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Abstract

Currently, the information of the World Wide Web is mainly accessed with search
engines. Recent studies showed that the usual keyword-in-context lists are not always
the best choice for presenting the results. Additionally, an increasing amount of peo-
ple uses search engines, without knowing how to formulate good queries. This master
thesis therefore describes the design and implementation of a question answering sys-
tem that generates a summarized answer for open-domain natural language queries.
The system aims to increase the quality of existing systems by using heterogeneous
documents from Wikipedia, Yahoo! Answers and Frequently Asked Questions.

Three main tasks have been identified: The first is passage extraction, which relies
on semantic similarity and Hidden Markov Models for identifying irrelevant passages.
Passage extraction obtains an average precision of 98% and recall of 81%. The sec-
ond task calculates different clusterings for assigning a topic to each document. The
best results have been found by combining k-means and Newman’s community cluster-
ing, which results in an average clustering purity of 88%. The final step combines three
different rankings and selects the top ranked sentences for composing the summary. Be-
sides the textual summary that is particularly useful for answering definition questions,
a list of frequent n-grams and URLs is created to support also factoid and list ques-
tions. While working with heterogeneous data, combining different approaches has
been observed to be crucial for benefiting from the individual advantages and alleviate
differences in format, length, style, focus, relevance as well as problems of ambiguity
and redundancy within the documents.

An evaluation of the resulting summaries has been done by comparing the system’s
ROUGE scores with the two systems MEAD and START. User-generated answers from
ask.com and Answerbag are used as a reference corpus. The evaluation shows that the
system obtains the highest F -measure scores and leads to overall useful summaries. A
t-test showed that the system’s ROUGE score improvements are significant.
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Zusammenfassung

Suchmaschinen sind heutzutage die gängige Methode, um Informationen im Inter-
net zu finden. Häufig werden die gefundenen Seiten mit Titel und kurzer Beschrei-
bung aufgelistet, was laut neueren Studien nicht immer die beste Art der Darstellung
ist. Da eine steigende Zahl der Nutzer über keine oder wenig Erfahrung im Umgang
mit Suchmaschinen verfügt, wird außerdem eine intuitive Benutzerschnittstelle zuneh-
mend wichtiger. Ziel dieser Masterarbeit ist daher die Entwicklung eines Question-
Answering-Systems, das eine Zusammenfassung zu natürlichsprachlichen Fragen ge-
neriert. Dabei soll die Qualität existierender Systeme verbessert werden, indem hete-
rogene Daten aus Wikipedia, Yahoo! Answers und Frequently Asked Questions (FAQ)
zum Einsatz kommen.

Das System besteht aus drei Teilschritten: Zunächst werden im Passage-Extraction-
Teil irrelevante Abschnitte mittels semantischer Ähnlichkeit und Hidden-Markov-Mo-
dellen identifiziert. Dabei werden Precision- und Recallwerte von 98% bzw. 81% er-
reicht. Anschließend werden verschiedene Clusterings berechnet, um jedem Dokument
ein Thema zuzuordnen. Die besten Ergebnisse zeigten sich bei einer Kombination aus
k-Means- und Newmans Community-Clustering, welche zu einer mittleren Clustering-
Purity von 88% führte. Im letzten Teilschritt werden die relevanten Sätze absteigend
nach Relevanz geordnet und in einer Zusammenfassung kombiniert. Neben der Ant-
wort im Fließtext, die insbesondere zur Beantwortung von Definitionsfragen nützlich
ist, wird eine Liste häufiger n-Gramme und URLs generiert, um auch Fakten- und Lis-
tenfragen zu unterstützen. Insbesondere die Kombination unterschiedlicher Ansätze
hat sich als wichtig erwiesen, um mit den Unterschieden in Format, Länge, Stil, Tie-
fe, Relevanz, sowie Mehrdeutigkeiten und Redundanz von heterogenen Daten besser
umgehen zu können.

Die erzeugten Zusammenfassungen werden mit Ergebnissen der Systeme MEAD
und START verglichen. ROUGE wird zur quantitativen Evaluation eingesetzt, wobei Bei-
träge der Plattformen ask.com und Answerbag als Referenzkorpus dienen. Die Ergeb-
nisse zeigen, dass das System die höchsten F -measure-Werte erzeugt und die generier-
ten Zusammenfassungen im Wesentlichen informativ und nützlich sind. Die erreichten
Verbesserungen im F -measure-Wert sind, wie ein t-Test zeigte, statistisch signifikant.
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Chapter 1

Introduction

The chapter addresses motivation and background of this master thesis and then defines
the goals of the project. Finally, a structural outline of the following chapters is given.

1.1 Motivation

The size of the World Wide Web has been constantly increasing during the recent years.
While Bharat and Broder (1998) calculated over 200 million pages in November 1997,
Gulli and Signorini (2005) present already over 11.5 billion web pages as of January 2005.
This promotes the usage of the web as a common knowledge base. According to the em-
pirical study in Möller (2004) p. 50, the amount of people, using the web as knowledge
base, has increased by 25% since 1999 through 2003; in the age group 20–29 the number
of people even grew from 19% to 59%.

Currently, information is usually found and accessed by a search engine. Common search
engines display a list of search results, hyper linking to a certain web page and maybe show-
ing the search keywords in the context of the page. Jansen et al. (2000) however found out
that 58% of the users tend to only look at the first page (usually 10 results), although there
are plenty of pages with further search results. Kaisser et al. (2008) evaluated the expected
text length of a search result, ranging from a single phrase to a whole article. They found
out that it is best to provide a short answer for precise questions (like asking for a certain
fact) and a long answer for broader questions (like definitions, advices or opinions). Hav-
ing these arguments in mind, a summary of multiple search results, consisting of the most
important information, could be useful. Yahoo!, as the first of the biggest search engine
publishers, is actually working on a summarization technique of search results.1

Not only the size of the web is changing, but also its structure. Especially the idea of
collaborative content (or user-created content) is getting more and more popular, according
to Vickery and Wunsch-Vincent (2007). The so called Web 2.0 platforms offer the possibility

1PCWorld online news, http://www.pcworld.com/article/154929, December 4, 2008
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CHAPTER 1. INTRODUCTION

to create and edit web content without any technical understanding of HTML and other web
terms or techniques. As more users appear on the web, there is a need for smart and easy
to use interfaces. This also leads to the idea of processing natural language queries instead
of a plain keyword search and to provide the search results in natural language texts.

1.2 Goals

The Goal of this Master Thesis is the implementation of a question answering system that
combines different data sources on the web to provide a natural language answer for a
natural language search query. In a document segmentation and passage extraction step,
candidate snippets should be identified that most likely contain relevant information. To
achieve that, semantic similarity scores should be calculated and used in a relevance classi-
fication algorithm.

The answer should be an extractive multi-document summary of the candidate web snip-
pets. Sentences are to be ranked, to support the summarization task. A graphical user
interface will also be provided, which allows submitting the query and adjusting settings
for the returned answer summary.

Initially, the system is set up for answering definition questions, like “What is flash media?”.
An extension for list and factoid questions should be possible but will not be discussed in
detail within this thesis.

A qualitative and quantitative evaluation of the main steps of the system will be given. Eval-
uation will focus on queries of the computer science domain to allow an easier judgment of
the resulting summaries; the system is however not domain specific and should be able to
handle arbitrary (definition) queries.

1.3 Thesis Organization

The thesis is organized as follows:

Chapter 2 gives an overview on the system architecture, the evaluation data and the
input data, before the project is set in the context of related work.

Chapter 3 describes the preprocessing steps, which include segmentation,
part-of-speech tagging, word sense disambiguation and the calculation of
semantic similarity.

Chapter 4 addresses the extraction of candidate snippets and the filtering of
irrelevant passages. Each passage is classified to be relevant or irrelevant
by checking its semantic similarity to the query for a certain threshold. A
Hidden Markov Model is then used to refine this classification by finding
natural boundaries between relevant and irrelevant passages.

2



1.3. Thesis Organization

Chapter 5 describes clustering methods to determine the topic of a document. A
hierarchical, an iterative and a graph-based clustering approach will be
tested and then improved by merging the results of the individual
techniques.

Chapter 6 introduces the summarization techniques that are used to create the
system result. The selected sentences are ordered according to the results
of three different ranking algorithms. The identified topics are then also
ranked and automatically labeled, before the resulting summary is
formatted for the output. The user interface is finally introduced and the
summaries are evaluated.

Chapter 7 sums up the results of each processing step and draws a conclusion. The
usage of merging and combination techniques turned out to be useful
when working with heterogeneous data and will be discussed in detail.
An outlook of possible improvements is also given.

Appendix A lists the 60 example queries that have been used for the evaluation.
Some of them have been manually annotated to measure the system’s
performance; the statistics of these annotations is described here.

Appendix B describes the system components and the annotations that are created in
each step.
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Chapter 2

Project Overview

This chapter defines the term Question Answering System and describes the heterogeneous
data sources that are used to retrieve answers from the web. The main scientific and
technical challenges are then addressed, which lead to the objectives of the thesis. Finally,
the system architecture is presented and the project is set in the context of previous work.

2.1 Question Answering System

Like a search engine, a question answering system returns results (i.e. answers) for a
specific query that is provided by the user. The difference is however that the query can be
an actual question in the user’s natural language, while the resulting answer also consists
of natural language text.

If for example the user wants to know who invented the printing press, an appropriate
search engine query would possibly be “printing press invention” and result in a number of
web links, each coming with a title and a short description. The corresponding query to a
question answering system could however be “Who invented the printing press?” and result
in a short summary about the history of printing.

Figure 2.1 shows a comparison between the Google results for the search query above and a
fictive question answering system, whose answer has been taken manually from Wikipedia.
The search engine acts as a hub that leads the user to a page, which hopefully contains the
answer. The question answering system however works as a source for information itself.
An overview of existing question answering systems is provided in section 2.6.

Typical components of a question answering system include question analysis, document
and passage retrieval as well as answer extraction. Question analysis aims to understand
the natural language question and formulate queries, which can be used during document
retrieval. The result of the document retrieval task is a collection of documents that most
likely contain the answer. Relevant passages (often called candidate snippets) are finally
identified and the answer is composed.

5



CHAPTER 2. PROJECT OVERVIEW

Who invented the printing press?

A printing press is a mechanical device for
applying pressure to an inked surface rest-
ing upon a medium (such as paper or cloth),
thereby transferring an image. The me-
chanical systems involved were first assem-
bled in Germany by the goldsmith Johannes
Gutenberg around 1439, based on existing
screw-presses used to press cloth, grapes etc.,
and possibly to print woodcuts, which were
printed in Europe before Gutenberg.

(a) (b)

Figure 2.1: Comparison of search engine and question answering system

2.2 Answer Retrieval

In order to determine an answer for a natural language query, this thesis combines several
documents from the World Wide Web. The Apache Lucene project2 is used to retrieve these
documents, following state-of-the-art techniques, like Gospodnetić and Hatcher (2004). As
the retrieval task is not part of the project, it will not be described in detail. Documents are
taken from three different data sources, which are briefly described in the following. The
system is however designed to add other data sources to improve the results.

The first data source are Frequently Asked Questions (FAQs), taken from arbitrary web pages.
Each FAQ document consists of a single question and the corresponding (single) answer.
The answer is typically 1–2 paragraphs long and specific to the domain of the including web
page. It is a redacted text, mostly written by a specialist, that contains only few errors and
is usually of formal language. Looking through the data, some entries have been found,
that focused on a single product and contained advertisement—thus objectivity will be an
issue here. Besides that, webmasters tend to copy their FAQ from other pages, resulting in
duplicate or slightly modified entries from different URLs.

