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ABSTRACT
Optimal performance is an important goal in compute inten-
sive applications. For GPU applications, this requires a lot
of experience and knowledge about the algorithms and the
underlying hardware, making them an ideal target for auto-
tuning approaches. We present an auto-tuner which opti-
mizes array layouts in CUDA applications. Depending on
the data and program parameters, kernels can have varying
optimal configurations. We thus adjust array layouts adap-
tively at runtime and achieve or even exceed performance of
hand optimized code. We automatically detect data char-
acteristics to identify different performance scenarios with-
out user input or additional programming. We perform an
empirical analysis of the application in order to construct
our decision models. Our adaptive optimization requires in
principle profiling data for an extremely high number of sce-
narios which cannot be exhaustively evaluated for complex
applications. We solve this by extending a previously pub-
lished method that is able to efficiently profile single kernel
calls and enhance it to find application-wide optimal solu-
tions. Our method is able to optimize applications in a few
minutes, reaching speed ups of up to 20% compared to hand
optimized code.

CCS Concepts
•Software and its engineering → Massively parallel sys-
tems; Software performance;
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1. INTRODUCTION
In recent years, Graphics Processing Units (GPU) have

become very popular in High Performance Computing
(HPC) applications. Many HPC users are experts in their
application domains such as chemistry, physics, mechanical
or electrical engineering, but do not have much experience
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in hardware architectures. Systems that assist them in opti-
mizing their applications to save time and money are there-
fore very important. But even expert computer scientists are
often unable to find an optimal configuration or are forced
to re-optimize their code for each and every new hardware
architecture. This has brought forth a wide variety of dif-
ferent auto-tuners, targeting various kinds of performance
problems [10, 16] or directly addressing application specific
optimizations in various domains [14, 17].

We propose a new adaptive runtime optimization enabled
by the MATOG auto-tuner [16]. MATOG optimizes array
layouts in CUDA applications for arbitrary application do-
mains. Our adaptive optimization can react to changing
data characteristics and selects optimal configurations at
runtime. It bases its decisions on automatically gathered
meta data and requires no additional programming. We
furthermore propose an application analysis method that
extends the MATOG profiler. MATOG can so far predict
per-kernel optimal configurations from a small number of
benchmark results. Since per-kernel optimal solutions are
not sufficient for our adaptive runtime optimization, we en-
capsulated the approach with a new method that finds appli-
cation-wide optimal solutions. The new algorithm requires
only a couple of minutes to analyze even complex applica-
tions while achieving performance comparable with or better
than hand optimized code. Our contributions are as follows:

• An adaptive auto-tuning approach for array access in
GPUs based on automatically gathered meta data,

• a very fast application analysis method that finds near
optimal solutions and

• an evaluation of our system on a wide range of GPU ap-
plications from different application domains.

2. RELATED WORK

2.1 GPU Memory Access Auto-Tuning
Memory access is one of the most important performance

aspects in many GPU applications and can be improved in
various ways. Li et al. [9] optimize the usage of caches with-
out changing memory access or array layouts. They force a
specific number of the threads inside a thread group to use
the cache, while the others bypass it. This relieves the cache
and allows higher performance in certain applications. Park
et al. [12] have presented an alternative scheduling method
to improve the memory level parallelism in GPUs. Other
approaches such as the MAPS framework [3] require adapt-
ing the application code. MAPS enables users to trans-
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parently write multi-GPU applications using STL-like data
structures. It hides the entire memory management from the
user and distributes the workload automatically to multiple
devices. Koefler et al. [8] go one step further by improv-
ing the usage of Array of Structs (AoS) data structures in
GPU kernels. They support storing these as AoS, Struc-
ture of Arrays (SoA) or as Array of Structure of Arrays
(AoSoA) with variable tile sizes. We have presented the
MATOG auto-tuner [16], which follows a similar approach
but does not limit the optimizations to AoS data structures.
It optimizes multi-dimensional arrays in addition to AoS,
adjusts cache sizes and the usage of GPU specific memories
for individual kernels. In this paper we do not add new op-
timization functionality. Instead, we improve the way they
are applied by adding more flexibility through adaptive run-
time adjustments according to the data characteristics.

