
Flexible UIMA Components for Information Retrieval Research

Christof Müller∗, Torsten Zesch∗,
Mark-Christoph Müller∗, Delphine Bernhard∗, Kateryna Ignatova∗,

Iryna Gurevych∗ and Max Mühlhäuser†

∗ Ubiquitous Knowledge Processing Lab
† Telecooperation Division

Technische Universität Darmstadt, Germany
{mueller|zesch|chmark|delphine|ignatova|gurevych|max}@tk.informatik.tu-darmstadt.de

Abstract
In this paper, we present a suite of flexible UIMA-based components for information retrieval research which have been successfully used
(and re-used) in several projects in different application domains. Implementing the whole system as UIMA components is beneficial for
configuration management, component reuse, implementation costs, analysis and visualization.

1. Introduction
Existing information retrieval (IR) tools and frameworks
like Apache Lucene1 focus primarily on application build-
ing, where fast indexing and retrieval capabilities for large
data collections are the driving factor. In IR research how-
ever, indexing and retrieval speed are not the (only) impor-
tant factors. For rapidly performing successful IR experi-
ments, it is crucial to
• support an easy integration, combination and configu-

ration of new IR algorithms,
• manage vast numbers of runs of IR experiments result-

ing from different system configurations,
• provide evaluation methods for retrieval performance,

and
• visualize the data, the retrieval process and the results.

Successful research in the field of IR and the development
of new IR models involve constant changes to both the
algorithm implementations and the preprocessing compo-
nents, as well as the handling and visualization of (poten-
tially huge amounts of) textual data for analysis purposes.
A recent shift in IR towards semantics and NLP methods, as
indicated by emerging search engines like Powerset, Hakia,
Lexxe, and CognitionSearch,2 shows the need for integrat-
ing more sophisticated preprocessing capabilities into IR
frameworks.
In this paper, we present a suite of flexible UIMA-based
components for IR research which have been successfully
used (and re-used) in several projects in different appli-
cation domains. The components are part of the DKPro
(Darmstadt Knowledge Processing) repository3, a collec-
tion of UIMA-based components for NLP tasks. The focus
of this paper is on a description of the IR components in
the DKPro repository. Section 2. briefly describes some
requirements for research-oriented IR systems. Section 3.
outlines a generic IR workflow and how it is realized by
our DKPro components. Section 4. describes some of the
projects in which they have been successfully applied.

1http://lucene.apache.org
2http://www.powerset.com, http://www.hakia.com, http://lexxe.com,

http://cognitionsearch.com
3http://www.ukp.tu-darmstadt.de/software/repository

2. UIMA for Research-Oriented IR
From the above characterization of IR research, some clear
requirements for the implementation of IR systems can
be deduced, including the ability to process (potentially
huge amounts of) unstructured natural language text, and
to quickly configure different setups using varying combi-
nations of (pre-)processing and retrieval components.
The modular nature of our components (as brought about
by the UIMA architecture) simplifies within-project config-
uration management (i.e. different system configurations
for different experiment runs), and minimizes the effort
for cross-project employment (i.e. re-use) of components.
The implementation of IR algorithms as UIMA compo-
nents also offers the possibility to use the results of sophis-
ticated NLP methods in the retrieval process without hav-
ing to build custom indexing formats. Moreover it enables
a thorough analysis of data and results as the visualization
component can create combined views of the preprocessing
and retrieval process.

3. IR Components in DKPro
The DKPro software repository is a collection of UIMA
components for various NLP tasks. Among components
for tasks in areas as diverse as topic segmentation, opin-
ion mining, and community mining, it also contains flexi-
ble and efficient IR components.4 The components cover
all steps in what can be regarded as a generic IR workflow.
Figure 1 provides an overview.