FAQs have been used for question answering earlier: As of 2005 a corpus of 293,000 pages
with about 2.8 million pairs of question and answer has been created in Jijkoun and de Rijke
(2005) at the University of Amsterdam. The corpus is available from the Web3 and is used
for this thesis.

As second data source, Yahoo! Answers4 was chosen. The platform provides 52,148,802
questions (total search results as of 11/2008). Each question can hold multiple replies with

2The Apache Lucene project – http://lucene.apache.org
3ILPS group at University of Amsterdam – http://ilps.science.uva.nl/resources/webfaq
4Yahoo! Answers – http://answers.yahoo.com
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2.2. Answer Retrieval

What is Flash?

Macromedia Flash is a graphic format that
allows for complex, animated web graphics
with relatively small file sizes. The users
browser will need the Flash player plug-in
to view it. According to Macromedia, over
90% of internet browsers already have the
player installed. More information about the
Flash format and Flash players can be found
at www.macromedia.com.

what is the flash player 8 - macro media inc..
tell about all information?

its a player that plays most of the web
based application and some other PC ap-
plication. Macromedia has been bought be
Adobe. Most web ads reguires flash player
because they were developed with Macro-
media Flash or it developed in flash format

for more info bisit http://macromedia.com

(a) (b)

Figure 2.2: Example documents from (a) the FAQ collection and (b) Yahoo! Answers

a dedicated “Best Answer” amongst them. Currently, only the “Best Answer” is retrieved
by the retrieval engine, as it should be the most informative answer to the user’s question
and could successfully be used in Liu et al. (2008) before. The exact number of answers
or best answers could not be found on the platform, however a Yahoo! press release5 from
05/2006 states more than 10 million answers. For this thesis a subset of 240,000 pairs of
question and answer from the computer category is used.

While the FAQ collection contains redacted text, Yahoo! Answers provides user-generated
content in both questions and answers. Answers vary in length—from short one-sentence
answers up to several extensive paragraphs. The language is often informal or lax, leading
to error-prone and incomplete sentences. Figure 2.2 shows example documents from the
FAQ collection and from Yahoo! Answers. Note the misspellings like “reguires” and “bisit”
as well as the misuse of “its” and the lack of commas in the Yahoo! Answer.

Finally, Wikipedia6 is used as third data source. Unlike the question/answer pairs from the
previous data sources, Wikipedia offers encyclopedic articles about a certain topic, usually
structured in multiple paragraphs, lists, tables and section headers. As Wikipedia has a large
community, constantly proof-reading and correcting articles, the language is formal and has
only few errors. The English language version contains 2,652,606 article pages as of their
statistics page of 12/2008.7 The retrieval engine however works with a local database
dump to speed up the process. It contains 1,660,067 article pages and is a complete dump
of the English Wikipedia from June 2007. An example excerpt of the Wikipedia article on
the printing press can be found in figure 2.1 (b).

5Yahoo! press release – http://pressroom.yahoo.com/ReleaseDetail.cfm?ReleaseID=196681
6Wikipedia, the free encyclopedia – http://en.wikipedia.org
7Size of Wikipedia – http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
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CHAPTER 2. PROJECT OVERVIEW

2.3 Objectives

The previous section described the differences in the data sources. The question answering
system needs to deal with this heterogeneity. This applies to differences in

• Format: textual articles, tables, lists, single pairs of question and answer, questions
with multiple answers.

• Length: single facts (e.g. “on 02/26/2009”), single sentences, several paragraphs,
multiple sections with headers.

• Language style: formal, technical, colloquial, spelling/grammar errors.

• Focus: texts on a single or multiple topics, common/broad vs. in-depth knowledge.

• Relevance: whole document is relevant, only some passages, nothing.

• Ambiguity: unique or multiple different interpretations of a query.

• Redundancy: duplicate documents, paragraphs or sentences, slight reformulations,
different compositions of the same information.

Given this issue list, several processing steps are required to provide an appropriate answer.
Preprocessing steps will be used to overcome different document formats. Large documents
are segmented to gain access to the individual linguistic levels and units. The question
parts of the retrieved documents are ignored as the system should return answers rather
than new questions. They can however be used to learn about a document’s topic and
relevance.

To distinguish relevant and irrelevant parts in the retrieved documents, a passage extraction
component will be used, which evaluates the similarity between the document’s passages
and the query. As the most important information should be presented first, the relevant
passages are ordered according to their importance by using a ranking algorithm.

Different topics can be found by clustering the document collection. A label for each cluster
will allow the user to select which topics are of interest. To achieve that, ambiguity needs
to be handled—usually the context of a word helps finding out its meaning.

The final result will be composed of the best passages by summarizing them. Redundancy
needs to be avoided by removing duplicate facts. Besides that, quality assurance is nec-
essary to ensure the correctness of the sentences and to produce good results. Identifying
different writing styles, like the usage of formal or colloquial language, could be useful, but
will not be considered here. The user will also be allowed to define several parameters that
adjust the resulting summary.

8



2.4. System Architecture

2.4 System Architecture

The project is implemented on top of the Unstructured Information Management Architecture
(UIMA).8 The framework focuses on the analysis of large amounts of unstructured data.
Unstructured data is e.g. plain text, html files, images, audio or video files. The main idea
is to first annotate the data, for instance by identifying relevant passages or tagging each
token with its corresponding part-of-speech. The annotations can then be used in so called
consumers, which produce the analysis results, like in this case the summarized answer.

Currently, the retrieved answers are stored in XML files and read using a UIMA reader
component. As there is not yet a connection to a retrieval engine, the data file for the given
query needs to be already present. After reading the retrieved answers, the preprocessing
steps are performed, including segmentation, word sense disambiguation, POS tagging and
stop word detection. Chapter 3 describes these preprocessing steps.

Further processing includes the three main tasks Passage Extraction, Topic Clustering and
Summarization as introduced in the previous section. The chapters 4–6 describe these
tasks in detail. The last task, summarization, passes the resulting data to the Graphical User
Interface that formats and displays the summary. The GUI itself is written in JSP and can for
example be run on an Apache Tomcat.9 Section 6.5 presents the structure and appearance

8UIMA – http://incubator.apache.org/uima
9Apache Tomcat – http://tomcat.apache.org

Figure 2.3: Overview on the system’s components and architecture
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CHAPTER 2. PROJECT OVERVIEW

of the JSP pages. The main processing will be deployed as a web service and can thus be
accessed by the JSP application.

Figure 2.3 shows the different components and their composition. There are several li-
braries and supporting data sources included, to solve the tasks above. Where possible,
an adapter class has been written, to allow an easy exchange, e.g. of a certain corpus or
library.

2.5 Evaluation Data

A set of evaluation data has been created to allow a quantitative analysis of the project’s
algorithms. A total of 60 natural language queries have been manually selected from the
Answerbag10 platform. For all queries, the computer science domain has been chosen, al-
lowing a better decision of what is relevant and which summary is appropriate. The query
collection consists of 20 definition questions, 20 factoid questions and 20 list questions that
can be found in appendix A.1. The definition of the three question types follows Liu et al.
(2008).

Up to 20 answers per query and data source have been retrieved using the retrieval engine.
Every answer document comes with the answer text, the type of data source, a ranking
score and the URL of the source page. The corresponding question title and text (only for
FAQs and Yahoo! Answers) are also saved. The query and the corresponding answers are
stored in an XML file. Figure 2.4 shows an example document from Yahoo! Answers for the
query “What is flash media?” (defQ-0).

Some of the answers have been manually annotated to create an evaluation corpus. The
relevance of each sentence in the answer text has been annotated with 0 if it is irrelevant,
1 if it is possibly relevant (i.e. interesting) and 2 if it is definitely relevant. Definitely
relevant sentences provide crucial information for the query, like the definition that Flash
is a “multimedia plug-in for viewing rich media content on the internet” (sentence 3 of
the evaluation query “What is flash media?”). Interesting sentences contain supporting
information, like that the installation of flash is “quick and easy” (sentence 6).

Besides that, the topic of each document has been annotated by assigning the same integer
to similar documents and different integers to two documents of opposed topics. Table
2.1 shows two annotated example documents, again for query defQ-0. Part determines if
the sentence appears in the question title (1), question text (2), answer title (3) or answer
text (4). Only the parts 3 and 4 have been annotated, since only they can be used in the
summary. The first document is about Adobe Flash and got cluster id 1, the second is about
flash memory sticks and is assigned to cluster 2. Appendix A.2 shows the complete list of
queries that have been manually annotated for the evaluation.

10Answerbag – http://www.answerbag.com

10

http://www.answerbag.com


2.5. Evaluation Data

0: <retrieved_answer>

1: <question_id>396545676-ComputerNetworking_370-18</question_id>

2: <question_title>when i go to some sites on pc its says i need to

3: download media flash player ive tired this and still

4: noting?</question_title>

5: <answer_id>20060730135058AAhnqGF</answer_id>

6: <answer_text>Go here to download the Flash Player (but uncheck the box

7: to install the Yahoo toolbar): http://www.adobe.com/shockwave/download

8: /download.cgi?P1_Prod_Version=ShockwaveFlash

9:

10: Once you have it installed correctly, you should see a Flash image

11: saying "Adobe Flash Player Successfully Installed".</answer_text>

12: <source_id>ya</source_id>

13: <source_name>Yahoo! Answers</source_name>

14: <source_url>http://answers.yahoo.com/question/

15: ?qid=20060730135058AAhnqGF</source_url>

16: <rank>16</rank>

17: <score>0.28571427</score>

18: <category>Computer Networking</category>

19: </retrieved_answer>

Figure 2.4: Example document for the query “What is flash media?” in its XML representation

No. Part Relev. Cluster Text
1 1 What is Flash?
2 1 Where can I get it?
3 4 2 1 Macromedia Flash is a powerful multimedia plug-in that allows you to

view rich media content on the internet.
4 4 2 1 While most computer systems and browsers come pre-packaged with

Flash, your configuration may vary.
5 4 0 1 EyeCron requires that you have Flash 5 installed on your computer.
6 4 1 1 Installing Flash from Macromedia’s web site is quick and easy.
7 4 0 1 Simply Click Here and follow the instructions to install the latest ver-

sion of Flash on your computer.
8
9 1 Q1.

10 1 How is Memory Stick superior to other flash memory media?
11 4 0 2 A1.
12 4 2 2 Memory Stick is designed to be a network media that enables off-line

connection of a variety of different devices.
13 4 1 2 Compatible with MagicGate copyright protection technology, it also

provides a secure platform for enjoying copyright-protected content.
14 4 2 2 With these advantages, Memory Stick media is fit for use with multi-

tudes of applications, from PC (IT) to CE products, mobile phones, car
AV devices and other products, and will stimulate the development of
many more attractive products in the future.

Table 2.1: Example annotations of the evaluation corpus for the query “What is flash media?”

11
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2.6 Related Work

There are plenty of Question Answering systems that have been developed both in scientific
and commercial domains. The START11 platform claims to be the first web-based Question
Answering system. It was developed at the MIT Artificial Intelligence lab in 1993 and is
described in Katz (1997) and Katz et al. (2002). Each query is transformed by the system
to a structured request (an Object–Property–Value expression) and then processed by Om-
niBase, which looks up certain data sources for information—both in local databases and
on the Web. Due to deep linguistic analysis, the system usually produces high quality an-
swers, but fails to answer questions that could not be analyzed by the system. The query
“What is a ‘mashup’?” (defQ-3) for instance does not return a result at all. Apart from that,
the system is able to answer factoid, definition and list questions. If multiple data sources
contain relevant information, their result is presented in individual sections. For ambiguous
questions like “What is flip-flop?” (defQ-13), an excerpt of the Wikipedia disambiguation
page is shown (if available).