2.2 GPU Application Analysis
One important part of auto-tuning is the method used to

find optimal configurations. Koefler et al. [8] use an undi-
rected graph to model memory access inside a kernel. This
graph is then combined with a generic GPU model to deter-
mine the best working configuration. Such a static analysis
can be performed relatively fast, but fails if the theoretical
GPU model does not represent the architecture well enough.
This could be especially problematic for future GPU archi-
tectures that may not conform to current models. Further, it
does not consider any input data dependent effects that can
have a significant performance impact. Other auto-tuners
follow a different path and use empirical profiling. They ex-
ecute the actual code on the target architecture with real
data. This method does not suffer from the problems men-
tioned above, but is obviously much more resource inten-
sive. Many different approaches have been used over time
to handle this issue, e.g., greedy algorithms [10], genetic al-
gorithms [1] or downhill-simplex based methods [6]. We pro-
posed a prediction guided profiling method [16] specifically
designed for optimizing array layouts on GPUs which sig-
nificantly reduces the execution time. It profiles a specific
predetermined set of configurations that is sufficient to es-
timate the performance of all non-profiled configurations.
This method finds, however, only optimal solutions for sin-
gle kernel calls and not for an entire application run. In this
paper we add an additional analysis step, which uses profil-
ing data in conjunction with a graph representing the array
usage inside the application to analyze the profiled applica-
tion runs and to determine the best layouts. We explicitly
use the prediction capability of this method to estimate the
performance of non-profiled configurations.

2.3 Adaptive Auto-Tuning
Optimal performance depends often on the actual work-

load, input data and parameters. Shen et al. [13] proposed
an auto-tuner that profiles different input data parameters
and tries to automatically identify occurring patterns. With
this pattern recognition they feed a version selection wrap-
per to determine the optimal implementation prior to the
application start. This does, however, not actively adapt the
implementation during runtime, which can often be neces-
sary. Some auto-tuners [6, 11] try to tackle this by actively
reacting to changing effects. Both approaches base their de-
cisions on user defined analysis methods, i.e., their success
depends on the ability of the programmer to identify charac-

teristic effects. The required data analysis can furthermore
introduce an overhead depending on the data analysis ac-
tually performed. We combine the advantages of both solu-
tions and automatically determine possible patterns without
any user interaction. Based on these, we actively adapt ar-
ray layouts to changing data properties during runtime.

Machine learning techniques are widely used in auto-tun-
ing and provide an easy way for automatic decision making.
Prominent examples are regression trees [4, 13] or Support
Vector Machines (SVM) [11], which are used in conjunc-
tion with meta data and other characteristics to decide on
optimal configurations. We use SVMs in our adaptive auto-
tuning as an oracle for predicting optimal configurations.

3. OVERVIEW
Our adaptive array layout optimization is based on the

MATOG auto-tuner [16], which we improve and extend in
several ways: Whenever an array is allocated we decide on
the optimal array layout, based on automatically gathered
meta data such as the array sizes and kernel launch con-
figurations. Further, on every kernel call we decide which
configurations are optimal for the given data characteristics.

To establish our decision models we need a series of pro-
cessing steps. First of all, we analyze the application with
the MATOG profiling method [16]. We then use the result-
ing data to construct a specialized dependency graph that
helps to find application wide optimal solutions. In the end,
we use these solutions and meta data that was recorded dur-
ing the profiling to establish our decision models. These are
then used during runtime to predict the optimal configura-
tions.

4. MATOG AUTO-TUNER
Optimizing memory layouts is a tedious task as the num-

ber of possible optimizations is extremely high. It is also a
very time consuming process as nearly the entire code has
to be adjusted to test whether one or the other layout per-
forms better. If done manually, this can also be very error
prone, if only a single memory access is missed. To solve
this, we presented the MATOG auto-tuner that provides a
multi-dimensional and/or AoS-like memory access (e.g., ar-
ray[x][y][z].field) interface to abstract the underlying mem-
ory access from the user. MATOG integrates seamlessly
into existing CUDA applications by interfacing with CUDA
Driver API calls. It does not require any custom compiler
but generates code for C++ data structures and uses a li-
brary to apply the necessary optimizations. This concept
allows to intercept all CUDA calls without a special syn-
tax and with minimal computational overhead. Further the
user does not need to change anything in his compiler tool
chain which makes the approach very portable and intro-
duces hardly any limitations for the programmer. MATOG
does not interfere with the usage of other CUDA libraries
but does not automatically optimize their data structures if
they do not use MATOG.

With this memory access interface, MATOG is able to
optimize the memory access for multi-dimensional arrays by
transposing the indexing, to store arrays with struct types
as AoS, SoA or AoSoA, to adjust the L1 cache size on Kepler
GPUs, placing arrays either in global or texture memory and
to choose optimal configurations for user defined preproces-
sor optimizations inside the kernel code.



