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Abstract
In this paper we present an algorithm capable of render-
ing a displacement mapped triangle mesh interactively on
latest GPUs. The algorithm uses only pixel shaders and
does not rely on adaptively adding geometry. All sam-
pling of the displacement map takes place in the pixel
shader and bi- or trilinear filtering can be applied to it,
and at the same time as the calculations are done per pixel
in the shader, the algorithm has automatic level of de-
tail control. The triangles of the base mesh are extruded
along the respective normal directions and then the re-
sulting prisms are rendered by casting rays inside and in-
tersecting them with the displaced surface. Two different
implementations are discussed in detail.

1 Introduction

Displacement mapping adds real surface detail to objects
in three dimensional scenes by using two dimensional
maps containing height data. Displacement mapping can
be used for generating large scale objects such as terrain
and for adding smaller scale detail such as bumps. Dis-
placement mapping is used in offline cinematic content
creation packages to add this surface detail and as the ca-
pabilities of graphics hardware increases it can also be
used in real time applications.

Displacement mapping is performed by displacing the
position of a surface along the normal to the surface by
a distance sampled from a map of scalar values associ-
ated with the surface. The displacement can be applied to
vertices that make up the mesh of the base surface with
displacement values associated with each vertex. Al-
ternatively many algorithms insert new vertices into the
surface to increase the base mesh detail either using a
fixed tessellation factor or by inserting vertices adaptively
based on the detail in the displacement map. The dis-
placement map is typically a two dimensional area used
in a similar manner to a texture map with the base mesh
containing coordinates that indicate where the displace-
ment map is to be sampled.

Displacement mapping was first mentioned by Cook
[1] in the context of software based rendering. Tech-

niques for ray tracing displacement maps have been pre-
sented previously by Heidrich et al.[7] and Pharr et
al.[12]. But are still more complex than can be im-
plemented on the current generation of programmable
graphics hardware.

In recent years several proposals for dedicated hard-
ware have been proposed for displacement mapping.
Doggett et al [3, 4] presented a level of detail driven ras-
terization approach that inserts new vertices into the base
mesh. A similar technique is presented by Gumhold et
al[6]. Doggett and Hirche[2] presented an adaptive tes-
sellation scheme that inserts new vertices dependent on
the average displacement within the displacement map
and the variance of the surface. Moule and McCool[11]
improved upon the area coverage for detecting change in
the displacement map to drive a similar adaptive scheme.
Hirche and Ehlert[8] use a precomputed decision to drive
tessellation eliminating the need for computing tessella-
tion decisions. All of these approaches require the cre-
ation of new vertices in the vertex shader stage of exist-
ing graphics hardware, a feature which has only recently
been exposed in a limited fashion through the concept of
output from the vertex shader being sent to vertex arrays.
This requires that the target vertex arrays are sized cor-
rectly for a CPU calculated number of vertices.

Recently introduced hardware by Matrox[10] allows
fetching from a displacement map within the vertex
shader, a feature not available on other hardware. But
like DirectX 9 displacement mapping tessellation is done
at a pre set tessellation level which is not controlable from
within the vertex shader.

Using a similar approach to that presented in this paper,
Kautz et al.[9] extrudes the base mesh to enclose the en-
tire displaced surface and then composites together slices
through the extruded volume using a technique similar to
volume rendering. Since all slices through the volume are
rendered whether visible or not this technique requires
high fill rates and a high texture bandwidth.

Wang et al [14] presented a novel approach to render-
ing displacement maps by using a precomputed table of
visibility information. The surface is extruded along the



surface normal direction and following that, viewing rays
are cast from the extruded surface and an intersection test
with the displacement map is performed. Of course the
number of viewing rays that can be stored is limited and
also the curvature of the base domain surface is only ap-
proximated.

This paper presents an approach to displacement map-
ping using currently available programmable graphics
hardware that creates the appearance of a displaced sur-
face on a per pixel basis. Unlike previous techniques it
doesn’t require any insertion of vertices to retessellate the
mesh. Displacement map sampling occurs in the pixel
shader so all texture filtering modes can be applied. Many
of the schemes above include level of detail control tied
to triangle size computed in screen space, this step is not
required using this technique since the sampling of the
displacement map is relative to the number of pixels con-
tained within the bounding prisms of each displaced tri-
angle.