Another system is AnswerBus12 as introduced in Zheng (2002). AnswerBus is able to process
queries in multiple languages, while the answer is a ranked list of English sentences. The
system uses 5 different search engines and web directories to retrieve the answer data.
The rate of correct answers is claimed to be 70.5% for the TREC-8 question answering
evaluation corpus. As only individual sentences are returned, the system is not capable of
answering definition questions.

Although many similarities between both the systems and this thesis exist, there are also
some differences: Answer data for the thesis should be taken from heterogeneous data
sources, which is not the case in AnswerBus (all the search engines and web directories
offer web links in the same manner—based on a keyword search). Answers from differ-
ent sources are presented individually as sections (START) or list items (AnswerBus). The
thesis however aims to combine the results and present an interweaved summary of all the
answers from different data sources. The system should also be able to answer arbitrary
open-domain questions, which is not the case in START due to deep linguistic analysis. Am-
biguity will be coped with topic clustering that is neither applied in START nor AnswerBus.

Ask.com13 and True Knowledge14 are two commercial systems. The Question Answering
application of Ask.com works like a search engine and displays a list of possible web links
that may contain the answer to the given natural language query. The engine processes the
whole web index for equal or similar questions and tries to extract the part of the web page
that contains the answer. For the example query “What is flash media?” (defQ-0) the top
result is for instance:

11SynTactic Analysis using Reversible Transformations (START) – http://start.csail.mit.edu
12AnswerBus – http://www.answerbus.com, currently out of order (as of 03/2009)
13Ask.com – http://www.ask.com
14True Knowledge, The Internet Answer Engine – http://www.trueknowledge.com
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A multimedia package that allows the user to create animation, images and short graph-
ical films for a website. Flash can bring your website to life and create a more enter-
taining experience for the visitor. Visually, Flash can provide a web...
http://www.impact-direct.com/seo-faq.asp

A list of related topics is also displayed, allowing to further define the requested result of
ambiguous queries. The main difference to this thesis is the absence of a multi-document
summarization of the search result and the usage of a broader retrieval corpus (the Ask.com
search engine index).

True Knowledge is a new platform that has not yet been published. Its goal is to provide a
perfect inline response for the natural language query (i.e. a single fact, phrase or sentence)
by using a large knowledge base. The knowledge base is both populated from existing web
resources and user inputs or corrections. If the query could not be analyzed, a list of hits
is displayed like in common search engines and the user has the possibility to add the
necessary information to the knowledge base. For ambiguous queries, the system guesses
the most likely sense. Obviously, the difference to this thesis’ system is the short inline
response. As this is not very useful for complex or definition questions, a summary of
about 2–3 paragraphs will be tried here, together with a list of the most frequent n-grams
(for factoid and list questions). Apart from that, the user will be offered the possibility to
choose the data sources, which are used in the summary.

Another type of system is the so called Social Q&A platform. These Web 2.0 applications
allow the users to submit arbitrary questions to be answered by the community. Although
these platforms are not directly Question Answering systems, they allow a search for sim-
ilar questions and thus also present the corresponding answers. Passage extraction, topic
clustering or summarization as addressed in this thesis is not part of these systems. Many
other systems have been developed, like askEd!, TellMe QA or Wikiferret, but will not be
explained in detail.

Some Question Answering systems (or components of those) have been patented. Murata
(2008), US patent 7,444,279, claims a Question Answering system that selects answer
candidates based on the frequency of contained phrases that are ranked by their evaluation
points. In Masuichi et al. (2008), US patent 7,461,047, a system is claimed that transforms
the query to an answer pattern and searches for suitable results matching the pattern.
Query expansion is also used here to ensure a broader basis of results. Although both the
patents describe complete systems, none of the specific methods are used in this thesis’
system. Answer ranking will be performed by exploiting the position within the document
and the similarity between answer and query as well as answer and answer. As regards
answer retrieval, only Lucene is currently used to retrieve suitable documents—there is no
in-depth linguistic analysis of the query.

A different system is introduced in Yoshimura et al. (2008), US patent 7,418,443, which
claims the generation of a tree-structure that consists of a list of retrieved candidate an-
swers. This structure is then compared to the corresponding tree-structure of the query and
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their similarity is evaluated. The resulting similarity scores are used to rank the candidate
answers. This system again relies on the deep linguistic analysis of query and answers,
which is not performed in this thesis. Although a graph representation of the candidate
passages is built during answer ranking and topic clustering, the structure is not related to
the claimed method.

US patent 7,454,393, Horvitz et al. (2008), addresses information extraction of large un-
structured corpora like the World Wide Web. A retrieval and extraction method is claimed
that is based on query reformulation and statistical models. The main idea is to predict the
accuracy of the retrieval engine for a reformulated query, aiming in an optimized number
of reformulations. Even though statistical models will be applied during passage extrac-
tion, neither query reformulation nor optimization of the document retrieval based on the
statistical model is used here.

A passage extraction method is claimed in US patent 7,236,968, Seki et al. (2007). The
technique uses a likelihood scoring of relevant passages. As the passage extraction com-
ponent of this thesis includes filtering based on the calculation of semantic similarity and
afterwards refining the result using a Hidden Markov Model, the claimed method is not
affected. In Vanderwende et al. (2008), US patent 7,430,504, a graph representation of a
text fragment is built and then scored. The graph consists of word nodes that are linked
with their relation in the text fragment. The relation set involves linguistic constituents like
subject or object, as well as semantic relations like first name and academic title. The scores
are derived from the number and targets of the directed edges within the graph. They can
then be used for summarization or ranking tasks. The basic idea of this patent follows the
Biased LexRank method that is applied in the answer ranking task. Biased LexRank also
builds a graph out of a source document and relies on the relations between the different
graph nodes. The method however works on sentence level and includes only relations
based on the semantic similarity of the sentences.

14



Chapter 3

Document Preprocessing
and Text Similarity

This chapter describes the preprocessing steps that are used for further analysis of the re-
trieved answer documents. This includes segmentation, specificity annotations and word
sense disambiguation. Moreover, several methods for the calculation of semantic text simi-
larity are discussed.

3.1 Linguistic Levels and Segmentation

To allow an in-depth analysis of the documents, different linguistic levels need to be con-
sidered:

Definition 1 (Linguistic Levels) Each document (i.e. the retrieved answer) may consist
of a question title, question text, answer title and answer text that will be referred to
as retrieved answer parts. Every part can contain multiple paragraphs (divided by two or
more line delimiters), every paragraph can contain multiple sentences (divided by sentence
terminators) and every sentence consists of one or more tokens, which are the smallest unit
that is considered in this thesis.

Sometimes it is useful to analyze also syntactic structures, so called syntactic constituents.
The main focus lies on noun phrases, which consist of a head noun or pronoun and cor-
responding articles or adjectives, as of the definition in Carstensen et al. (2004). After
segmenting the text, every token is reduced to its base form, called lemma in linguistics.
The word class, i.e. the part-of-speech is also annotated, allowing to concentrate on certain
classes only—especially nouns will be analyzed in more detail.

Figure 3.1 shows some examples for the above linguistic levels. The document is part of
the FAQ data of query “What is flash media?” (defQ-0). The upper retrieved answer part
is the question text; the lower is the answer text (no titles in this document). There are a
total of 3 paragraphs, 7 sentences and 77 tokens, of which example annotations are shown.

15
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Figure 3.1: Example of different linguistic levels

For segmentation, both the sentence splitter and the tokenizer of the DKPro15 implemen-
tation are used, which provide an extension of JAVA’s break iterator. The annotators for
part-of-speech tagging and lemmatization in DKPro are also used. These components in-
corporate Helmut Schmid’s TreeTagger,16 introduced in Schmid (1994).

To avoid noise in the analysis process, very common tokens like a, is, I etc. should not be
considered. These words are commonly referred to as stop words. This project uses fixed
word lists to remove stop word tokens.

3.2 Word Specificity

Taking into account the specificity of a word, often leads to better results in text comparison
and similarity calculation. The more specific a term is, the better it describes the focus of a
document. Specific terms are rare and usually restricted to a certain domain (e.g. petunia
or part-of-speech), unlike generic terms (e.g. plant or word) that tend to appear in many
documents of different type and topic. A general definition of specificity can be found in
Spärck Jones (1972).

According to Salton et al. (1983), the inverse document frequency (IDF) can be used as a
good measure for specificity. It is defined as the logarithm of the total number of docu-
ments N in a document collection, divided by the number of documents nk that contain
a word k. Since the document collection for a single query is very small (currently 60
documents per query), a large corpus will be used to calculate a specificity value like the
one suggested in Mihalcea et al. (2006). More precisely, the Wortschatz17 corpus, with 1

15Darmstadt Knowledge Processing Repository, Müller et al. (2008)
16TreeTagger – http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger
17Leipzig University “Wortschatz”, Quasthoff et al. (2006) – http://corpora.uni-leipzig.de
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million sentences from English newspapers, is used by the SPECIFICITY ANNOTATOR compo-
nent to save a specificity value for every token of the document collection according to the
following definition:

Definition 2 (Specificity) Let C be a large corpus and w a token. The specificity of token
w is:

spec(w) =
1

log |C | · log
|C |

freq(w, C)
= 1− log freq(w, C)

log |C |
with freq(w, C) returning the number of occurrences of w and |C | returning the corpus size,
i.e. the total number of words in the corpus. Note that this formula uses word frequencies
instead of document frequencies and thus differs from the classical IDF. The normalization
factor 1

log |C | is used to obtain a value in [0, 1].

3.3 Word Sense Disambiguation

Some similarity measures require word senses rather than tokens as input data. These word
senses (word meanings or concepts) are primitive semantic constituents of a document. A
word can have multiple senses:

The word “bank” can e.g. be used in the sense of

• a financial institution (“He transferred his money to another bank”) or

• a slope next to a river (“He sat on the bank of the river”)

depending on the context.

Since the measures require the most suitable word sense, an automatic sense disambigua-
tion needs to be done. The approach of Lesk (1986) will be used here. Lesk’s algorithm
determines the word overlap between a context and the sense gloss (i.e. definition) of pos-
sible concepts and takes the concept with the highest overlap. As a tie breaker, the more
commonly used concept should be chosen.

The sense annotations are generated by the WORDNET SENSE ANNOTATOR component for
every noun, verb, adjective and adverb, which is not a stop word. All lemmata of tokens
in the surrounding document (again only non-stop words) are used as context, while the
concepts and sense glosses are retrieved from the WordNet18 dictionary. As the WordNet
senses are ordered according to their commonness, the tie breaker chooses the sense with
the smaller index.

18WordNet – http://wordnet.princeton.edu
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3.4 Semantic Text Similarity

Text similarity is crucial for lots of natural language processing methods such as passage
extraction, clustering and ranking. A variety of different similarity measures exist; cf.
Mihalcea et al. (2006), Islam and Inkpen (2007) or Yang and Powers (2006) for a good
overview. The following sections briefly describe the measures used in this thesis according
to the following basic definition:

Definition 3 (Similarity Measure) Let s and t be tokens. A Token Similarity Measure

sim(s, t): (s, t) �→ d

returns the (normalized) similarity score d ∈ [0, 1] for the token pair (s, t). d = 1 means
that s and t are equal, while d = 0 indicates that s and t have nothing in common.

