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Abstract. We investigate the use of topic models, such as probabilistic
latent semantic analysis (PLSA) and latent Dirichlet allocation (LDA),
for word completion tasks. The advantage of using these models for such
an application is twofold. On the one hand, they allow us to exploit se-
mantic or contextual information when predicting candidate words for
completion. On the other hand, these probabilistic models have been
found to outperform classical latent semantic analysis (LSA) for mod-
eling text documents. We describe a word completion algorithm that
takes into account the semantic context of the word being typed. We
also present evaluation metrics to compare different models being used
in our study. Our experiments validate our hypothesis of using probabilis-
tic models for semantic analysis of text documents and their application
in word completion tasks.

1 Introduction

Word completion is the task of predicting and automatically completing words
that the user is in the process of typing. Such tools can prevent misspellings, help
develop writing skills, and accelerate typing speed by saving keystrokes. (The
last benefit is particularly important for users of keyboardless devices, such as
mobile phones and PDAs, as well as for users with physical disabilities.) During
typing, the user is offered a prediction list of words beginning with the letters,
or word prefix, thus far typed. If the intended word is in the prediction list, the
user can select it with a single keypress; otherwise, he continues typing until the
word appears in the list or until he types the complete word.

The job of the word completion algorithm is to determine which words appear
in the prediction list, the idea being to maximise the probability of presenting
the user with the correct word. The earliest word completion algorithms [1] used
simple statistical methods, such as word or word-pair frequencies, to rank words
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in the prediction list. The frequencies are derived from a corpus of written text,
though some systems [2] dynamically update the frequency table to adapt to
the user’s writing style. More advanced systems [3] incorporate syntactic data,
such as part-of-speech tags and grammar rules, to avoid suggesting words which
are grammatically incorrect in the given context. However, even systems that
combine statistical and syntactic information can suggest words that are seman-
tically inappropriate. For instance, the writer of an essay on music who begins
typing Mende. . . is far more likely to intend the completion to be Mendelssohn
than Mendel or Mendeleyev, even though all three are proper nouns that may
be equally statistically likely (in a unigram or a bigram model, at least).

In order to avoid suggesting semantically inappropriate words, several ap-
proaches were proposed in which semantic knowledge is incorporated into the
completion task. An early attempt at incorporating semantic information was
proposed by Kozima and Ito [4]. They deal with a scene-based model that uses
local semantic information of each scene—i.e., a text fragment which displays
a semantic unit. However, they predict words based on context-sensitive word
distances, because there is no training corpus segmented into scenes to derive
probabilities of the occurrence of a word given a text fragment. Other recent at-
tempts (e.g., [5]) require language-specific tools such as WordNet [6], and many
operate only on words of a particular part of speech.

All of these approaches have shown an improvement of the word completion
task in predicting semantically more appropriate words. But none of these ex-
plicitly model the semantics of text documents resulting in disambiguation of
polysems and synonyms, which is possible using models like latent semantic
analysis (LSA) [7]. In our recent work [8], we demonstrated the advantages of
exploiting the semantic context of words that have been typed for predicting
a list of candidate words for completing the current word using LSA. In this
paper, we investigate the application of topic models—namely, probabilistic la-
tent semantic analysis (PLSA) [9] and latent Dirichlet allocation (LDA) [10]—to
model the semantics of text documents. In recent years, these models have been
gaining widespread interest as semantic models not only of text collections but
also in other domains like images [11,12]. We make empirical comparisons of
these models for word completion tasks with LSA as the baseline model.

The paper is organised as follows: We begin with a brief description of topic
models that we intend to use in our experiments. We then present a semantic-
based word completion algorithm in Section 3 and give a complexity analysis. In
the following section, we describe the details of our simulator for word completion
and present evaluation metrics that will be used for the comparison of the various
topic models. Section 5 describes our experimental work, and is followed by
conclusions and pointers to future work.

2 Topic Models

LSA has been in use for a long time for the automatic indexing and retrieval of
text documents. It is based on the singular value decomposition (SVD) of the
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term–document matrix X giving rise to two orthogonal matrices U and V , and a
diagonal matrix Σ, such that X = UΣV T . The elements of Σ are called singular
values and the columns of U and V are called left and right singular vectors,
respectively. A reduced-rank approximation of X is obtained by discarding all
but the highest K singular values in Σ. The resulting matrices define the so-
called latent semantic space in which common information retrieval operations
such as comparison of two terms, two documents, or a term and a document can
be performed.