This paper is broken into several sections. Section 2
describes the basic algorithm and is followed by a more
detailed description in Section 3. Section 4 explains how
the algorithm is improved by using tetrahedrons as the
base object and how they are rendered. Section 5 presents
results and section 6 concludes the paper.

2 General Idea

Most approaches to displacement mapping require that
the geometry of a given base mesh can be modified, es-
pecially in the sense of adding more detail in the form
of retessellated triangles. Currently available hardware,
at which this algorithm is targeted, does not allow ver-
tices to be added once the geometry has been transferred
to the graphics card. To work with this restriction this
algorithm does not generate geometry on the card, but in-
stead creates triangles that cover the area on the screen
that could be affected by the displaced base mesh trian-
gle. When the covering triangles are rasterized a per pixel
calculation is performed to detect an intersection with the
displaced surface. If an intersection is detected the result-
ing fragment has to be shaded and written to the frame-
buffer with its correct z-value similar to the shading used
by Gumhold [5]. The number of covered triangles should
be kept to a minimum to reduce the geometry transfer
overhead. The bounding volume of the surface with a
displacement map applied to it is given by a prism ob-
tained by displacing the base triangle along the vertex
normals to the maximum displacement height. At each
pixel of the prism’s triangles a non-trivial intersection of
the ray with the prism has to be performed, placing a very
high burden on the pixel shader pipeline. Since backfac-
ing triangles can be culled, the amount of used pixels to

Figure 1: The prism with its resulting triangles used for
rendering.

be drawn is relatively limited. The resulting triangles are
shown in Figure 1. The sides of the prism are quads and
have to be split into two triangles, the bottom and top of
the prism remain unchanged resulting in eight triangles
to be rendered per base triangle.

3 Single pass prism Renderer

The first approach renders the displacement prism by
splitting it up into eight triangles and casting rays into
the prism from every rendered pixel. However, we have
to assume that the faces of the prism are flat. Otherwise
calculating the intersection with the bi-linear faces is al-
ready too complex for the fragment shader. Additionally,
the transformation from world coordinates to texture co-
ordinates is not solvable.

The rays are cast in the viewing direction from each
pixel position. To find out whether the ray intersects the
displacement map, the height of the sampling position is
compared to the height of the displacement map at the
interpolated texture coordinate of the sampling position.
The height ranges from zero at the base mesh level to one
on the top of the prism. The 3D texture coordinates need
to be interpolated inside the prism, along the viewing di-
rection. The texture coordinates are local to the prism and
a base transform has to be made at all vertex positions to
obtain the viewing direction in local texture space. Given
a triangle with verticesVi = (xi ,yi ,zi) with normalsNi and
texture coordinatesUi = (ui ,vi) for i = 1,2,3, the first step
is to add a third coordinate defined by the height of the
vertex in the prism:
U ′

i := (ui ,vi ,0) for vertices of the base triangle andU ′
i :=

(ui ,vi ,1) for vertices of the displaced triangle. To calcu-
late the transformation for vertexV1 for example, on the
base triangle, we define a local baseBTexturewith the
texture directionse1,e2 along the triangle edges:

e1 := U ′
2−U ′

1

e2 := U ′
3−U ′

1



BTexture:= (e1,e2,1)

In the same manner we define a local baseBWorld with
the world coordinates of the vertices:

f1 := V2−V1

f2 := V3−V1

BWorld := ( f1, f2,N1)

The basis transformation fromBWorld to BTexturecan
be used to move the viewing direction at the vertex posi-
tion V1 to local texture space.

To avoid sampling outside of the prism, the exit point
of the viewing ray has to be determined. In texture space
the edges of the prism are not straightforward to detect
and a 2D intersection calculation has to be performed.
This can be overcome by defining a second local coor-
dinates system which has its axes aligned with the prism
edges. For this we assign 3D coordinates to the vertices
as shown in Figure 2. The respective name for the new
coordinate for a vertexVi is Oi . Then the the viewing di-

(0,0,1)

(0,1,0)

(0,1,1)

(1,0,1)

(1,0,0)

(0,0,0)

Figure 2: The vectors used to define the second local
coordinate system for simpler calculation of the ray exit
point.

rection can be transformed in exactly the same manner to
the local coordinate system defined by the edges between
theOi vectors:

g1 := O2−O1

g2 := O3−O1

BLocal := (g1,g2,1).