MATOG also allows to dynamically assign arrays with two
different properties: First, arrays can be flagged as read-only
which means that data from an array is only read. This
implies that it is suitable to be stored in texture memory.
Second, it can be marked as write-only, which means that
the data will be entirely overwritten by the next kernel call.
These properties enable additional optimizations or can be
used to improve the profiling process.

4.1 Application Analysis
Like many other auto-tuners [6, 11, 13], MATOG relies

on empirical profiling. It uses in-application profiling which
only restarts kernels instead of restarting the entire appli-
cation for every configuration that has to be profiled. I.e.,
there is no need to constantly repeat costly setup or I/O,
which can be a quite significant effort, especially in HPC
applications. MATOG automatically takes care of resetting
the arrays prior to each configuration profiling as well as pro-
viding the data in the correct format to the GPU. For this,
it stores copies of the kernel input data in the host system’s
memory, as well as converted versions, if necessary. The
data conversion and the compilation of the kernels in the
various configurations is performed on the CPU in parallel
to the actual profiling on the GPU.

Due to the high complexity of some applications, it is nec-
essary to perform a partial profiling, as an exhaustive search
can require several days or more of computation. For this
MATOG uses a prediction-guided profiling technique. This
method profiles only a very limited set of configurations per
kernel and then predicts the location of the optimum in the
solution space to focus its search on promising configura-
tions.

4.2 Prediction Algorithm
Our previously published prediction algorithm [16] can be

used to find optimal configurations for single kernels. It
is based on the assumption that configurations are indepen-
dent of each other and the time difference (∆(A,B)) between
configurations can be used to estimate the performance of
others using a linear model. As this assumption does not
hold for all optimization dimensions, we introduced two sets.
The first contains dimensions which are independent (DI)
and do not have an influence on others. The second set is
called shared (DS) and contains all dimensions that influ-
ence others. By default, MATOG only uses the size of the
L1 cache as a shared dimension but allows the user to add
additional shared dimensions.

These two sets are used to determine the configurations,
that need to be profiled in order to predict the performance
of all others. Each permutation of values of the shared di-
mensions represents a domain (see Fig. 1). Only inside a
domain, the linearity constraint is valid, allowing us to esti-
mate the performance using a linear model. Cross-domain
predictions are, however, not possible since the linearity as-
sumption does not hold. Each domain has a so called base
configuration (CB) which serves as support point for the
prediction. To predict the performance of any configura-
tion in the domain, a so called support configuration (CS) is
required for each independent dimension. This support con-
figuration is equal to the base configuration except for the
value of the single independent dimension that it represents.
For this dimension it matches the value of the predicted con-
figuration (CP ). Fig. 1 shows an example of how the base
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Figure 1: Example solution space for a kernel with
three optimization dimensions (L1 cache size, Lay-
out and Transposition). As L1 is shared, it is sepa-
rated into three domains (Prefer SM, L1 and EQ).
The border color indicates the type of the configura-
tion. Base (blue), support (orange) and predictable
(green) configurations. To estimate the performance
of the filled green configuration, the correct domain,
as well as the filled base and support configurations
have to be chosen.
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Figure 2: Measured versus predicted execution
times for the main kernel of COMIC in all of its
configurations, sorted for the measured values. The
predicted values can suffer from noise and deviation,
visible in the second half of the plot.

and support configurations are selected. Given the measured
execution time T (C) of the base and support configurations,
it is possible to use the following equation to predict the ex-
ecution time P (CP ) of a specific configuration:

P (CP ) = T (CB) +
∑

dI∈DI

(
T (CS,dI )− T (CB)

)︸ ︷︷ ︸
∆(CS,dI

,CB)

. (1)

To estimate the performance of the entire solution space,
all main axes of each domain have to be profiled. Fig. 2
shows an example for a prediction. As can be seen, the
method can suffer from noise and deviation, caused by non-
linear effects (e.g., varying occupancy). However, this has
not shown any significant negative effects on the optimiza-
tion. For more details on MATOG and the prediction algo-
rithm, please refer to Weber et al. [16].

5. APPLICATION ANALYSIS
In order to apply our optimizations, we had to incorporate

a series of changes to the MATOG auto-tuner: This includes
full application profiling, an additional post-profiling step
and finally adjustments to the runtime environment to apply
our adaptive optimizations.

