco-compression-for-3d.html