Again this is the example for the vertexV1. In the follow-
ing the local viewing direction in texture space is called
ViewT , and in theBLocal base representationViewL. We
assume that the viewing direction changes linearly over
the face of a prism triangle and put the local viewing
direction in both coordinate systems in 3D texture co-
ordinates and use them as input to the fragment shader

pipeline in order to get linearly interpolated local view-
ing directions. The interpolatedViewL allows us to very
easily calculate the distance to the backside of the prism
from the given pixel position as it is either the difference
of the vector coordinates to 0 or 1 depending which side
of the prism we are rendering. With this Euclidean dis-
tance we can define the sampling distance in a sensible
way which is important as the number of samples that
can be read in one pass is limited, and samples should
be evenly distributed over the distance. An example of
this algorithm is shown in figure 3. In this case four sam-
ples are taken inside the prism. The height of the dis-
placement map is also drawn for the vertical slice hit by
the viewing ray. The height of the third sample which is
equal to the third coordinate of its texture coordinate as
explained earlier, is less than the displacement map value
and thus a hit with the displaced surface is detected. To
improve the accuracy of the intersection calculation, the
sampled heights of the two consecutive points with the
intersection inbetween them, are substracted from the in-
terpolated heights of the viewing ray. Because of the in-
tersection the sign of the two differences must differ and
the zero-crossing of the linear connection can be calcu-
lated. If the displacement map is roughly linear between
the two sample points, the new intersection at the zero-
crossing is closer to the real intersection of the viewing
ray and the displaced surface than the two sampled posi-
tions.
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Figure 3: Sampling within the extruded prism with a slice
of the displacement map shown.

Although the pixel position on the displaced surface is
now calculated, the normal at this position is still the in-
terpolated normal of the base mesh triangle. It has to be
perturbed for correct shading, in this case standard bump
mapping using a precalculated bump map derived from
the used displacement map is used. The bump map is



obtained by convoluting the displacement map with a So-
bel Operator in both horizontal and vertical direction and
stored together with the displacement map in one single
texture, with the displacement value stored in the alpha
channel.

The algorithm was implemented using OpenGL vertex
and fragment programs and run on ATI RADEON 9700
and nVidia GeForceFX class cards. The performance was
similar on both cards. The implementation also showed
the limitations of the fragment shader accuracy since the
intersection of front- and back-face is calculated in a dif-
ferent way.

The assumption that the prism faces are flat is a very
strong restriction that makes the algorithm in this form
generally unusable. In case the faces are not flat, a
viewing ray may intersect the same face it originates
from which will cause holes when rendering. Especially
the mapping between the different coordinate systems is
curved in this case and cannot be approximated with an
affine transformation as we assumed so far. Because of
this a more robust algorithm was implemented that does
not have these limitations.

4 Tetrahedral Renderer

To avoid the issues with non-planar prism faces, the prism
has to be split into simpler shapes that can be handled
more easily. Obviuosly it can be split into three tetrahe-
drons as shown in Figure 4. The main difference in using
tetrahedrons instead of the prism is that the texture space
coordinates of the entry and exit point can be interpo-
lated at the same time by the rasterization units. The sam-
pling points between the entry and exit point can then be
obtained by just linearly interpolating in between them.
The tetrahedrons can be rendered using an adaption of
the Projected Tetrahedra (PT) Algorithm by Shirley and
Tuchman[13].

4.1 Mesh Construction
Using tetrahedrons requires the construction of a tetrahe-
dral mesh from the given base domain surface. It has to
be ensured that neighboring tetrahedral edges are aligned
in a consistent way to avoid aliasing effects between ad-
jacent triangles. This can be achieved without knowledge
of the connectivity in the tetrahedral mesh, by just set-
ting up an enumeration of the vertices in the mesh that
allows for an index comparison. The enumeration can be
obtained from the vertex indices as they are usually given
in an array.