Let s1, . . . , sm and t1, . . . , tn be tokens with m, n ∈ �. The token sequences S = s1s2 . . . sm and
T = t1t2 . . . tn are called texts. Analogously, a Text Similarity Measure is a function

sim(S, T ): (S, T ) �→ d,

that returns the (normalized) similarity score d ∈ [0, 1] for the text pair (S, T ).

A text T has also a set character, with the element operator s ∈ T , indicating that s appears
in the sequence T , the union operator S ∪ T , returning a set of tokens that are in sequence
S or T , and the intersection S∩T , resulting in a set of tokens that are both in the sequences
S and T .

3.4.1 Vector-based Similarity

A common set of similarity measures, used in Information Retrieval, is based on the Vector
Space Model as defined in Salton et al. (1975) and Manning et al. (2008). The idea is to
regard a text as a vector of word frequencies, a so called bag-of-words index. These vectors
can be compared with standard approaches from linear algebra, like vector distance or
the angle between the two vectors. The latter is known as cosine similarity and is defined
formally as follows:

Definition 4 (Cosine Similarity) Let S = s1s2 . . . sm and T = t1t2 . . . tn be texts with m, n ∈
�. Their cosine similarity score is the angle between their TF-IDF vectors:

simcos(S, T ) =

∑
w∈S∪T tfidf(w, S) · tfidf(w, T )�∑

w∈S w2 ·�∑w∈T w2

18



3.4. Semantic Text Similarity

A TF-IDF value tfidf(w, T ) = freq(w, T ) · spec(w) of token w is the product of specificity
(according to definition 2) and the number of times w appears in T , i.e. its word frequency
freq(w, T ) = |{t ∈ T : t = w}|. Words with a high TF-IDF value appear often in a certain
document but seldom in the whole language and tend to provide good information about
the content and the focus of the document. TF-IDF and cosine similarity have been defined
e.g. in Salton and Buckley (1988).

3.4.2 Knowledge-based Similarity

Ontology-based similarity measures exploit the position of a concept within a given world-
knowledge ontology. The basic idea of this similarity is that concepts gain a high similarity
score if they are near to each other within the ontology hierarchy. As the ontology contains
concepts rather than words, word senses need to be calculated as described in section 3.3.

Different token similarity measures are presented in the following. All the measures em-
ploy the ontology of the WordNet19 dictionary. To provide a corresponding text similarity
measure, the score of each token pair is maximized and weighted with the corresponding
specificity (as of definition 2):

Definition 5 (Maximizing Token Similarity) Let S and T be texts and sim(s, t) a token
similarity measure. The corresponding text similarity maximizes the similarity of each to-
ken pair and is called Maximizing Token Similarity:

simmax(S, T ) =

∑
s∈S maxt∈T (sim(s, t)) · spec(s)

2
∑

s∈S spec(s)
+

∑
t∈T maxs∈S(sim(t , s)) · spec(t)

2
∑

t∈T spec(t)

This definition of maximizing token similarity has been taken from Mihalcea et al. (2006).

The first three ontology-based similarity measures evaluate the number of nodes and edges
between two given concepts. The smaller the shortest path, the more similar two concepts
are. The depth(c) function can be used to retrieve the total depth of concept c in the
hierarchy. Besides that, the least common subsumer (LCS) is considered, which is the nearest
parent node within the ontology that both the concepts share; e.g. the LCS of human and
chimpanzee is primate within the WordNet ontology.

Definition 6 (Quillian Similarity) Let s and t be concepts within an ontology, LCS their
least common subsumer and D the maximum depth20 of the ontology. The Quillian Similar-
ity of s and t is the number of edges on the shortest path between the concepts, normalized
over the maximum ontology depth:

simQuillian(s, t) =
2D− (depth(s) + depth(t)− 2 depth(LCS))

2D
19WordNet, Fellbaum (1998) – http://wordnet.princeton.edu
20set to D = 16 for WordNet, according to Yang and Powers (2006)
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Definition 7 (Leacock/Chodorow Similarity) Let s and t be concepts within an ontology,
LCS their least common subsumer and D the maximum depth of the ontology. The Lea-
cock/Chodorow Similarity of s and t is the logarithm of the number of nodes on the shortest
path between the concepts, normalized over the maximum ontology depth:

simLeacock(s, t) =
log(2D)− log(depth(s) + depth(t)− 2 depth(LCS) + 1)

log(2D)

Definition 8 (Wu/Palmer Similarity) Let s and t be concepts within an ontology and LCS
their least common subsumer. Wu/Palmer Similarity is defined as the ratio of the depth of
the nearest common node to the depth of both the target concepts:

simWuPalmer(s, t) =
2 · depth(LCS)

depth(s) + depth(t)

The measures have been introduced in Quillian (1967), Leacock and Chodorow (1998)
and Wu and Palmer (1994), while the definitions have been taken from Yang and Powers
(2006) and Mihalcea et al. (2006).

Common problems of those techniques, relying on the shortest path between two concepts,
are unbalanced relations within the hierarchy. The term skibob in WordNet is e.g. 2 edges
away from military vehicle, while aircraft is 3 edges from military vehicle. Intuitively an
aircraft should be more similar to a military vehicle (if seen in the context of fighter jet,
cruise missile etc.), than a skibob is to a military vehicle. The disequilibrium in hierarchy
usually occurs if some parts of the hierarchy are more detailed and finer elaborated than
others.

To overcome this issue, Ross (1976) and Resnik (1995) define the Information Content of a
concept as:

IC(c) =− log p(c),

with probability p(c) of encountering and instance of concept c or any sub concept within
an arbitrary text. The idea is, to use shared information of two concepts for a definition
of similarity. After giving some remarks on how to calculate the information content, three
IC-based similarity measures will be introduced.

The root concept in the hierarchy has p(c) = 1 and therefore IC(c) = 0, which means, that
the root does not contain any information. The information content generally increases
with increasing depth. Since WordNet does not offer such a probability, a supporting
database has been created that maps each WordNet concept to its cumulated frequency
within the Wortschatz21 corpus. The WordNet hierarchy is therefore traversed in a depth-
first order to aggregate the frequencies of child concepts to their parents. The frequency of
a single concept is measured by the sum of word frequencies of all words in its synset (i.e.
the concept in WordNet). Note, that the words are not yet disambiguated for the sake of

21Leipzig University “Wortschatz”, Quasthoff et al. (2006) – http://corpora.uni-leipzig.de
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simplicity and calculation time. It is assumed that every concept appears at least once, the
frequency is therefore incremented by one (Laplace correction).

Consider e.g. concept c = SID-02472293-N, which is expressed by the words human, homo,
man and human being. The corresponding word frequencies in the Wortschatz corpus are
2755, 2, 6081, 3329 and the sum of child concept frequencies is 12365, thus the concept
frequency of c is 24533 (the sum of above frequencies plus 1). The probability p(c) =
0.00082646 is the quotient of concept frequency and the sum of all concept frequencies
(which calculates to 29684421). Thus, the information content is IC(c) = 7.098358492.

Definition 9 (Resnik Similarity) Let s and t be concepts within an ontology, LCS their
least common subsumer. The corresponding Resnik Similarity score is the information con-
tent of the least common subsumer:

simResnik(s, t) = IC(LCS)

Definition 10 (Lin Similarity) Let s and t be concepts within an ontology, LCS their least
common subsumer. The corresponding Lin Similarity score is the information content ratio
of the least common subsumer and both the concepts:

simLin(s, t) =
2 · IC(LCS)

IC(s) + IC(t)

Definition 11 (Jiang/Conrath Similarity) Let s and t be concepts within an ontology, LCS
their least common subsumer. Jiang/Conrath Similarity calculates the reciprocal value of
the concept differences:

simJiang(s, t) =
1

IC(s) + IC(t)− 2 · IC(LCS)

The definitions have been taken from Resnik (1995), Lin (1998), Jiang and Conrath (1997)
and Mihalcea et al. (2006).

3.4.3 Corpus-based Similarity

Another possibility to define similarity, is to make use of a large corpus and consider how
often two words appear near to each other. It is e.g. more likely that banana appears near
fruit than near linguistics, leading to a higher similarity score for (banana, fruit) compared
to (banana, linguistics).

Church and Hanks (1990) introduced such a measure: Pointwise Mutual Information (PMI).
In the following we will consider a slight modification for the use of a web-based corpus,
following Turney (2001) and Mihalcea et al. (2006):
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Definition 12 (PMI-IR) Let s and t be tokens and WebSize the estimated size of the World
Wide Web resp. the size of the search engine index. The PMI-IR similarity of s and t is
defined as

simPMI(s, t) =
hits(s NEAR t) ·WebSize

hits(s) · hits(t)
,

where hits(s) returns the number of search results in a large web search engine.

PMI-IR calculations in this thesis will use data from AltaVista22 and WebSize will be set
to 7e11.23 As of definition 5, the Maximizing Token Similarity measure can be used to
calculate the similarity of two texts.

Finally, the Wikipedia24 can be exploited to determine the semantic similarity of two texts.
According to Gabrilovich and Markovitch (2007), one possibility is Explicit Semantic Analy-
sis (ESA):

Definition 13 (Wikipedia-ESA) Let S and T be texts. The corresponding Wikipedia-based
ESA score simESA(S, T ) can be calculated by interpreting the TF-IDF vectors of S and T
semantically, using an inverted index of Wikipedia articles. The resulting weighted vectors
are then compared.

The DKPro25 implementation of ESA will be used in the following.

22AltaVista – http://www.altavista.com
23according to Chklovski and Pantel (2004)
24Wikipedia – http://en.wikipedia.org
25Darmstadt Knowledge Processing Repository, Müller et al. (2008)
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Chapter 4

Passage Extraction

The passage extraction task aims to find sections and regions in the documents that contain
relevant information for generating an appropriate answer to a query. This is achieved
by gradually improving the quality of the results in a sequence of filtering and selecting
components. The chapter first provides an overview of terms and techniques, before the
components themselves are described and quantitatively evaluated.

4.1 Background

In order to formulate the goals of the passage extraction task, the term passage needs to be
defined more precisely:

Definition 14 (Passage) A passage is a document, paragraph, sentence, phrase or token
according to definition 1 within a collection of documents. Thus, a passage can be an
arbitrary part at a certain linguistic level. A passage can be relevant or irrelevant with
regard to the user’s query.

A common approach to express the relevance of a passage is its similarity score to the
current context of interest, which is e.g. proposed in Mihalcea et al. (2006). If the score is
above a certain threshold θ , the passage is considered relevant and will be called selected.
Otherwise the passage is irrelevant and will be called filtered. Since the relevance to the
query should be calculated, the query text will be used as context.