5.1 Automatic Meta Data Gathering
The ability to choose different layouts every time an ar-

ray is allocated enables us to react to the effects caused by
different input data, e.g., varying array sizes. This is neces-
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Figure 3: The execution time of a kernel run with
two different data sets. The normalized results (0:
best, 1: worst) are sorted for the first data set
(blue). Configurations which have been optimal for
the first data set are worst for the second.

sary for some kernels since they can have different optima
for varying input data, as shown in Fig. 3.

This raises the question of how to select the optimal con-
figuration for a given input data set. The most convenient
way is to use some kind of metric which identifies the class
of input data. Some auto-tuners [6, 11] use user defined call-
back functions. We do not follow this strategy as we do not
want to put the burden of identifying data characteristics
onto the user. Furthermore, such a user-driven identifica-
tion could introduce a runtime overhead depending on the
complexity of the analysis performed. We therefore use the
meta data that we already have in our system, such as the
launch configuration of kernels and size of arrays. We ex-
tended the profiling capabilities of the MATOG auto-tuner
to automatically record this data during each profiling run.

5.2 Kernel Profiling
One major problem of the profiling and analysis is the

number of available configurations, as it can be extremely
high, even in small applications. This is caused by the fact
that each kernel usually uses a variety of different arrays
where each array can have up to three optimization dimen-
sions: AoS layout, transposition and whether global or tex-
ture memory should be used. This alone suffices to reach
several million of configurations for a single kernel. As we
can choose different layouts every time an array is allocated
we do not only have to consider all configurations of single
kernels, but also all permutations that are possible by allo-
cating arrays inside loops, as in every iteration the layout
can be different. In the following we call these application-
wide permutations sequence to differentiate from local ker-
nel permutations. This leads to a nearly unlimited number
of possible combinations to profile. However, this can be
avoided by profiling every kernel separately and then calcu-
lating the total execution time of all sequences as the sum
of the kernel calls. This is based on the assumption that
there is no difference between executing a sequence entirely
at once or to execute each kernel separately and sum up the
execution times which should be fulfilled except for occur-
ring noise.

To gather all necessary data required for the reconstruc-
tion, we have change some parts of the auto-tuner. MATOG
now uses predefined compiler macros to uniquely identify an
array allocation inside the code and use this information to
assign a unique ID. For each of these IDs, we later build a
decision model. Listing 1 shows an example code snippet for
the ID assignment. We also trace the usage of data, when
it is allocated, copied or used in a kernel.

Listing 1: Assignment example for unique array IDs.
1 Array2D::Host a(X, Y, _fl); // code.cpp:1 --> ID: 1
2 Array2D::Device b(X, Y, _fl); // code.cpp:2 --> ID: 2
3 Array::Device c(X, _fl); // code.cpp:3 --> ID: 3
4

5 cuMemcpyHtoD(a, b, ...);
6 c.setMode(WRITE_ONLY);
7

8 for(...) {
9 Array::Device d(X, _fl); // code.cpp:9 --> ID: 4

10 cuLaunchKernel(...);
11 }

Further we modified the profiling controller, since we do
not need to find the minimum of a single kernel but the
minimum of the entire application. As we rely on the pre-
diction capability, we do not need to explicitly sample the
best kernel configurations as done in the original code.

With the gathered meta data and the adapted profiling,
we are able to reconstruct all possible application sequences
using a so called Array Dependency Graph (ADG).

5.3 Array Dependency Graph
The idea of the ADG is to build a graph that represents

the entire application work flow, i.e., how and when data is
used in the kernels. To construct the ADG, we create one
node for each allocation, memcopy and kernel call which
have been recorded during the application profiling. These
nodes are then connected by directed edges, where each edge
represents the usage of a specific array. This leads to a
graph, which has one allocation node for each array in the
application and one path per array modeled by edges. It
represents the sequential processing order of all memcopy
and kernel calls that operate on the particular array. This
path ends when the array is deallocated. Depending on the
kind of application and how data is used, the resulting ADG
is not necessarily fully connected and can consist of multiple
disjoint graphs. In total, the ADG is an abstract represen-
tation of the application where all arrays, memcopies and
kernel calls are placed in relation to each other.

For our analysis of the application, we further require
an additional node type. These nodes represent the point
during the execution at which the array layout has to be
decided. These nodes decide explicitly on the AoS layout
and/or transposition of their specific array.

This is important as one of our limitations is that we do
not support layout conversions once an array is allocated.
Such a feature introduces a very complex problem which
would exceed the scope of this paper, since it does not only
require the handling of the actual conversion process but also
an estimate if whether the additional time for converting is
worth the improved performance. We will show in Sec. 7
that, at least in the benchmarks we have evaluated it did not
show any mentionable deficit to not perform conversions.