The algorithm iterates over all faces in the trian-
gle mesh folding up a prism by displacing every ver-
tex of the base triangle along the vertex normal direc-
tion. To globally adjust the amount of displacement,
the normal can be multiplied with a user defined scalar.

Every prism is then split into three tetrahedrons fol-
lowing the ordering scheme as schematically shown in
Figure 4. The indicesv0,v1,v2 are assigned to the
lower vertices andv3,v4,v5 to the upper base vertices.
Now every prism is tiled into the three tetrahedrons
T(v0,v1,v2,v5),T(v0,v1,v4,v5) andT(v0,v3,v4,v5). An
additional requirement is thatv0 < v1 < v2 with respect
to the consistent numbering scheme of the mesh as noted
before. Hence the algorithm simply works this way:

FOR_EVERY_TRIANGLE_FACE(f)

IF(v0 > v1)
SWAP(v0, v1)
SWAP(v3, v4)

IF(v0 > v2)
SWAP(v0, v2)
SWAP(v3, v5)

IF(v1 > v2)
SWAP(v1, v2)
SWAP(v4, v5)

CREATE_TETRA(v0, v1, v2, v5)
CREATE_TETRA(v0, v1, v4, v5)
CREATE_TETRA(v0, v3, v4, v5)

v2

v5

v0

v3

v1

v4

Figure 4: Subdivision of prism into three tetrahedrons
(v0-v1-v2-v5, v0-v1-v4-v5, v0-v3-v4-v5)

4.2 Rendering
To adapt the PT-algorithm to displacement mapping only
a few modifications have to be applied. In contrast to
the standard algorithm where each vertex needs color and
opacity, each vertex is attributed with its respective tan-
gent space consisting of normal, tangent and bi-normal,
each a 3d-vector. The tangent and bi-normal are neces-
sary for performing the bump map operation while shad-
ing the surface. Additionally two texture coordinates,



one for the bump and displacement map, the other for
a freely usable texture, are assigned to each vertex. Be-
fore the geometry is sent to the rendering pipeline a view-
dependent preprocessing step has to be performed, where
the tetrahedrons are decomposed into triangles accord-
ing to the PT-algorithm. In Figure 5 the possible projec-
tions of tetrahedrons and the respective decompositions
are shown. At pointS in the diagram the connecting edge
between frontside and backside of the decomposed trian-
gles is calculated. The backside vertex is also called the
secondary vertex of all the triangles.

So far all the processing has to be done on the driver
side by the host computer’s CPU.

s

t1 t4

t3t2

Figure 5: Possible decompositions of projected tetrahe-
drons into triangles.

Every triangle vertex (primary vertex) sent into the first
stage is attributed with texture coordinates and tangent
space vectors. Likewise the vertex on the backside (sec-
ondary vertex) of the decomposed tetrahedron is trans-
ferred as attribute including its texture coordinates and
tangent space vectors. With these parameters the ver-
tex shader computes homogeneous texture coordinates
for the primary and secondary vertex. It also computes
the model-view-projection transformation of the vertices
and finally transforms per vertex viewing and light di-
rection into tangent space. In the second stage of this
pipeline the pixel shader performs the intersection cal-
culation between eye vector and the displacement map.
To achieve this the pixel shader performs four lookups
in the displacement map given by the interpolated tex-
ture coordinates of the primary and secondary vertex and
two interpolated positions in between. The intersection
between eyevector and displaced surface is then calcu-
lated by substraction of the sampled displacement value
from the interpolated texture coordinates. A sign change
indicates the interval where the eyevector hits the dis-
placed surface. In case no surface was hit the pixel is
removed. Otherwise the pixel will undergo a final shad-
ing step. Here, bump mapping was used to perturb the in-
terpolated normal and Phong shading using the fragment

shader stage.
In order to circumvent any dynamically inserted ver-

tices, we could also use the direct scanline conversion of
tetrahedra as proposed by Weiler et al. [15]. However, the
number of texture coordinates per vertex would be four
times as high as for the original projected tetrahedra ap-
proach, exceeding the number of texture coordinates that
can be transferred ro the pixel pipeline.