The relevance of sentences has been manually annotated for the training dataset as de-
scribed in section 2.5. These annotations will be used for evaluating the extraction results.
Note that the annotation distinguishes irrelevant, possibly relevant (i.e. interesting) and def-
initely relevant passages. A passage that is manually annotated as either possibly relevant or
definitely relevant, will be considered relevant. A paragraph however is considered relevant
if at least one of its sentences is relevant.
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A quantitative evaluation of the passage extraction task can be achieved by comparing the
number of manually annotated relevant (resp. irrelevant) passages with the number of
automatically selected (resp. filtered) passages. The four possibilities relevant-selected
rs, relevant-filtered rf , irrelevant-selected is and irrelevant-filtered i f can be analyzed in a
confusion matrix:

filtered selected
irrelevant if is
relevant rf rs

The definition of the confusion matrix follows Kohavi and Provost (1998). A more detailed
evaluation can be done if the annotations for possibly relevant (r1 f and r1s) and definitely
relevant (r2 f and r2s) with r1 f + r2 f = rf and r1s + r2s = rs are considered. The confusion
matrix then changes to:

filtered selected
irrelevant if is
possibly relevant rf 1 rs1

definitely relevant rf 2 rs2

Common measures like recall and precision are used to score the result quality; their defi-
nitions can be found e.g. in van Rijsbergen (1974) or Kohavi and Provost (1998).

4.2 Duplicate Document Remover

Sometimes the retrieval engine returns two documents with the same text. This happens
mostly for FAQ documents, since webmasters tend to copy their FAQ from another existing
website. But also two answers from Yahoo! Answers may have been copied. To speed
up the analysis process and to avoid duplicate sentences in the summarized answer, these
identical documents are removed.

The DUPLICATE DOCUMENT REMOVER component calculates an MD5 hash26 for every docu-
ment and saves the hash value in a set. If the set already contains such a hash, the docu-
ment is removed and will not be considered in the following components. This method has
proven to be simple, robust and fast, according to Ye et al. (2006). As the method is exact,
there is no need for an evaluation with precision or recall values.

Figure 4.1 shows the number and percentage of duplicate documents in 8 example queries,
which have been removed by the DUPLICATE DOCUMENT REMOVER. Both the values have
been analyzed independently for each data source. Most duplicates have been found in the
FAQ collection, while Yahoo! Answers contains almost half as much and Wikipedia has no
duplicates.

26Message-Digest algorithm 5—defined in RFC 1321, Rivest (1992)
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Figure 4.1: Number and percentage of duplicate documents per data source

4.3 Paragraph Filter

The PARAGRAPH FILTER component focuses on paragraph-level passages. Its goal is to remove
as many irrelevant paragraphs as possible in both a fast and precise manner. It is not
designed to remove all irrelevant passages, but rather to minimize the number of filtered-
relevant paragraphs. The following table illustrates that goal:

filtered selected
irrelevant if : MAX is: don’t care
relevant rf : MIN rs: don’t care

A high number of filtered-irrelevant and a low number of filtered-relevant paragraphs lead
to a high filter precision, which is chosen as evaluation measure for this component:

precisionPGF =
i f

i f + rf

As described in section 4.1, relevance classification can be done by calculating the similarity
score between query and passage. If the score is above some threshold θ , the passage is
regarded relevant (and irrelevant otherwise). Since e.g. not every word can be found in the
WordNet database, it is useful to combine multiple similarity measures to get more stable
results.

To provide a fast filter component, the calculation time of the similarity measures needs to
be considered. Table 4.1 shows the calculation time27 for the similarity measures described
in section 3.4. All 458 paragraphs of the example query “What is flash media?” (defQ-0)
have been used for the calculation.

It is not surprising that the PMI measure needs the longest time, since it has to fetch three
web pages for every pair of tokens. Of course this can be further improved by caching the

27Calculation done on Intel Core2 Quad CPU, 2.4 GHz, 3 GB RAM, Windows Vista, Java 1.6.0.2
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Similarity measure Calculation time
Cosine 115ms
Quillian 1, 566ms
Leacock/Chodorow 1, 131ms
Wu/Palmer 1, 029ms
Resnik 7, 709ms
Lin 19, 047ms
Jiang/Conrath 18, 076ms
AltaVista-PMI � 200, 000ms
Wikipedia-ESA 66, 958ms

Table 4.1: Similarity score calculation time for 458 training data paragraphs

Quillian Leacock WuPalmer Resnik Lin Jiang
Quillian 1.00000 0.95478 0.95866 0.94391 0.92540 0.89830
Leacock 0.95478 1.00000 0.98730 0.98127 0.98404 0.97239
WuPalmer 0.95866 0.98730 1.00000 0.97327 0.98397 0.94952
Resnik 0.94391 0.98127 0.97327 1.00000 0.97961 0.97239
Lin 0.92540 0.98404 0.98397 0.97961 1.00000 0.98377
Jiang 0.89830 0.97239 0.94952 0.97239 0.98377 1.00000

Figure 4.2: Correlation coefficients for WordNet-based similarity measures

results—down to 431ms if all values are in the cache. For this simple filtering component
however, PMI will not be considered. Also the ESA calculation, using a Wikipedia index,
needs much time and is therefore excluded from the PARAGRAPH FILTER component.

Looking at the definition of the WordNet-based similarity measures, one can suspect a cor-
relation between those relying on path length and those relying on information content.
Figure 4.2 shows the correlation coefficient between the WordNet measures on the train-
ing data of defQ-0. As expected, the correlation is quite high for most pairs of measures.
The PARAGRAPH FILTER component will therefore use only the three WordNet-based mea-
sures Quillian, Leacock/Chodorow and Resnik, while the measures by Wu/Palmer, Lin and
Jiang/Conrath are omitted due to their high correlation to the others.

For the remaining similarity measures, the threshold θ is optimized on the paragraphs of
the defQ-0 training dataset. Table 4.2 shows the classification performance. With the
restriction, that no relevant paragraph may be filtered (rf = 0), θ is rather small and thus
does not filter very much (irrelevant) paragraphs. If however one relevant paragraph may
be filtered out, precision still is 99%, while the number of filtered paragraphs increases
significantly. Because of that, θ is chosen to allow filtering a small number of relevant
passages. Further increasing of the threshold can lead to a large decrease of precision,
which is to be avoided in this component.
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Cosine Similarity Leacock/Chodorow Similarity
θ i f r f precisionPGF θ i f r f precisionPGF

0.00 0 0 100.00% 0.28 63 0 100.00%
0.06 189 1 99.47% 0.51 212 1 99.53%
0.10 205 3 98.95% 0.55 235 3 98.73%
0.13 230 5 97.87% 0.59 261 6 97.75%

Quillian Similarity Resnik Similarity
θ i f r f precisionPGF θ i f r f precisionPGF

0.65 62 0 100.00% 0.01 28 0 100.00%
0.76 147 1 99.32% 0.18 210 1 99.52%
0.79 181 2 98.90% 0.27 224 3 98.67%
0.82 208 5 97.65% 0.30 259 6 97.73%

Table 4.2: Optimized thresholds for the Paragraph Filter component

Since Quillian’s method has the lowest number of filtered passages, it will not be considered
for this component any further. After fine tuning on a second dataset (defQ-4) the following
thresholds are used for the PARAGRAPH FILTER component:

• Cosine similarity: θ = 0.065,

• Leacock/Chodorow similarity: θ = 0.513,

• Resnik similarity: θ = 0.06

Paragraphs with at least one similarity score below the corresponding threshold are consid-
ered irrelevant and will therefore not be used in the following components anymore.

4.4 Sentence Selector

As the name suggests, the SENTENCE SELECTOR component works on the sentence level of
the retrieved documents. The goal is to select as many relevant sentences as possible, which
means obtaining a high recall for the selection process. Moreover, the objective for a high
filter precision introduced in the PARAGRAPH FILTER remains. The corresponding confusion
matrix looks as follows:

filtered selected
irrelevant if : MAX is: don’t care
possibly relevant rf 1: MIN rs1: MAX
definitely relevant rf 2: MIN rs2: MAX
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AltaVista-PMI
filtered relevant definitely relevant

θ i f r f precisionSTS r f rs recallSTS r f 2 rs2 recall2,STS

0.000 0 0 100.00% 0 114 100.00% 0 58 100.00%
0.034 76 1 98.70% 1 113 99.12% 0 58 100.00%
0.152 129 2 98.47% 2 112 98.23% 0 58 100.00%
0.165 131 3 97.76% 3 111 97.35% 0 58 100.00%
0.190 142 4 97.26% 4 110 96.46% 1 57 98.25%

Wikipedia-ESA
filtered relevant definitely relevant

θ i f r f precisionSTS r f rs recallSTS r f 2 rs2 recall2,STS

0.002 35 0 100.00% 0 114 100.00% 0 58 100.00%
0.012 70 1 98.59% 1 113 99.12% 0 58 100.00%
0.018 104 2 98.11% 2 112 98.25% 1 57 98.28%
0.020 118 3 97.52% 3 111 97.37% 2 56 96.55%
0.024 139 4 97.20% 4 110 96.49% 2 56 96.55%

Table 4.3: Optimized thresholds for the Sentence Selector component

The optimization distinguishes between possibly relevant and definitely relevant. Definitely
relevant sentences should not be filtered at all (i.e. rf 2 = 0), where possible. Optimization
performance is again monitored with precision and recall:

recallSTS =
rs

rs + rf
, recall2,STS =

rs2

rs2+ rf 2
, precisionSTS =

i f

i f + rf
.

During paragraph filtering, calculation time was an issue to gain a fast filtering of irrelevant
passages. These passages will not be processed in the SENTENCE SELECTOR component, thus
allowing a more detailed and complex analysis method. Particularly, the measures, that
have not been used in PARAGRAPH FILTER due to their time consuming calculation, can be
considered now.

Gabrilovich and Markovitch (2007) introduce Explicit Semantic Analysis (ESA) using data
from Wikipedia (cf. definition 13 for implementation details) and promise a correlation
between 0.60 and 0.72 for computed relatedness with human judgments. Since this means
a large improvement compared to WordNet-based measures, Wikipedia-ESA will be used
for the SENTENCE SELECTOR.

As a second similarity measure, Pointwise Mutual Information will be used. The evaluation
in Mihalcea et al. (2006) uses data from AltaVista resulting in an F -measure of 81.0% on
the Microsoft paraphrase corpus,28 which seems very auspicious. Implementation details
can be found in definition 12.

28Microsoft paraphrase corpus – http://research.microsoft.com
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AltaVista-PMI filtered selected
irrelevant 145 678
possibly relevant 2 53
definitely relevant 1 54

Wikipedia-ESA filtered selected
irrelevant 108 715
possibly relevant 1 54
definitely relevant 1 54

Sentence Selector filtered selected
irrelevant 190 633
possibly relevant 3 52
definitely relevant 1 54

Table 4.4: Confusion matrix of Sentence Selector results

Applying WordNet similarity measures once more does not seem to be a good idea, since
they have already been used on the same data by the PARAGRAPH FILTER component and
would thus not reveal much new information. The same applies to cosine similarity.

Table 4.3 shows the performance of AltaVista-PMI and Wikipedia-ESA with different thresh-
olds θ . The example query “What is flash media?” (defQ-0) was used to generate the
results. Wikipedia-ESA is able to filter 35 irrelevant sentences without filtering a single
relevant when using a small threshold. Unfortunately, when increasing the threshold, the
number of filtered definitely relevant sentences (rf 2) increases, such that recall2,STS drops
first below 99% and then below 97%. Setting θ to 0.017, 2 relevant sentences (1 possibly
relevant, 1 definitely relevant) and 101 irrelevant sentences are filtered. A total of 829
sentences is selected (of which 717 are still irrelevant).

AltaVista-PMI allows much higher thresholds before filtering a definitely relevant sentence.
Not until a threshold of θ = 0.19, the recall2,STS score drops below 100%. Setting θ to 0.15,
only 2 relevant sentences (0 definitely relevant) and 127 irrelevant sentences are filtered.
A total of 792 sentences is selected (of which 681 are irrelevant).