3.1. Collection Reading
This initial step relates to the basic task of importing the
test collections (i.e. the documents and the related topics5)
into the IR system. In UIMA, it is to be performed by in-
stances of reader components. In different application do-
mains, document collections come in vastly different for-
mats, and it is in the reader (and only here) that the pecu-
liarities of the respective formats are dealt with. The DKPro
repository contains several readers for various formats. A

4Currently based on Lucene. Work for supporting further IR
toolkits like e.g. Terrier is ongoing.

5The topic is a natural language statement of a user’s informa-
tion need which is used to create a query in an IR system.



Documents

TREC
Reader

FAQ
Reader

XML
Reader

WSDL
Reader

● Sentence splitting
● Paragraph splitting
● Tokenization
● Spelling correction
● Lemmatization
● Stemming
● Compound splitting
● Stop word removal
● Thesaurus 

Index Term
Generator

Topics

Lucene Query
Generator

Lucene
Searcher

Lucene
Index
Writer

IR
Evaluator

IR
Result

Consumer

Document
Index

Collection reading Preprocessing

Indexing

Retrieval and evaluation

Evaluation
DB

Rankings

Collection
Reader Annotator Consumer

Legend

Figure 1: DKPro Components in a Generic IR Workflow

core functionality performed by all readers is the annota-
tion of each processed collection item (i.e. document and
topic) with a DocumentMetaData annotation. Apart from
providing a unique ID for each item, this annotation also
contains information like the title of a document or the ID
of the collection it belongs to. This information is used
in several downstream processing steps, including retrieval
and visualization (cf. below). Some of the readers conserve
collection-specific formatting information by adding anno-
tations to the document. The XMLReader e.g. can be pa-
rameterized to create annotations for arbitrary XML ele-
ments found in a document. Other readers (like e.g. the
WSDLReader) use more elaborate analysis to create more
specific annotations.

3.2. Preprocessing
IR document collections normally consist of natural lan-
guage text (but cf. Section 4.3.). Some preprocessing is
commonly performed in order to (1) make explicit hid-
den structure within the texts (e.g. sentence or paragraph
splitting or tokenization), (2) normalize their content (e.g.
lemmatization, stemming, compound splitting, or spelling
correction), or (3) add linguistic meta information (e.g.
POS tagging, parsing, or stop word identification).
In UIMA, this is modelled as a task for annotator com-
ponents, which add the new information and the normal-
ized content in the form of annotations. More substan-
tial modifications (like e.g. spelling correction in error-
prone user-generated discourse, cf. Section 4.2.1.) can
be implemented by having the annotator component ac-
tually modify the underlying content.6 This method is
used by SpellingCorrector. For numerous prepro-
cessing tasks, powerful stand-alone tools are already avail-
able in the NLP research community. Where possible,
the components in DKPro utilize these. Our POSTagger
and Lemmatizer e.g. are wrappers for the TreeTagger
(Schmid, 1994). In a broader sense, preprocessing can
also be understood to comprise less generic and more
application-specific tasks. For IR, one of these tasks is
query expansion, in which related terms are added to the
query text. The DKPro repository contains a component
which adds related terms (e.g. based on various types of se-
mantic relatedness (Gurevych, 2005)) in the form of anno-
tations. Keeping the original query text and the expansion

6Technically, this is implemented by having the annotator cre-
ate a new view containing the altered content.

terms apart by adding the latter in the form of annotations
is particularly useful because it allows explicit control over
the use of the query expansion feature by downstream com-
ponents, e.g. for assigning a different weight to expansion
terms in the query generation and retrieval process.