There are two possible solutions to implement a pure
hardware based rendering. The first one is without intro-
ducing any dynamic vertices. For this we would need a
hardware that is able to split the tetrahedra, based on its
projective profile, into three or four triangles. Addition-
ally, this hardware would have to interpolate a separate
set of texture coordinates for the front and back face of
the "thick" triangle.

The second solution is a programmable hardware that
can not only insert additional vertices into an existing
mesh, but also insert additional triangles. With this ap-
proach, we could also construct the base mesh on the
GPU. This also includes the optimization of the height
of the prisms if this unit has access to a texture. While
the base mesh can be created once for all frames, the dy-
namic vertices have to be added on a pre-view basis.

The optimal solution however would require both, the
programmable vertex insertion and the direct scan con-
version of tetrahedra.

5 Results

The tetrahedral renderer was implemented using OpenGL
vertex and fragment programs. The problems of using
tetrahedrons as primitives are of course the amount of
additional geometry that has to be transformed and ren-
dered. The pixel shader needs a single rendering pass
on an nVidia GeForceFX 5800 or ATI RADEON 9700.
In our implementation four samples along a ray inside
a tetrahedron are taken and compared with the displace-
ment map. To avoid sampling artefacts by missing a sur-
face completely the size of the tetrahedrons and thus the
size of the used base triangle mesh has to be chosen ap-
propriatly. Longer pixel shader programs will allow more
samples to be taken improving the sampling quality. As
test cases we used flat base triangle meshes and applied a
half donut and the crater lake displacement map to it. Ad-
ditionally we used a cylinder and a sphere shaped mesh
and applied the displacement map of a laser range scan
of a human head and an earth height field. It is possible
to add a texture additionally to displacement mapping,
even with different texture coordinates than the displace-
ment maps, allowing for light maps, etc. Frame rates
for the shown examples were clearly pixel shader lim-
ited. Our implementation is capable of rendering at 20fps



at 500x500 pixels resolution. As all rendering was done
in immediate mode, there is certainly the opportunity for
optimizations.

Four samples were chosen due to limited fragment
shader program length. When new fragment shader
pipelines become available the number of samples should
be increased and the number of generated tetrahedrons re-
duced. As the algorithm is pixel fill rate limited a reduc-
tion of rendered tetrahedrons and thus rastered triangles
would result in an increased performance.

6 Conclusion

Displacement mapping can be used to reduce the band-
width from CPU to GPU by only requiring displacement
maps to be sent to the GPU’s memory to generate more
complex geometry without sending large vertex arrays.
This also reduces the constraints of limited GPU mem-
ory.

The pixel based algorithm presented in this paper per-
forms at interactive rates on currently available hardware.
Sampling of the displacement map is driven by visible
pixels unlike most previous displacement mapping ap-
proaches that are driven by retessellation of the base mesh
using various schemes.

The approach doesn’t require the use of render to ver-
tex and doesn’t require any modifications to existing pro-
grammable graphics hardware. The quality can be im-
proved by increased pixel shader lengths which would al-
low more samples of the displacement map to be taken,
thus avoiding undersampling. The control flow in the
pixel shader could also allow loops to sample incremen-
tally along the ray until the intersection with the surface
is found. This approach could be improved using many
existing ray tracing techniques that improve intersection
calculations with surfaces, for example octrees and space
leaping.

The algorithms performance could be vastly improved
if the vertex processor was capable of accessing tex-
ture memory and and adding new vertices or triangles.
The number of tetrahedrons could then be adapted to the
structure contained in the displacement map, adding new
vertices where necessary, possibly by using curvature in-
formation as in [8]. This hybrid approach of conventional
displacement map rendering by tessellation and ray cast-
ing would allow for very high quality rendering with real-
time speed without any precomputation necessary.
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Figure 6: Flat base mesh with a half donut shape applied
to it. The base mesh in red is translated away for better
visibility.

Figure 7: Same shape with a different texture applied.

Figure 8: The head of Volker Blanz displaced from a
cylindrical mesh, tetrahedral mesh show.

Figure 9: Displacement Map of Crater Lake applied to a
flat base mesh



Figure 10: Sphere shaped base mesh with a earth displacement map and texture applied to it. Additionally the wire-
frame of the tetrahedral mesh is shown.

Figure 11: Different angle, this time showing europe with slightly exaggerated displacements.
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