Resulting from this, the placement of the decision nodes
is defined by the following rules:

• Each host array directly decides its layout after it is allo-
cated. This is necessary as usually the user directly inserts
data into them.

• Device arrays are only initiated by their first usage in a
kernel.

• Arrays inherit the layout when they are overwritten by a
memcopy and therefore do not require any decision nodes.

• Device arrays, which are marked as write-only can be de-
cided on every time they are used as this implies that no
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Figure 4: Directed ADG, with one host array
(square), four device array allocation (circles), two
kernel calls and one memcopy. Decision nodes are
indicated by hexagons. The colored edges indicate
the usage of the specific arrays. The array C is
marked as write-only (dotted line) and therefore has
a decision node, prior to each kernel call.
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Figure 5: Finding the minimum in a prediction do-
main: The value for the Array::B dimension is fixed
to the value ”1”, so only the big cubes can contain
the minimum. To determine the correct option, the
best support configuration (orange) of the Shared
Memory Layout dimension is searched. The optimal
configuration (green) is then located at the intersec-
tion of the best Shared Memory Layout and the fixed
value of Array::B, indicated by the filled green cube.
This is repeated for all kernel calls inside the graph.

data in the array will be used by the kernel call and there-
fore can be reassigned a more optimal layout without any
conversion.

Fig. 4 shows an example for an ADG with all four cases,
for the code given in Listing 1. To use the ADG for our op-
timization, we sum up all execution times of the kernel calls
and get the total GPU execution time of the application.
The graph itself is used to limit the search space for the
kernel calls as arrays that are shared between calls cannot
be converted in between and therefore configurations with
different layouts are invalid.

5.4 Optimal Application Sequence
In order to find the optimal solution for the profiled ap-

plication, we have to identify the best sequence. We do this
with a brute force search. For each sequence we initialize
the values of the decision nodes and then use our prediction
formula (Eq. 1) to calculate the best time of all kernel calls,
while optimizing dimensions that are not defined through a
decision node. These times are then summed up and used
to determine the sequence with the lowest execution time.
Fig. 5 shows an example for this. Given the optimal solu-
tion that we have found through the ADGs and the meta
data, we can train models that predict good working config-
urations.
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Figure 6: Example for our training data prepara-
tion. We require three steps to get our final training
set. The meta data is indicated in blue, the result
vector in green and the count in orange. Affected
fields are highlighted. The size and the values of the
training set are simplified for easier demonstration.

5.5 Model Construction
To establish our decision models, we have to perform some

data consolidation. First of all, each decision node is as-
signed to a specific array. Further, each of these arrays has
a unique ID assigned through its location in the source code.
We group all decision nodes by the unique ID of their as-
signed array. Depending on how often an array was real-
located or how often the application was profiled, we end
up with one or more decision nodes per unique ID. Each of
these contains an optimal configuration (as a result of the
ADG analysis).

For our training data set, we first create a result vector,
where the optimal configuration of a decision node is stored
in a row. Further we create a meta data matrix contain-
ing data gathered during the profiling. The matrix has one
row per decision node and one column for each array size
dimension per unique ID. For example, if two unique IDs
have been recorded during the profiling, one is a 1D array
and the second a 4D array, then the matrix would have 5
columns. We initialize the values of the matrix with zeros
and then iterate all allocation nodes that precede the par-
ticular decision node and set the values with the allocation
sizes.

Now, each row in the data set represents an optimal so-
lution that has been found for a given meta data set, while
each column in the matrix stands for a meta data field. As
the data usually contains a lot of redundancies, we reduce
it in multiple steps. First, we remove all columns that have
only one value, as they are no help for our predictions. This
occurs quite often, as certain array sizes or launch configu-
rations are set fixed and do never change. Then, we combine
equal rows while we increment a counter for each combined
row. In the last step we check if there are multiple best
solutions for the same meta data. If this is the case, we
choose the row, with the higher count as this has proved to
be optimal in most cases. Fig. 6 shows an example for our
training data preparation.