Table 4.4 shows the confusion matrix for the chosen thresholds:

• AltaVista-based PMI similarity: θ = 0.15,

• Wikipedia-based ESA similarity: θ = 0.017

The results are combined by considering a passage irrelevant (filtered) if one of the simi-
larity scores is below its threshold. For the defQ-0 training data set, these results can also
be found in table 4.4.

29



CHAPTER 4. PASSAGE EXTRACTION

4.5 Passage Extent Determination

So far only the similarity score between passage and query has been considered for clas-
sifying a passage relevant or irrelevant. Every passage is regarded independently from
the context it appears in. A more natural approach would however find relevant passages
near other relevant passages and irrelevant passages near other irrelevant passages, thus
creating consecutive chains of relevant and irrelevant structures.

Table 4.5 shows 9 example sentences, that have been manually annotated relevant or ir-
relevant (column “expected”). After that, the similarity scores of AltaVista-based PMI and
Wikipedia-based ESA have been calculated and used by the SENTENCE SELECTOR compo-
nent to classify the sentences relevant or irrelevant (column “actual”—selected indicates
relevant, filtered indicates irrelevant passages). Recall from section 4.4, that a sentence is
selected if both the thresholds 0.15 for PMI and 0.017 for ESA have been exceeded.

There are two classification errors in the example: sentence 4 is relevant but was filtered
(i.e. classified irrelevant) and sentence 8 is irrelevant but was selected (classified rele-
vant). Such errors generally happen to appear if many stop words, prepositions or ambigu-
ous words are used. The sentence for instance consists of the lemmata “long”, “different”,
“browser”, “equip”, “necessary” and “plug-in”, which are not very much related to the query
“What is flash media?”. Sentence 8 however contains the buzz words “Java” and “applet”,
which lead to a high similarity score with “flash” and “media”.

The errors can possibly be resolved, by taking into account the sentence’s context. This
would include promoting sentence 4 to be selected because of the sentences 2–5 as well
as filtering sentence 8 because of the sentences 6–9. Sentence 1 should however remain
filtered, although the sentences 2 and 3 are selected.

No. Sentence expected PMI ESA actual
1 Answer: irrelevant 0.000 0.000 filtered
2 Flash was known as FutureSplash until 1997, when

Macromedia Inc. bought the company that developed
it.

relevant 0.630 0.057 selected

3 Flash animations will look the same in all browsers. relevant 0.572 0.096 selected
4 As long as different browsers are equipped with the

necessary plug-ins.
relevant 0.068 0.017 filtered

5 This can be downloaded here from the Macromedia
web site.

relevant 0.471 0.053 selected

6 here are some good links about
that:http://www.drivermagician.com/flashplayer/

irrelevant 0.236 0.001 filtered

7 -- http://www.proud-collector.com/ irrelevant 0.067 0.002 filtered
8 It’s only competitor is Java applets. irrelevant 0.295 0.019 selected
9 Note that I’ve talked only about _client_ evironments. irrelevant 0.094 0.009 filtered

Table 4.5: Example for the Passage Extent Determination component

30



4.5. Passage Extent Determination

Based on these observations, the PASSAGE EXTENT DETERMINATION component is introduced.
Its goal is to refine the results of the SENTENCE SELECTOR by considering consecutiveness
of relevant or irrelevant passages. He et al. (2004) describes a Passage Retrieval technique
based on a Hidden Markov Model that was submitted to the HARD 200429 track of the TREC
conference. Their method is called Passage Extent Determination and will partly be used for
this component. A formal definition of the Hidden Markov Model and its parameterization
is given in the following:

Definition 15 (Hidden Markov Model) Let S = {s1, . . . , sN} be a set of states, qt the cur-
rent state at time t and V = {v1, . . . vM} a set of symbols. A Hidden Markov Model (HMM)
λ= (A, B,π) consists of

• a matrix A= {ai, j} of transition probabilities ai, j = Pr[qt = sj | qt−1 = si] from state si

to state sj,

• a function vector B = {bj} of emission probabilities bj(k) = Pr[vk | qt = sj] for
emitting symbol vk at time t in state sj and

• a vector π = {πi} of initial probabilities πi = Pr[q1 | si] for the HMM to be in state si

at time t = 1.

The original idea of Hidden Markov Models can be found in Baum and Petrie (1966),
Baum and Eagon (1967), Baum et al. (1970) and Baum (1972), while the notation above
was taken from Rabiner (1989)—an early application of HMMs in automatic speech recog-
nition.

According to this notation, O = O1O2 . . .OT with Oj ∈ V denotes an observation sequence
(i.e. a sequence of observed symbols) and Q = q1q2 . . . qT , qi ∈ S denotes the corresponding
sequence of (hidden) states, the HMM is in. The goal of the Hidden Markov Model is to find
an optimal state sequence Q to a given observation sequence O. The optimal Q has maxi-
mum probability Pr[Q | O,λ] and can be calculated with Viterbi’s algorithm, introduced in
Viterbi (1967).

The next section describes the configuration of the HMM to fulfill the passage extent deter-
mination task. Then, scaling of the sentence similarity scores is addressed and the HMM is
tested on the training data.

4.5.1 Model Configuration

Following the approach of He et al. (2004), the states S = {s1 = irrelevant, s2 = relevant}
are used. The probability for two consecutive irrelevant states a1,1 = 0.96 and for two
consecutive relevant states a2,2 = 0.87. This leads to a1,2 = 0.04 for an irrelevant passage

29High Accuracy Retrieval from Documents (HARD) 2004 – http://projects.ldc.upenn.edu/HARD
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Figure 4.3: Configuration of the Hidden Markov Model used for Passage Extent Determination

following after a relevant one and a2,1 = 0.13 for a relevant passage after an irrelevant one.
The probabilities have been determined in He et al. (2004) by training on a mixture of the
HARD 2003 and HARD 2004 data. Although a new training could be useful, the system
should benefit from the original heterogeneous document collection rather than applying
this thesis’ training data once more. Since no particular distribution of relevant and irrele-
vant passages at the beginning of a document could be found, the initial probabilities are
set to π= {0.5, 0.5}.
As symbol set V = {v1 = filtered, v2 = selected} is defined, indicating that a passage was
considered irrelevant or relevant by the previous components. The similarity scores be-
tween passage and query are used as emission probabilities bj(k), which can however not
be used directly (apart from He et al. (2004)’s method), because of different thresholds θ
for every measure. To cope with that, a function φ: [0, 1] −→ [0, 1] is defined here to scale
the similarity score and thus transform it to a ‘real’ probability value. The chosen function
should fulfill:

• φ(0) = 0 “No emission of v2 = selected if similarity is 0”

• φ(1) = 1 “No emission of v1 = filtered if similarity is 1”

• φ(θ ) = 0.5 “Emission of v1 and v2 is equiprobable”,

• φ is monotonous “higher similarity scores lead to a higher emission probability”.

The average value of the scaled AltaVista-PMI and the scaled Wikipedia-ESA is then taken
as emission probability: b2(2) = σ and b2(1) = 1−σ if the system is in state s2 = relevant;
b1(1) = 1−σ and b1(2) = σ if in state s1 = irrelevant with

σ =
φPMI(simPMI) +φESA(simESA)

2
Figure 4.3 shows the configuration of this Hidden Markov Model graphically.
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4.5.2 Different scaling functions

Experiments showed that different scaling functions φ can lead to quite different results.
Therefore, 6 distinct variants are defined and tested in the following.

A simple interpolation method for the four constraints above is using quadratic polynomials.
The result is a continuous function around threshold θ . The polynomial is however not
necessarily monotonous especially if θ is near the boundaries. The function is therefore set
to 0.0 for negative values and 1.0 for values exceeding 1.0:

g(x) =
0.5− θ
θ 2 − θ x2+

θ 2 − 0.5

θ 2 − θ x , φpoly2(x) =

⎧
⎨
⎩

0 if g(x)≤ 0
1 if g(x)≥ 1

g(x) else

Besides quadratic, also higher dimensional polynomial approximation could be interest-
ing, but has not been considered here. The second group of scaling functions uses spline
approximation. A simple non-continuous approach uses linear splines:

φspline1(x) =

�
1

2θ
x if x ≤ θ

2θ−1
2θ−2
− 1

2θ−2
x if x > θ

,

while a more elaborate (and continuous) function makes use of quadratic splines:

φspline2(x) =

� 1
θ

x − 1
2θ 2 x2 if x ≤ θ

x2−2θ x+2θ 2−2θ+1
2(θ−1)2

if x > θ

Both the spline functions are monotonous.

Apart from polynomial functions, a power function could be used for scaling, which leads to
a continuous function, motivated by a growth model:

φpower(x) = x− log2/ logθ

Thinking of the inverse function, motivates the usage of a logarithm function. Unfortu-
nately, no closed form could be found, so a function has been numerically calculated in a
Computer Algebra System for both the AltaVista-PMI and Wikipedia-ESA thresholds:

φlogPMI(x) = 0.288 · log(x · e1/0.288 − x + 1)

φlogESA(x) = 0.123 · log(x · e1/0.123 − x + 1)

Finally, the sigmoid function (or s-curve) from logistics will be tested. Note, that φ(0) = 0
and φ(1) = 1 does not necessarily hold for the s-curve.

φsig(x) =
1

1+ exp
�

x−θ
θ−1

log1000
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(a) φpoly2 (b) φspline1 (c) φspline2

(d) φpower (e) φlogPMI (f) φsig

Figure 4.4: Graph of the 6 scaling functions for a threshold θ of 0.15

Figure 4.4 shows the graph of all the functions for θ = 0.15.

Recall the example from table 4.5. If the similarity scores are scaled with the quadratic
polynomial interpolation function φpoly2, the observation sequence O = O1O2 . . . OT (and
corresponding emission probabilities bj(k)) can be calculated as shown in Table 4.6. If
the Hidden Markov Model is then applied to this example, the sequence Q = q1q2 . . . qT of
hidden states is returned.

The model’s result differs in only the two sentences k = 4 and k = 8. Sentence 4 was filtered
by the SENTENCE SELECTOR, because of the low ESA score. As the surrounding sentences are
considered highly relevant, the HMM however promotes also sentence 4 to be selected.
Sentence 8 was selected because of its high ESA score, although it is irrelevant. Again, the
context sentences indicate that also sentence 8 is rather irrelevant, which is reflected in the
HMM result. The model thus corrects both the classification errors of the example without
adding new ones. Sentence 1 for instance is still not selected, although it is followed by 2
highly relevant sentences.

4.6 Evaluation Results

The results of the DUPLICATE DOCUMENT REMOVER component can be found in Figure 4.1.
As the component is exact, there is no need for a performance evaluation.
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Symbol Similarity Emission probabilities Hidden State
k Ok PMI ESA σ b1(k) b2(k) qk

1 v1 “filtered” 0.000 0.000 0.000 1.000 0.000 s1 “irrelevant”
2 v2 “selected” 0.630 0.057 1.000 1.000 0.000 s2 “relevant”
3 v2 “selected” 0.572 0.096 1.000 1.000 0.000 s2 “relevant”
4 v1 “filtered” 0.068 0.017 0.380 0.620 0.380 s2 “relevant”
5 v2 “selected” 0.471 0.053 1.000 1.000 0.000 s2 “relevant”
6 v1 “filtered” 0.236 0.001 0.384 0.616 0.384 s1 “irrelevant”
7 v1 “filtered” 0.067 0.002 0.157 0.843 0.157 s1 “irrelevant”
8 v2 “selected” 0.295 0.019 0.723 0.723 0.277 s1 “irrelevant”
9 v1 “filtered” 0.094 0.009 0.306 0.694 0.306 s1 “irrelevant”

Table 4.6: Passage Extent Determination applied to the example data

The PARAGRAPH FILTER component was optimized on the training query “What is flash me-
dia?” (defQ-0) and has been evaluated on 7 annotated queries of the evaluation corpus
(cf. section 2.5). Figure 4.5 (a) shows the number of filtered and selected paragraphs for
each query and the corresponding precisionPGF, according to the definition in section 4.3.
The component performs very well—accomplishing precision values between 93.7% and
99.6%. The worst precision was observed for query defQ-10, which can be explained by
the relatively small amount of paragraphs (147, compared to an average of 286 paragraphs
per document), but high number of relevant passages (31, compared to an average of 21).
Although the applied method is very simple, almost half of all paragraphs in each document
is filtered out; thus reducing the amount of data by 66% in average.