PLSA is the probabilistic version of LSA and it defines a generative model
for statistical modeling of discrete and count data of which text collections are
an example. PLSA assumes the existence of a latent variable zk ∈ {z1, . . . , zK},
where K is the number of topics, for each word (or observation) in a document.
The data generation process is described in three steps: a document di is selected
with probability p(di); a latent class variable zk, also referred to as the topic
variable, is selected with probability p(zk|di); a word wj is finally generated with
probability p(wj |zk). The probability of an observation pair (di, wj) is given as

p(di, wj) = p(di)
K∑

k=1

p(wj |zk)p(zk|di) .

The model parameters are estimated using the expectation-maximisation (EM)
[13] algorithm. If we assume a corpus of M documents and a vocabulary of N
words, the parameters of a K-topic PLSA model are K multinomial distributions
of size M and N mixtures over the K hidden topics, thereby making the total
number of parameters to be KN +KM . The linear dependence of the number of
parameters on the size of the corpus results in overfitting and a tempered version
of EM was proposed by Hofmann [9] to mitigate this problem. The inference step
involves estimating the distribution of the topics given a new document—i.e.,
p(zk|dnew)—by fixing the p(wj |zk) parameters. This step, also called folding
in [7], projects new, unseen documents into the latent semantic space.

LDA is a three-level hierarchical Bayesian model in which each document is
modeled as a mixture of an underlying set of topics, very much similar in a sense
to PLSA. But the drawbacks of PLSA, such as its linear dependence on the
number of documents for parameter estimation and its inability to assign proba-
bility to previously unseen documents, are mitigated in the LDA model [10]. The
data generation proceeds as follows: a Dirichlet parameterised by α is sampled
to yield θ; for each of the N words, a topic zn is sampled from a multinomial
parameterised by θ and a word wn is chosen with probabibilty p(wn|zn, β), which
again is a multinomial conditioned on the topic zn. The model parameters are
given by α and β. The probability of a corpus D consisting of M documents
having N words in each of them is given as

p(D|α, β) =
M∏

m=1

∫
p(θm|α)

(
Nm∏

n=1

Σzmnp(zmn|θm)p(wmn|zmn, β)

)
dθm .

The number of parameters in a K-topic LDA model is K+KM—i.e., the Dirich-
let parameter α ∈ R

K and the K multinomial word distributions. Therefore,
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unlike PLSA, parameter estimation in LDA is not dependent on the number
of documents N . The inferential quantity of interest is the distribution of the
topics given a new document p(θ, z|w, α, β) and is estimated using approximate
inference techniques for graphical models [14].

3 Semantic Word Completion

3.1 Algorithm

The first step is to build semantic models of the text corpus using LSA, PLSA and
LDA. Ideally the training corpus should be large enough to contain any word the
user is likely to type. Once the models are built, pairs of term or document vectors
can be compared via the cosine coefficient, yielding a “semantic similarity” score
in the range [−1, 1]. Assume the user is in the process of typing a word w with
prefix pre(w). We define the context C = 〈c1, c2, . . . , c�−1, c�〉 as the sequence of
up to � words immediately preceding w in the document. We refer to � as the
context length, though near the beginning of the document the actual length of
the context, |C|, may be less than �.

A candidate word t ∈ T ⊆ V , where V is the vocabulary of size N , is any word
whose prefix is the same as that of w—i.e., T = {t|t ∈ V ∧ pre(t) = pre(w)}.
The best candidates comprise the prediction list P ⊆ T , which the user (or
system) caps at a maximum length of p. Again, it is possible that |P | < p
if there are fewer than p known words with the given prefix. We propose a
method called sum of similarities (SOS) to populate P , in which we compare
the candidates to each word in the context individually. The similarity score for
the context is the sum of similarity scores of each word in the context and is
given as

sim(t, C) =
|C|∑

i=1

cos(t, ci) .

We compute the similarity scores for each possible t, and populate the prediction
list P with p high-scoring candidates.

3.2 Complexity Analysis

The application of topic models to word completion involves two steps: creat-
ing models (or parameter estimation) of LSA, PLSA and LDA; and simulation
of word completion using the SOS algorithm. The input to our system is an
N × M term–document matrix and let the desired number of topics be K. The
time complexity of building an LSA model depends on the SVD of matrices.
Efficient algorithms to perform SVD can be found in the literature. For exam-
ple, Brand [15] introduced an algorithm that performs a reduced-rank SVD of
a matrix in O(N · M · K) time, which is linear in the number of inputs and
outputs. The estimation of model parameters in PLSA and LDA is performed
using the EM algorithm, and therefore the time complexity is dependent on the
number of operations per EM iteration and also on the number of iterations
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Fig. 1. Simulation architecture