3.3. Indexing
The generation of a document and query index is a prereq-
uisite for efficient retrieval. The scope and nature of the in-
dex can vary for different collections and different applica-
tions. In some settings, all document and query tokens (pre-
sumably excluding stop words) have to be indexed, while
in other settings only certain parts might be relevant. In
DKPro, the IndexTermGenerator annotator is respon-
sible for identifying terms to be indexed. Provided that the
respective preprocessing has been performed earlier, it can
create index terms of entire tokens, lemmata, stems, and/or
other arbitrary annotation elements. If the POSTagger an-
notator was applied to the documents and queries to be in-
dexed, index term generation can also be constrained by
POS information. The resulting index terms are then writ-
ten by a consumer component to an index file in the for-
mat required by the IR engine to be used. Up to now, the
DKPro repository contains a LuceneIndexWriter and
some project specific components, which are described in
Section 4.

3.4. Retrieval, Evaluation, and Visualization
In the retrieval step, the previously generated document and
query indices and a set of parameter settings (e.g. thresh-
old values to be used) are employed to create actual IR
runs. A run consists of the application of all queries to
a document collection and yields a quantitative evaluation
of the overall effectiveness of the applied (pre-)processing
pipeline, parameter settings, and retrieval engine for a par-
ticular document collection. The retrieval step is broken
down into query generation, search, evaluation, and (op-
tionally) visualization. For each of the first three steps,
there is a dedicated component in DKPro. The first two
(LuceneQueryGenerator and LuceneSearcher)
are particular to the retrieval engine to be used. The third
one (IREvaluator) is a general-purpose IR evaluation
component which computes common IR evaluation mea-
sures by wrapping the trec eval7 tool, but which also
offers other evaluation measures like Spearman’s rank cor-

7http://trec.nist.gov/trec eval



relation coefficient. The IREvaluator can optionally
store the evaluation results in a relational database. The
stored results include not only the overall retrieval results,
but also detailed information about individual topics and
documents.
In contrast to visualization of IR results in an end-user
oriented setting8, IR research is best supported by allow-
ing researchers to trace individual topics and documents
through the entire retrieval run, e.g. for error or general per-
formance analysis. For the DKPro IR components, this is
supported by a component which allows result visualiza-
tion and browsing. As browsing is inherently interactive, it
is not naturally implemented as a (pipeline-oriented) UIMA
component. Therefore, result browsing is implemented as a
servlet-based web application which reads evaluation infor-
mation from the database (created by the IREvaluator)
and displays it in a web browser. The analysis process
which is necessary for understanding and improving the IR
model requires data browsing on different information lev-
els:

• run level: configuration parameters and overall results;
• query level: evaluation results of each query (for se-

lected runs);
• document level: relevance scores and relevance assess-

ments of each document (for a certain query and se-
lected runs);

• process level: visualization of the retrieval process of a
document (for a certain query and selected runs).

The component uses the original documents and topics,
the output of the retrieval process and the relevance as-
sessments. In order to provide detailed information on the
process level, the component offers the possibility to rerun
the processing pipeline for a selected document and query,
adding a special consumer to the pipeline which creates an
HTML document with preprocessing and retrieval informa-
tion. In this step, topic and document are passed simultane-
ously through the pipeline (in the same CAS object, but in
two separated views) and the retrieval components can add
additional information that helps to understand the details
of the retrieval process.
Especially for research purposes, the tight coupling of
preprocessing and retrieval can be beneficial when devel-
oping new IR algorithms. Instead of investing time in
(re-)adjusting or implementing new indexing formats, the
retrieval components can (temporarily) work directly on the
annotations created by the preprocessing components.

3.5. Configuration Management
As mentioned above, IR research aims at finding new and
improved algorithms and optimized settings for IR param-
eters. Also, different configurations for preprocessing steps
yield multiple indices. In practice, therefore, the process-
ing workflow described above has to be executed very of-
ten. The DKPro IR components are complemented with
a number of helper components for batch execution of ex-
perimental runs. The helper classes provide functionality

8http://people.lis.uiuc.edu/∼twidale/irinterfaces/2classics.html,
http://people.ischool.berkeley.edu/∼hearst/tb-overview.html

for programmatically configuring and executing collection
processing engines. The configurations can be stored in
a relational database which enables the visualization and
comparison of IR results in the visualization component.