The second diagram (b) shows the total number of relevant paragraphs rs + rf together
with those, that have been filtered out. Possibly relevant (center bar, rf 1) and definitely rel-
evant (right bar, rf 2) are distinguished. With an exception in query defQ-13, the number of
filtered-definitely relevant paragraphs rf 2 is always lower than the number of filtered pos-
sibly relevants. In three queries, even not a single definitely relevant paragraph is filtered.
In defQ-10 however, 6 relevant paragraphs are filtered (4 possibly relevant/interesting, 2
definitely relevant). Although this is the maximum of the 8 testing queries, only 15% of all
relevant paragraphs are lost and the remaining 33 paragraphs can be used for the summary.

A similar evaluation has been done for the SENTENCE SELECTOR component. Figure 4.6
(a) shows the number of filtered and selected sentences for each query on the left axis.
The component does not filter as many passages as the PARAGRAPH FILTER: only 21% of the
sentences are filtered. If one considers however, that passages removed in PARAGRAPH FILTER

are not regarded anymore, the amount of filtered sentences is totally fine. Quality measures
as defined in section 4.4, are aligned to the right axis. The component achieves recall
values of 83% to 100% both for recallSTS and recall2,STS, which indicates that most relevant
sentences are selected. Precision ranges from 96% to 100%, indicating that more irrelevant
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than relevant sentences are filtered out. In query defQ-10, there is however an outlier with
precision 52%. The reason is, that only 21 sentences are filtered, of which 10 are relevant.
This issue will be observed for improvement during passage extent determination.

Figure 4.6 (b) plots the total number of relevant sentences, together with the number of
interesting and definitely relevant sentences that have been filtered out by the component.
Note that the diagram was cut off to allow a detailed analysis of the range between 0 and
10. Query defQ-0 contains 107, defQ-10 80 and defQ-14 63 relevant sentences. As seen
in the precision value, defQ-10 removes the most sentences: 7 possibly relevant and 3
definitely relevant. In defQ-2 and defQ-19 no relevant sentences are filtered, in defQ-3

and defQ-13 only 1 sentence is filtered.

(a) Number of filtered and selected paragraphs (left axis) and performance measures (right axis)

(b) Total number of relevant paragraphs and amount of filtered relevants

Figure 4.5: Evaluation of the Paragraph Filter component
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The results of the SENTENCE SELECTOR are passed to the PASSAGE EXTENT DETERMINATION

component. All the six scaling functions of section 4.5.2 are evaluated. In figure 4.7 (a) the
change of the recall score Δrecall= recallPED− recallSTS is shown.

A first observation is the large decrease in recall of the two spline approximations. Espe-
cially for query defQ-3, the recall drops from 87% to 12%. The amount is as high, since
only 8 relevant passages exist for this query, of which only 1 is filtered by SENTENCE SELEC-
TOR, but 7 by PASSAGE EXTENT DETERMINATION. With linear spline approximation, recall is
reduced by 17% in average; with quadratic splines by even 30%. Both the scaling functions
will therefore not be considered in the following. For the other scaling functions, the recall
value remains stable after executing the PASSAGE EXTENT DETERMINATION component, for
the quadratic polynomials and the sigmoid function, it is increased.

(a) Number of filtered and selected sentences (left axis) and performance measures (right axis)

(b) Total number of relevant sentences and amount of filtered relevants

Figure 4.6: Evaluation of the Sentence Selector component
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Figure 4.7 (b) shows the corresponding change Δprecision = precisionPED − precisionSTS in
precision score between SENTENCE SELECTOR and PASSAGE EXTENT DETERMINATION. Notable
is again defQ-10 with its high amplitude from −40% to +50% precision. The best result
is encountered by using the sigmoid scaling function—precision then increases from 52%
to 100% (All of the 10 filtered sentences are now selected). Over all tested queries, the
sigmoid function leads to an average increase of 7% precision. As this is the best scaling
function both for Δprecision and Δrecall, the sigmoid function φsig is applied to both the
similarity scores during PASSAGE EXTENT DETERMINATION.

Unfortunately, all the other scaling functions do not improve the result of the SENTENCE

SELECTOR and are therefore omitted. Possible reasons for this behavior can be found in the

(a) Comparison of Δrecall= recallPED− recallSTS of different scaling functions

(b) Comparison of Δprecision= precisionPED− precisionSTS of different scaling functions

Figure 4.7: Evaluation of the Passage Extent Determination component
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relatively small number of relevant sentences for each query. This allows the HMM to build
long sequences of irrelevant states and thus filtering previously selected sentences that
are surrounded by lot of irrelevant ones. The sigmoid function is special in this context,
since similarity scores of (nearly) 0 do not lead to an emission probability of φ(0) = 0.
This allows to select sentences, whose similarity score could not be determined well and is
therefore (nearly) 0. Also, sentences with a high similarity score are assigned with a high
emission probability. The HMM considers a sentence then more likely to be relevant than
in most other scaling functions.

As the idea of the Hidden Markov Model based PASSAGE EXTENT DETERMINATION still makes
sense due to the arguments of section 4.5, further improvements of the algorithm have been
thought of. Retraining the model with dedicated data from the used data sources would
be an evident suggestion. As the evaluation corpus is however very small and specific to
the computer science domain, a larger training set would be useful to get stable results.
Besides that, both the similarity scores and the scaling function can be varied. Currently,
the sentence’s AltaVista-PMI and Wikipedia-ESA score is used as input for the scaling func-
tion, allowing to do a further evaluation by including the cosine or the WordNet measures.
Another idea would be, to choose a different threshold θ for the scaling function—a lower
threshold would e.g. consider a medium similar sentence rather relevant than irrelevant,
which hopefully leads to a better performance of the component.

Figure 4.8 shows the final result of the whole passage extraction task with the above con-
figuration. The component’s precision varies from 95% to 99% with an average of 98%,
which is very good. The recall scores range from 57% to 96% with an average of 81%.
Although these results could be further improved, they still lead to a high quality result
of the passage extraction task that manages to remove an average of 66% of the retrieved
sentences, of which only 1% is relevant. In absolute numbers, an average of 739 sentences
is filtered for each query; only 5 of them are relevant. The maximum amount of relevant
sentences (14) is filtered in query defQ-10. As this query however contains the second
most relevant sentences (94), there should be enough relevant sentences left.

The large decreases of the recall score for query defQ-3, defQ-13 and defQ-19 are due to
the small amount of relevant sentences: all of the 3 queries contain less than 20 relevant
sentences—removing 6 of them (in average) obviously leads to a bad performance. To
cope with that, a larger document collection could be used, which (hopefully) comes with
a larger amount of relevant passages. Another possible problem occurs if a relevant para-
graph is filtered, since there is the possibility that the paragraph consists of a significant
amount of relevant sentences that would have been selected by the SENTENCE SELECTOR. If
calculation time is not longer an issue, a combined system of PARAGRAPH FILTER and SEN-
TENCE SELECTOR could be helpful to get more stable results.
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(a) Number of filtered and selected sentences (left axis) and performance measures (right axis)

(b) Number of relevant sentences and fraction of definitely and possibly filtered relevants.

Query if r f 1 rf 2 is rs1 rs2 Precision Recall
defQ-0 454 4 0 823 52 55 0.991 0.963
defQ-2 497 3 1 118 32 2 0.992 0.894
defQ-3 448 3 3 103 7 1 0.986 0.571
defQ-4 2196 1 0 180 16 9 0.999 0.961
defQ-10 272 12 2 87 51 29 0.951 0.851
defQ-13 1034 3 4 91 7 6 0.993 0.650
defQ-14 387 5 1 496 43 20 0.984 0.913
defQ-19 578 5 0 495 6 7 0.991 0.722

(c) Data table

Figure 4.8: Final evaluation of the Passage Extraction task
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Chapter 5

Topic Clustering

Having identified relevant and irrelevant parts of the retrieved documents, each answer
should now be assigned to a topic group by calculating a clustering on the document set.
Three different approaches will be tried and afterwards combined. The results are evalu-
ated by computing the purity score of a clustering.

5.1 Background

If sentences from different topics are combined in a summary, it is obviously hard for the
reader to find out, which fact belongs to which topic. Figure 5.1 shows three retrieved
documents for the example query “What is flash media?” (defQ-0). The first document is
about Adobe Flash, the second about flash memory (here: Compact Flash cards) and the
third document is about the photographic flash. If topics are omitted, a resulting summary
might look as follows:

Compact Flash is widely used today as a convenient and affordable storage medium for
digital cameras, handheld PDAs, MP3 players, and other personal electronic devices. In
photography, a flash is a device that produces an instantaneous flash of light (typically
around 1/1000 of a second) at a Color temperature of about 5500K to help illuminate
a scene. Our Compact Flash (128 MB and larger) boasts the latest Ultra Performance
30X technology, making it 2.5 to 3.5 times faster than traditional Compact Flash or the
products from our competitors!

Although it is easy to identify that the first and third sentence is about Compact Flash and
the second is about photography, this summary looks odd and is rather confusing the reader.
It would be better to order the sentences with respect to their topics, maybe divided into
separate paragraphs. Displaying a list of topics would also be a helpful tool for the user to
further define, which documents are of interest. The summary should then be built using
only the selected topics.
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when i go to some sites on pc
its says i need to download me-
dia flash player ive tired this
and still noting?

Go here to download the
Flash Player (but uncheck
the box to install the Yahoo
toolbar): http://[..] you
have it installed correctly, you
should see a Flash image say-
ing "Adobe Flash Player Suc-
cessfully Installed".

What is Compact Flash?

Compact Flash is widely used
today as a convenient and
affordable storage medium
for digital cameras, handheld
PDAs, MP3 players, and other
personal electronic devices.
Our Compact Flash (128 MB
and larger) boasts the latest
Ultra Performance 30X tech-
nology, making it 2.5 to 3.5
times faster than traditional
Compact Flash or the prod-
ucts from our competitors!
[..]

Flash (photography)

In photography, a flash is
a device that produces an
instantaneous flash of light
(typically around 1/1000 of a
second) at a Color tempera-
ture of about 5500K to help
illuminate a scene. While
flashes can be used for a va-
riety of reasons [..] they
are mostly used to illumi-
nate scenes that do not have
enough available light to ad-
equately expose the photo-
graph. [..]

(1) (2) (3)

Figure 5.1: Three answer documents for the example query “What is flash media?”

Since neither the number of topics nor the topics themselves are known in advance, an
unsupervised learning technique is applied to generate a list of topics and the corresponding
clustering of the documents.