that are required for convergence. Each EM iteration in PLSA requires O(R ·K)
operations, where R is the number of distinct observation pairs (di, wj)—i.e.,
N ·M times the degree of sparseness of the term–document matrix. The number
of iterations typically falls in the range 20–50 [9]. Each iteration in the vara-
tional E-step in LDA requires O((N + 1) · K) operations, with the number of
iterations for a single document roughly equalling the number of words M in
the document [10]. We thus observe that the time complexity of all the three
models is linear in the individual inputs. In the SOS algorithm, we perform a
term–term comparison i.e., a cosine operation for each word in the context, and
therefore the number of comparisons is in the order of O(� · |T |), where � is the
context length. Note that the SOS algorithm does not require the inference step
of PLSA and LDA, since it performs only a term–term comparison using the
K multinomial word distributions that are readily available after the parameter
estimation step.

4 Test Bench

4.1 Simulation

We designed and implemented a simulator in order to evaluate the performance
of our word completion algorithm. The simulator (illustrated in Figure 1) con-
sists of three major components. The first component (❶) covers all necessary
preprocessing steps and trains LSA, PLSA, LDA models in order to extract se-
mantic information. In the second component (❷), a simulated user is integrated,
who interacts (❸) with the prediction component (❹).
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The simulated user types in the words of a test document by passing character
after character to the prediction component, and gets p candidates presented in
the prediction list in return. The population of the prediction list is dependent
on the context and the semantic model being used. In order to choose a limited
number of candidates for the prediction list, the prediction algorithm calculates
the semantic similarity of each candidate and selects the p most appropriate
words. Afterwards one of the three following cases can occur. In the explanation
below, P is the prediction list and w is the typed word with prefix pre(w) that
has to be completed.

Case 1: w ∈ P
The word appears in the prediction list. It is selected and the system proceeds
with the first character of the next word.

Case 2: w /∈ P, |pre(w)| < |w|
The intended word does not appear in the prediction list and is not typed
totally thus far. The word prefix is expanded by the next character of the
current word and passed to the prediction algorithm.

Case 3: w /∈ P, |pre(w)| = |w|
The intended word could not be completed before it was completely typed.

During the whole experimental process, detailed information is stored for further
analysis. The simulation terminates after the whole test text has been processed.

4.2 Evaluation Metrics

Performance of the system is assessed with the following three metrics:

Keystroke savings, the most important metric, is the percentage of keystrokes
that the user saves by using the word completion utility:

KS = 100 − 100
|W | ·

∑

w∈W

sw + 1
len(w)

,

where |W | is the number of words in the test set of documents, sw is the
number of keystrokes used to type a given word w, + 1 is the one additional
keystroke to choose the appropriate word in the prediction list, and len(w)
is the number of characters in w—i.e., the number of keystrokes that would
have had to be typed without the word completion utility.

Hit rate refers to the percentage of keystrokes after which the intended word
appears in the prediction list:

HR = 100 ·
[

∑

w∈W

in(w)

]
÷

∑

w∈W

sw ,

where

in(w) =
{

1 if w ∈ P after typing sw characters;
0 otherwise.
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Keystrokes until prediction is the mean number of keystrokes until the in-
tended word appears in the prediction list or is completely typed:

KUP =
1

|W | ·
∑

w∈W

sw .

5 Experiments and Results

5.1 Data Sets

We used Reuters-21578 [16] corpus with the ModApte splitting scheme for our
experiments. The ModApte split results in a corpus of 9603 training docu-
ments and 3299 test documents. Although the original corpus has 135 topics,
the ModApte split yields only 90 topics for which there is at least one training
and one test document. We performed standard preprocessing techniques of stop
word removal and stemming. We also removed all words that occurred in less
than three documents and in more than 90% of the training documents. These
operations resulted in a 5605 × 9603 term–document matrix which was used to
build our models using LSA, PLSA, and LDA. Since PLSA and LDA operate on
discrete or count data, we used the word counts instead of the standard tf–idf
representation of documents.

5.2 Training Phase

We trained LSA, PLSA, and LDA for different values of K, the number of topics,
on the training set consisting of 9603 documents. We trained the PLSA model
using the tempered version of EM as described by Hofmann [9] to avoid the
possibility of overfitting. The LDA model was trained using variational EM as
described in Blei’s paper [10]. The Dirichlet parameter α was set to an initial
value of 0.5 and was allowed to be iteratively estimated along with the topic
distributions. We used the same stopping criteria of 200 maximum iterations
and 0.0001% change in expected log likelihood (whichever of the two occurs
first) for training PLSA and LDA models. Training an LSA model simply entails
performing an SVD on the term–document matrix and as such there were no
free parameters to fine tune.