4. DKPro IR Components in Use
In this section, we give a detailed account of how some of
the components in the DKPro repository are employed in
several projects in different application domains. Where
available, experimental results are also reported.

4.1. Electronic Career Guidance
The task of electronic career guidance is to support school
leavers in their search for a profession or a vocational
training to take up. In (Gurevych et al., 2007), we de-
scribe work in which electronic career guidance is mod-
elled as an IR task. Vocational trainings are represented
by documents which were automatically extracted from
BERUFEnet, a database created by the German Federal
Labour Office. Topics are short essays collected from
students in which they describe in their own words what
they would like their future job to be like. One spe-
cial challenge of this task is the large vocabulary gap be-
tween the language of the (expert-authored) documents
from the database and the language of the students. The
term vocabulary gap relates to the fact that people with
different backgrounds or different levels of expertise use
(sometimes strikingly) different vocabularies when describ-
ing similar things. String-based IR approaches (as repre-
sented e.g. by Lucene) are not able to adequately handle
this phenomenon. The best results reported in (Gurevych
et al., 2007) were therefore produced by a semantic in-
formation retrieval component, which scores the similar-
ity of documents and queries on the basis of their seman-
tic relatedness. The components come as the annotators
RelatednessScorer and SemanticSearcher and
the consumer SemanticIndexWriter, and fit seam-
lessly into the pipeline of the other DKPro components.

4.2. Question Answering
Question Answering (QA) systems aim at giving precise
answers to natural language questions. The architecture
of traditional QA systems is therefore more complex than
IR systems, since they have to include a component which
extracts answers from documents. The answer extraction
problem can be avoided by leveraging the wealth of in-
formation available on the Web in the form of Frequently
Asked Questions (FAQ) pages and question-answer ser-
vices such as Yahoo!Answers9 or WikiAnswers10. When
answers are retrieved from question-answer repositories,
the QA task can be redefined as an IR task where topics are
natural language questions and documents are the question-
answer pairs. There are actually two ways to address this
task: by identifying paraphrases of the input question in a
question-answer repository (Section 4.2.1.), or by retriev-
ing the most similar question-answer pair from an FAQ
(Section 4.2.2.).

9http://answers.yahoo.com
10http://wiki.answers.com



4.2.1. Question Paraphrase Identification
The objective of this task is to retrieve those questions
in the question-answer repository which are most similar
to the input question. A first difficulty lies in the fact
that most online question-answer services record real user
questions, which may be ill-formulated or may contain
spelling errors. Prior to indexing, therefore, we apply the
SpellingCorrector annotator. In order to perform
the matching of an input question to the most similar ques-
tion in a question-answer pair, we have implemented sev-
eral text similarity measures based on the work by Tomuro
& Lytinen (2004) and Zhao et al. (2007), among others.
These measures include matching coefficient, word overlap
coefficient, edit distance and term vector cosine similarity.
Two UIMA annotators are in charge of computing the simi-
larity values and ranking the results for each input question.
These annotators replace the LuceneQueryGenerator
and LuceneSearcher components in the generic re-
trieval step described above. Since the similarity measure
to be used in a given experiment is a component’s parame-
ter, the available measures can be easily tested and new text
similarity measures can be conveniently added.

4.2.2. FAQ Mining
Based on the work by Jijkoun & de Rijke (2005), we aim at
answering users’ questions by retrieving relevant question-
answer pairs found in FAQ pages. Within this task, a doc-
ument is considered as a collection of several fields: ques-
tion and answer of a question-answer pair, title of the cor-
responding FAQ page, and the full text of the FAQ page.
In order to keep this document-specific information, anno-
tations are added to the document in the collection read-
ing step by means of a parameterized XMLReader annota-
tor. Further, the preprocessing stage allows to normalize the
content by performing lemmatization and stemming, which
are required for later building both stemmed and lemma-
tized indices. Additional information, such as the docu-
ment’s language and contained stopwords, is also added
at this point. The IndexTermGenerator allows to in-
dex different fields, e.g. a non-stemmed question keeping
stopwords, a stemmed answer without stopwords, etc. Easy
combination of annotation components and flexibility dur-
ing indexing make it possible to easily evaluate different
system configurations as described by Jijkoun & de Rijke
(2005). Our current baseline system reimplements several
of their models with comparable results. E.g., the perfor-
mance of the baseline model for the retrieval of the so called
‘adequate’ and ‘material’ answers is 45% in the top 10 re-
sults.