Such a training data set is created for each unique ID, i.e.,
for each array that is allocated in the application. For each
of the data sets we train a SVM model which is then used to
decide on the optimal configurations during runtime. Fur-
ther, we employ the same technique for each kernel. This
way, we can dynamically decide on the optimal layout for
shared memory arrays, L1 cache size, texture memory usage
and user defined preprocessor optimizations. The only dif-
ference is that we also add the launch configuration of the
kernel to the meta data set. If the final data set contains



Name Kernels

Training Testing Theoretical Titan X K20

Bitonic Parallel Sorting 2 181 3925 36 13 36

SRAD Image Processing 2 4 40 1,179,648 6,144 18,432

COMIC Bioinformatics 3+1 15 9315 2,334 396 1,188

REYES 3D Rendering 4 28 413720 9,284,550 1,535,762 4,607,286

Kernel Calls ConfigurationsApplication 

Domain

Table 1: Overview of all applications with the num-
ber of kernels, number of kernel calls during training
and testing, theoretical configuration count and the
exact count for the Titan X and K20. The theoret-
ical count also contains configurations that cannot
be executed due to application constraints.

only one row, we do not build a SVM and store instead the
result directly as optimal solution for this particular array
or kernel. For the SVM model we use the OpenCV Machine
Learning library.

5.6 Adaptive Runtime Environment
The next step is to adjust the runtime environment of

MATOG to gather the necessary meta data during an op-
timized application run and to use the decision models to
determine the optimal configurations.

Tracing the meta data is quite simple as we use the same
format used for our training data matrix. Thus, we store all
allocation sizes for each unique ID. If an array with the same
unique ID is allocated, it overwrites the values of a previous
allocation.

To apply our optimal decisions, we differentiate between
host and device arrays and follow the previously introduced
rules for placing the decision nodes. When a host array is
allocated, it evaluates the decision model that is assigned to
its unique ID using all traced meta data. This direct initial-
ization is necessary as host arrays can directly be accessed
by the program.

For device arrays the direct initialization is not necessary.
They are initialized by their first usage where we again dif-
ferentiate two cases. If data is copied from another array,
it inherits the layouts from the source array. Otherwise,
if the array is directly used in a kernel call, we initialize
it prior the call by evaluating its assigned decision model.
As the MATOG framework allows to mark arrays as write-
only, we reinitialize all write-only arrays prior each kernel
call. As mentioned before, this indicates that the array will
not be read from in the kernel and therefore the layout can
be changed as no data has to be preserved.

Finally, every time a kernel is executed, we determine the
optimal configuration for shared memory layouts, L1 cache
size, usage of texture memory or user defined preproces-
sor optimization depending on the array meta data and the
launch configuration.

6. EVALUATION
We evaluated our approach on four applications: Biton-

icSort and REYES from Weber et al. [16], COMIC [15] and
SRAD from the Rodinia [5] benchmark suite (see Tab. 1).
Note that the Maxwell architecture no longer supports to
adjust the L1 cache size. This reduces the number of config-
urations to one third compared to the Kepler architecture.

BitonicSort is a widely used parallel sorting algo-
rithm [2]. We sort a 1D array of structs with four integer
fields (8, 4, 2 and 1 B), ensuring that the 8 B value is sorted

first and only if this value is equal, the 4 B value is sorted
and so on. This results in a sorted list, for all fields. To
ensure conflicting rows, we limit all values to 0 to 1023 (255
for the 1 B field). The application consists of two kernels
with a total of 36 configurations: One uses shared memory
in loop iterations where it can be used efficiently, while the
other directly operates on global memory. Our training data
contains two sets with 64 Ki and 128 Ki entries. The testing
data consists of five sets with 256 Ki, 512 Ki, 1 Mi, 2 Mi and
4 Mi entries. All data sets contain random values but also
entirely or partially sorted sequences.

Speckle Reducing Anisotropic Diffusion (SRAD)
is used in ultrasonic and radar imaging applications. For
training we use two input data sets with 1282 and 5122 grid
cells and test on two others with 2562 and 20482 cells. This
application has a high number of configurations (18.432) for
two kernels but its total execution time is extremely low.

Coevolution via MI on CUDA (COMIC) [15] calcu-
lates the coevolutionary mutual information for protein and
DNA sequences. It consists of three kernels: The first one
initializes a randomization seed that is used in a second ker-
nel to permute the sequences. The third kernel performs
the main operation by creating a 3D histogram of occur-
rences in the permuted sequences. This kernel is templated
and uses different compression schemes depending on the
input data. MATOG handles each template variant as a
different kernel. For training we use three data sets with
varying complexity ((number of sequences×sequence length)
140× 72, 2261× 238 and 16000× 99) and run one iteration
of the algorithm. For testing we evaluate nine other data
sets (211× 465, 753× 264, 753× 275, 211× 570, 390× 244,
616× 336, 4204× 120, 500× 99 and 376× 222) and perform
100 iterations. All kernels together have only 1.188 config-
urations but the overall execution time of the application is
very high compared to the other applications.