5.3 Simulation Results and Analysis

Simulating the word completion algorithm SOS is a computationally expensive
operation, since a term–term comparison has to be made for each word in the
context. We therefore could not use the entire test set of documents with all the
words for our experiments. Instead, we sampled the test corpus in such a way
so as to include two documents from each of the 90 topics. This resulted in 120
documents with 12 942 words that was finally used in our simulation. We note
that in the Reuters corpus, a single document might be assigned to multiple
topics, and therefore we have 120 instead of 180 documents.
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Simulation results for K = 25 topics are shown in Figure 2. The figures depict
the performance of LSA, PLSA, and LDA for the three metrics defined in §4.2 as
a function of context length. It is evident from these graphs that the probabilistic
models PLSA and LDA outperform LSA, and the best performance is achieved
by LDA for all the evaluated metrics. For instance, for a context length of 14
words, LDA outperforms LSA by 8.19%, 9.94%, and 9.06% in terms of keystroke
savings, hit rate, and keystrokes until prediction, respectively. An interesting
observation is the dependence of these metrics on context length. In contrast
to LSA, we note that PLSA and LDA show a significant increase in keystroke
savings and hit rate with context length. The same holds true for keystrokes until
prediction, which decreases with context length. These observations suggest that
PLSA and LDA are able to model semantics or contextual information in a much
better way when compared to LSA. For all three models, we observed that the
performance of the system did not improve continuously for higher values of
context length. For instance, we see that the keystroke savings for LSA improve
until the context length is 6, but thereafter the performance goes down. The same
holds true for the other metrics. For PLSA and LDA, the increase in keystroke
savings was not significant for larger context lengths. This might suggest that
incorporating too much semantic or contextual information for word prediction
does not help; for a given application the appropriate context length could be
determined by the available computational resources and with reference to these
results. We also note from the complexity analysis in §3.2, that the response
time of a word completion utility is linearly dependent on the context length,
and therefore having large context lengths might slow down the overall response
of the system.

We proceed with our analysis of results for different values of K, the number
of topics. Simulation results are shown in Figure 3 for K = 50 and K = 75. We
observe that there is indeed a performance gain as the number of topics increases.
An interesting observation is the way PLSA behaves for higher numbers of topics.
For K = 25, PLSA fares better than LSA at every context length and evaluation
metric. But, for K = 50, we see that for lower values of context lengths, LSA
performs better than PLSA, and this tendency becomes marked when we increase
the number of topics to 75. This might be the result of overfitting due to an
increase in the number of parameters. Interestingly, LDA did not suffer from
any such problems and it seems to fare better with larger context lengths. For
instance, with a context length of 14, LDA with K = 75 performs better than
with K = 25 by 4.34%, 6.04%, and 5.63% in terms of keystroke savings, hit rate,
and keystrokes until prediction, respectively. It is not computationally feasible
to experiment with many values of K, and therefore we are not able to report
results for a wide range of values of K. Nonetheless, as described above, we
are able to draw some important conclusions regarding the behaviour of these
models for different number of topics. The number of topics is indeed a bottleneck
parameter, and the best value for it is dependent on the available computational
resources.
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Fig. 2. Simulation results for K = 25 topics with keystroke savings (top), hit rate
(middle), and keystrokes until prediction (bottom) as a function of context length
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Fig. 3. Simulation results for K = 50 (left) and K = 75 (right) topics with keystroke
savings (top), hit rate (middle), and keystrokes until prediction (bottom) as a function
of context length

6 Conclusions

We have demonstrated the application of probabilistic models like PLSA and
LDA, also called topic models, to semantic-based word completion. It has been
proved elsewhere that these models are superior to their classical counterpart
LSA for semantic modeling of text documents, and our experimental results cor-
roborate their use for applications like word completion. In all our experiments,
we found that LDA performed better in predicting or completing words when
compared to PLSA and LSA. We also observed that there is a possibility for
PLSA to overfit with increasing number of topics and that having too many
words in the contextual information might not yield improved results.

We would like to point out again that we restricted ourselves to discrete in-
puts by simply using word counts in the term–document matrix. It would be
interesting to consider extensions of these models for continuous or other non-
multinomial data. This would make the models amenable to the standard tf–idf
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representation of text documents. Our word prediction approach suggests words
based on the exclusive use of semantic knowledge. An extension to this approach
would be to also integrate syntactic and statistical information to improve the
efficiency of the system. Another possible extension is to make these models
handle dynamic updates. This is necessary if a typed word is not part of the
term–document matrix, thereby making it unpredictable. The possibility that a
certain number of folding-in processes might degrade the latent semantic struc-
ture should be considered. Dynamic model updates is a non-trivial operation,
though there exist some efficient SVD algorithms [17] that could be used for our
LSA approach.
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