4.3. Web Service Retrieval
Web service retrieval is the task of retrieving from a repos-
itory of web services those services that provide a partic-
ular functionality. When cast as an IR task, topics are
descriptions of required functionalities, while the services
to be retrieved are represented as semi-structured docu-
ments. These documents have been created by crawl-
ing known web service repositories and processing the
collected WSDL files. Within each WSDL file, the
WSDLReader identifies and analyzes operation names and

operation signatures (i.e. names and types of operation pa-
rameters) and creates a textual representation to be pro-
cessed using the standard IR workflow.

5. Conclusion
In this paper, we presented a suite of flexible UIMA-
based components for research-oriented information re-
trieval which have been successfully used (and re-used) in
several projects in different application domains. The us-
age of UIMA as framework not only shows benefits for
the preprocessing components, but also for the actual re-
trieval components. Apart from well-known features of
UIMA like configuration management, component reuse,
and replicating processing pipelines, the tight coupling in-
side UIMA of the preprocessing and the actual retrieval
process offers possibilities for fast prototyping of new IR
algorithms by directly using UIMA annotations instead of
developing custom indexing formats. It also extends anal-
ysis and visualization capabilities by offering combined
views of preprocessing and retrieval on different levels of
granularity.
The described IR and preprocessing components are part
of the DKPro repository and (with some exceptions) will
be made available to interested researchers.

Acknowledgements Parts of this work were carried out
in two projects funded by the German Research Founda-
tion (DFG): “Semantic Information Retrieval from Texts in
the Example Domain Electronic Career Guidance” (grant
GU 798/1-2), and “Mining Lexical-Semantic Knowledge
from Dynamic and Linguistic Sources and Integration into
Question Answering for Discourse-Based Knowledge Ac-
quisition in eLearning” (grant GU 798/3-1).

References
Gurevych, Iryna (2005). Using the structure of a conceptual net-

work in computing semantic relatedness. In Proceedings of
the 2nd International Joint Conference on Natural Language
Processing (IJCNLP’2005). Jeju Island, Republic of Korea.

Gurevych, Iryna, Christof Müller & Torsten Zesch (2007). What
to be? - Electronic career guidance based on semantic relat-
edness. In Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics, pp. 1032–1039.
Prague, Czech Republic.

Jijkoun, Valentin & Maarten de Rijke (2005). Retrieving an-
swers from frequently asked questions pages on the web.
In CIKM ’05: Proceedings of the 14th ACM international
conference on Information and knowledge management, pp.
76–83. New York, NY, USA: ACM.

Schmid, Helmut (1994). Probabilistic part-of-speech tagging us-
ing decision trees. In Proceedings of the International Con-
ference on New Methods in Language Processing (NeM-
LaP). Manchester, U.K., 14–16 September 1994.

Tomuro, Noriko & Steven Lytinen (2004). Retrieval Models and
Q&A Learning with FAQ Files. In Mark T. Maybury (Ed.),
New Directions in Question Answering, pp. 183–194. AAAI
Press.

Zhao, Shiqi, Ming Zhou & Ting Liu (2007). Learning Question
Paraphrases for QA from Encarta Logs. In Proceedings of
the 20th International Joint Conference on Artificial Intelli-
gence, pp. 1795–1801. Hyderabad, India.