Rendering Everything You Ever Saw (REYES) [7]
is a technique used in movie productions. In contrast to clas-
sical 3D mesh rendering, it uses patches to model smooth
surfaces. The patches are transformed into micro polygons
and iteratively split into smaller polygons until they have
subpixel size. The implementation uses four kernels: One
of the kernels performs the splitting while the second com-
presses the resulting data after each iteration. A third kernel
uses the final polygons and renders the resulting image into
a depth buffer which contains depth and color information
for each pixel. Finally a fourth kernel extracts the image
information from this buffer into a 2D texture which then
can be displayed. For training we render the Utah Teapot
at FullHD resolution (1920×1080) and evaluate the same
model at three different resolutions (1024×768, 1280×720
and 1920×1080). We render a sequence of 1000 frames vary-
ing model rotation in each frame. Although the execution
time of a single frame is rather small, the extreme high num-
ber of over 4 M kernel configurations prohibits an exhaustive
search of configurations which would take more than two
weeks to render a single frame.

7. RESULTS
We first analyze the total GPU execution time (see

Fig. 7). We distinguish between four cases:

• Prediction is our proposed method which uses the predic-
tion based profiling to learn the decision models.



K20 TitanX K20 TitanX K20 TitanX K20 TitanX

BitonicSort SRAD COMIC REYES

Theoretical 1.59 1.58 0.99 1.14 1.23 1.29

Ground Truth 1.59 1.58 0.99 1.13 1.23 1.29

Exhaustive 1.59 1.59 0.97 0.94 1.22 1.20

Prediction 1.59 1.60 0.97 0.78 1.20 1.20 1.12 1.28
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Figure 7: Kernel Speed Up, normalized by the
performance of the original benchmark code. The
minimal higher speed up for the Exhaustive and Pre-
diction measurements in the BitonicSort benchmark
are caused by GPU clock boost effects.

• Exhaustive uses our application analysis method but does
not rely on the prediction. Instead, it uses exhaustive
profiling data to learn the decision models.

• Theoretical would be the optimal performance if we al-
lowed data conversions between kernel calls.

• Ground Truth is the optimal solution for the tested data
sets, without data conversions.

All results are normalized by the execution time of the
original implementation provided by the respective authors.
Due to the high number of variants, Theoretical, Ground
Truth and Exhaustive results are not available for REYES.
A speed up of close to 1.0 means that the original imple-
mentation is fully optimized. We repeated all tests 5 times.
Nevertheless, performance variations of 1-2% can still occur
due to noise or the GPU clock boost.

Fig. 7 shows no significant difference between Theoretical
and Ground Truth, indicating that data conversions between
kernels would not provide any measurable improvement in
all tested applications. Further, except for the SRAD and
COMIC on the Titan X, our models chose configurations
which are similar to the Ground Truth. Some performance
drop is expectable as decisions made on unknown data sets
are approximate as the models have been trained on different
data. The graph also shows that Exhaustive and Prediction
achieve the same performance in nearly all cases. This is a
very good result as the predicted cases use significantly less
input data and time but still achieve nearly the same results.
The only case where we observe a significant performance
drop is SRAD on the Titan X. The size of the grid does not
allow conclusions on the optimal layout so that MATOG
selects non-optimal configurations.

7.1 Application Execution Time
We now take a closer look at the speed up achieved, for

the application execution. The results are shown in Fig. 8.
The application speed up is much lower than the speed up
of kernels themselves, which is obvious as the serial CPU
time is not optimized and therefore lowers the overall speed
up. For the BitonicSort, the difference between kernel and
application speed up is very high. This is caused by two
effects. First, the CPU only time of the application is signif-
icantly higher than the GPU time, as can be seen in Fig. 9.
Second, the optimal GPU layout is SoA which is less effi-
cient on the CPU. Also the input data is stored as binary
AoS format and therefore has to be implicitly converted dur-
ing the loading procedure. The SRAD uses close to 100%

K20 TitanX K20 TitanX K20 TitanX K20 TitanX

BitonicSort SRAD COMIC REYES

Exhaustive 1.03 0.98 0.64 0.66 1.21 1.22

Prediction 1.02 0.98 0.66 0.66 1.20 1.21 1.08 1.07

0.0

0.5

1.0

1.5

A
p

p
lic

at
io

n
 

Sp
ee

d
 U

p

Figure 8: Speed up of the application execution
time. The values are lower than for the kernel speed
up, as this also contains the auto-tuning overhead
and the serial CPU time.

of the execution for the CPU so that any improvements of
the GPU performance would not be visible in the results.
The drop of CPU performance is caused by overhead of the
auto-tuner and memory layouts that work less efficient on
the CPU. COMIC and REYES, as the most complex of our
applications, have a much higher GPU to CPU ratio and
greatly benefit from the improved GPU performance. For
the COMIC case, the memory layouts not only worked bet-
ter on the GPU but also on the CPU which improved the
CPU performance compared to the original implementation.
REYES, however, has a slightly lower CPU performance,
but this is compensated by the much higher GPU perfor-
mance improvement.

7.2 Optimization Time
Finally we take a look at the time required for profiling

and analysis of the application. The results for the predic-
tive profiling compared to an exhaustive search are shown
in Fig. 10. As can be seen, the time required for all applica-
tions varies significantly, depending on the complexity and
execution time. For the prediction based profiling it is pos-
sible that after the learning an additional compiling step is
executed. In this case, configurations have been chosen to be
optimal which were not profiled and therefore not compiled
before. As we do not want to compile these during an op-
timized application run, all configurations that are optimal
and have not been compiled before are compiled at the end
of the learning process. The slower learning time for some
exhaustive results is caused by the fact that the application
has to handle much more profiling data as in the prediction
case. In this case it cannot calculate the minimum of a ker-
nel call using the prediction formula but has to search for it
explicitly in the profiling data, which can contain millions
of entries. Further we can see that the prediction based
method is 1 (BitonicSort) to 114 (SRAD) times faster than
the exhaustive search. For COMIC on the K20 both meth-
ods required the most time: It took less than 6 minutes
for the predictive method while the exhaustive method took
about 100 minutes to achieve similar performance.

8. CONCLUSION
We presented an adaptive optimization for the MATOG

auto-tuner that reacts to changing data characteristics. Our
application analysis method is able to analyze and optimize
complete GPU applications within minutes with very little
user interaction and achieves or even exceeds performance of
hand optimized code. We note that applications with an exe-
cution time of only a couple of seconds do usually not benefit
much from our auto-tuner as the optimization potential is
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K20 TitanX K20 TitanX

BitonicSort SRAD

Total 14.70 14.30 14.41 13.55 13.79 13.76 5.60 8.82 8.47 5.70 8.65 8.67

CPU 12.55 12.94 13.05 12.51 13.13 13.11 5.58 8.79 8.45 5.68 8.63 8.65

GPU 2.16 1.36 1.36 1.04 0.65 0.65 0.02 0.02 0.02 0.02 0.02 0.02
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K20 TitanX K20 TitanX

COMIC REYES

Total 4459.0 3670.9 3715.5 1627.9 1338.5 1343.9 757.38 701.35 296.50 276.91

CPU 1092.0 916.37 917.68 1103.7 903.17 908.08 140.28 151.85 133.42 149.14

GPU 3367.0 2754.6 2797.9 524.15 435.37 435.86 617.10 549.50 163.08 127.76
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Figure 9: Total execution time for the Base (B) implementation, Exhaustive (E) and Predictive (P) optimized
application (sum of all testing data sets, five repeated runs per data set). See text for details.
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K20 TitanX K20 TitanX K20 TitanX K20 TitanX

BitonicSort SRAD COMIC REYES

Total 16.51 16.40 13.70 13.36 1665.41 20.20 1509.67 13.21 5990.97 346.50 432.40 35.16 62.59 37.05

Profiling 16.48 16.37 13.67 13.33 1665.29 13.28 1509.61 13.19 5990.95 338.36 432.38 35.14 50.64 36.84

Learning 0.03 0.03 0.03 0.03 0.12 0.02 0.06 0.02 0.03 0.02 0.02 0.01 0.13 0.20

Compiling 3.45 4.06 5.91
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Figure 10: Time to gather profiling data, analyze and build decision models, compilation compared between
Exhaustive (E) and Predictive (P) profiling. Compiling times are only needed if an optimal configuration has
not been explicitly profiled (and therefore has not been compiled) before. Note the logarithmic time scale.

too low to compensate for the overhead created by the auto-
tuner. Further, solely optimizing the GPU execution time
does not necessarily result in better overall performance, as
the CPU performance can decrease equally depending on
the array layout.

The source code of our MATOG system is available at
http://tinyurl.com/matog under the New BSD License.
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