Definition 16 (Clustering) Let D = {d1, d2, . . . , dn} be the set of retrieved documents and
C = {c1, c2, . . . , cm} a set of clusters with m ≤ n. A clustering is a function ϕ: D −→ C , that
assigns a cluster c = ϕ(d) to every document d.

The size of a cluster |c| = |{d | ϕ(d) = c}| determines the number of documents in cluster
c. Obviously
∑

c∈C |c| = n holds. A cluster c is called an empty cluster if |c| = 0, a singleton
if |c|= 1 and a supercluster if |c|= n.

Clustering methods usually rely on the similarity of the documents to each other, in order to
decide, whether they are about the same or about different topics. If the similarities of each
document pair are required for the clustering algorithm, 1

2
n(n− 1) calculations have to be

performed (omitting symmetric and identical pairs). To avoid long calculation times, a fast
text similarity scoring should be chosen. In the following, cosine similarity (cf. definition
4) will be used, as it is the only text similarity measure in this thesis, that does not use
the token pair-based maximization of definition 5 and thus provides a faster calculation for
larger documents.

There are several different clustering methods—a good overview can be found in Jain et al.
(1999) or Manning et al. (2008). A brief description of hierarchical agglomerative clus-
tering, k-means clustering and Newman’s graph-based method is given in the upcoming
sections, before the clustering results are evaluated.
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(a) (b)

Figure 5.2: Two example dendrograms, (a) using single-link and (b) using complete-link

5.2 Hierarchical Agglomerative Clustering

An intuitive clustering method is to start with a singleton cluster for each document, merge
those two clusters that are most similar and repeat until the desired number of clusters
is reached or the maximum similarity score is below a certain threshold. The size of the
clusters thus grows with the number of iterations, while the number of singleton clusters
usually decreases. The result is called a dendrogram, which is a binary tree, connecting
two nodes to a new one if they have been merged in the corresponding step. Example
dendrograms can be found in figure 5.2.

This bottom-up approach is called Hierarchical Agglomerative Clustering in literature. The
original ideas can be found in King (1967) and Sneath and Sokal (1973), while Jain et al.
(1999) contains an excellent review. Hierarchical clustering methods mainly differ in the
chosen document similarity method and the definition of similarity between two clusters.
For the latter, common approaches are single-link, average-link and complete-link. Compar-
ing each document of the first cluster with each document of the second cluster, a single-link
approach uses the score of the most similar pair, while complete-link considers the least sim-
ilar pair. Average-link however sums up all similarity scores and divides by the number of
pairs (resulting in the mean similarity score).

While using the single-link technique, a chaining effect has been observed in Nagy (1968),
which means that in (almost) every step, a large cluster is merged with a singleton clus-
ter. The result of this effect usually contains a few very large clusters (or a supercluster)
and many very small clusters (maybe only singletons). The dendrogram in figure 5.2 (a)
shows the chaining effect. Complete-link clusters are usually more compact and often lead
to better results in practice, according to Baeza-Yates (1992). Average-link approaches are
a mixture between single-link and complete-link and are sometimes the best choice in prac-
tice, as of Manning et al. (2008), p. 395. All three approaches will however be evaluated
on the training dataset.

An advantage of hierarchical agglomerative clustering is that the number of desired clusters
does not have to be specified in advance. In fact the similarity score of two nodes can be

43



CHAPTER 5. TOPIC CLUSTERING

used as a cut-off threshold for the algorithm, allowing to cluster document collections both
with a large and a small amount of clusters.

Besides agglomerative clustering (or bottom-up clustering), a divisive clustering (or top-
down clustering) can be calculated. This technique starts with a supercluster of all docu-
ments and splits the cluster that contains the best distinguishable contents. As hierarchical
divisive clustering is only seldom used in practice, the evaluation will focus on the agglom-
erative approach.

5.3 Newman Clustering

Another clustering approach addresses finding community structures in a graph representa-
tion of the documents. A community, according to Newman (2006b), is a group of vertices
with a high density of intra-group connections and a low density of inter-group connec-
tions. Newman and Girvan (2004) present an algorithm that identifies such communities
by iteratively removing edges with a high betweenness score (rather than the lowest simi-
larity in divisive hierarchical clustering). Vertices between two communities have a higher
betweenness value than vertices inside a community.

Due to high computational complexity, Newman (2004a) improves this algorithm by cal-
culating the modularity score of a clustering. Modularity indicates the difference between
the number of inter-community edges and the expected number of such edges. While the
first follows directly from the current clustering, the latter however depends on choosing
an appropriate null model, i.e. the expected graph structure. A simple null model is the
Bernoulli model, which expects an Erdős-Rényi random graph with equal probabilities for
each pair of nodes to be connected by an edge—cf. Erdős and Rényi (1959) for details.

Newman (2006a) however proposes to use a null model that better represents real-world
networks. In fact, the expected vertex degree should equal the actual vertex degree, which
promotes the probability of an edge between two nodes with high outgoing degrees. The ex-
pected graph structure is then scale-free, according to the definition in Barabási and Albert
(1999). Newman’s modularity score Q of a network therefore calculates to

Q =
1

2m

∑
i, j

(Ai j − Pi j)δ(gi, g j),

where Ai j is the number edges between vertices i and j; m is the total number of edges; gi

is the corresponding cluster, assigned to vertex i; δ(gi, g j) is 1 if gi and g j are equal and
0 otherwise. Pi j expresses the expected number of edges between two communities and
is set to Pi j =

1
2m

kikj, with ki denoting the degree of vertex i (the scale-free model). This
definition follows Newman (2004a) and Newman (2006a).

For clustering the retrieved answers, a graph representation needs to be created first. Each
document becomes a node, while the similarity of a document pair forms a weighted edge
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between both the document’s nodes. Additionally, a threshold can be defined to omit edges
with low similarity scores. Changes in the algorithm that allow working with weighted
edges, can be found in Newman (2004b).

Exhaustive enumeration of all possible clusterings to find the maximum Q and thus the best
community-clustering is usually intractable due to the high computational effort. Possible
heuristic optimizations imply simulated annealing or a method based on the spectral values
of the graph. For this thesis, the LinLogLayout30 implementation of Newman’s modularity
score is used, which solves the optimization problem with a greedy approach.

5.4 k-Means Clustering

An early statistical clustering approach iteratively improves a given partitioning in each
step. The original ideas for such a method can be found in Steinhaus (1956). If applied to
data clustering, the method is known as k-Means Clustering. Since no cluster hierarchy is
built, it is also called a flat clustering technique.

k-means clustering starts with k randomly chosen cluster centers that may lie at arbitrary
positions in the document space. One possibility is to simply use k of the input documents
as initial positions. For each document d ∈ D, the similarity to all k cluster centers is
calculated and the most similar one is chosen as new ϕ(d). These newly generated clusters
update their cluster center by calculating the mean document. The process repeats with
computing the most similar (i.e. nearest) cluster center for every document until there is
no more change in the resulting clustering or a maximum number of iterations is reached.
For the implementation here, a cluster center is defined as a document vector that consists
of all words in the cluster’s documents.

The underlying approach is called Expectation Maximization, as previously introduced in
Dempster et al. (1977). Expectation maximization consists of two steps, which for k-means
clustering are: assigning each document to the most similar cluster center (E-Step or ex-
pectation step) and calculating the new cluster centers (M-Step or maximization step).

Depending on the choice of the starting point, the results can differ very much. This allows
improving the results through multiple runs and needs to be considered during evaluation.
One problem is the fixed number of clusters that needs to be known in advance. For the
Question Answering task this is not clear from the beginning: a document collection for an
ambiguous query can consist of many different topics, while an unambiguous query might
lead to only documents about the same topic that would not need any clustering at all. In
hierarchical clustering, this problem was overcome by setting a cut-off threshold.

30LinLogLayout – http://code.google.com/p/linloglayout
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5.5 Cluster Merging

To benefit from both the advantages of two different clustering techniques, a method to
combine the results of two arbitrary clustering algorithms has been developed for this the-
sis. Although various definitions of such a cluster merging algorithm could be tried, only
one technique will be considered here:

Definition 17 (Cluster Merging) Let D = {d1, d2, . . . , dn} be the set of retrieved documents
and C1 = {c1,1, c1,2, . . . c1,m}, C2 = {c2,1, c2,2, . . . c2,k} be cluster sets. A merged clustering of the
input clusterings ϕ1: D −→ C1 and ϕ2: D −→ C2 is a function

ϕ: D −→ C , with d �→ (c1, c2) and C = C1× C2.

Even though the amount of new clusters is |C |= |C1| · |C2|= mk, many clusters are usually
empty and can be omitted. Table 5.1 shows two clusterings of 7 example documents and
the corresponding merged clustering. Clustering ϕ1 contains three clusters with sizes |1|=
3, |2| = 2, |3| = 2, while ϕ2 also has three clusters with sizes |a| = 4, |b| = 2, |c| = 1. The
merged clustering thus contains 9 clusters, of which only 5 are not empty: |1a| = 2, |1b| =
1, |2a| = 2, |3a| = 1, |3c|= 1.

D d1 d2 d3 d4 d5 d6 d7

ϕ1 1 1 1 2 2 3 3
ϕ2 a a b a a b c
ϕ 1a 1a 1b 2a 2a 3b 3c

Table 5.1: Merged clustering for two example input clusterings

5.6 Evaluation Results

Several evaluation tests of the clustering algorithms have been done. After defining the
utilized quality measures, some of the main results are presented in the following sections.

5.6.1 Baseline and Quality Measures

To evaluate the performance of the different clustering approaches, the manually anno-
tated document groups of the evaluation dataset (see section 2.5) can be used. As the
generated clusters do not have a unique id, it is however not possible to directly map the
annotated (expected) clusters to those, found by the algorithms. The mapping needs to
be estimated by determining the largest overlap of expected and actual clustering. Strehl
(2002) and Manning et al. (2008) define the purity score of a clustering that will be used
in the following to quantify the evaluation results.
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Definition 18 (Clustering Purity) Let Ce = {ce,1, ce,2, . . . , ce,m} be the set of expected clus-
ters and Ca = {ca,1, ca,2, . . . , ca,k} the set of actual clusters. The corresponding clusterings are
ϕe: D −→ Ce, representing the manual annotations, and ϕa: D −→ Ca, which is the result of
the clustering algorithm (D = {d1, d2, . . . , dn} is again the document collection). The purity
of clustering ϕa with respect to ϕe is defined as:

purity(ϕa,ϕe) =
1

n

k∑
i=1

max
j=1,...,m

|cont(ca,i)∩ cont(ce, j)|

with cont(c) denoting the set of documents in cluster c. Analogously, the inverse purity can
be computed:

invpurity(ϕa,ϕe) =
1

n

m∑
i=1

max
j=1,...,k

|cont(ca, j)∩ cont(ce,i)|

Consider the document collection D = {d1, d2, . . . , d7} with expected topics Ce = {�,
,♦}
and found clusters Ca = {a, b}. The following table shows the cluster assignment (left) and
a matrix of cluster overlaps (right):

D d1 d2 d3 d4 d5 d6 d7

ϕe � � 
 
 
 
 ♦
ϕa a a a b b b b

� 
 ♦ max
a 2 1 2
b 3 1 3

max 2 3 1

Each cell contains the amount of documents that are both assigned to the row’s cluster
ϕa(d) and the column’s cluster ϕe(d), i.e. the overlap |cont(ca) ∩ cont(ce)| with ca ∈ Ca

and ce ∈ Ce. Given this matrix, the corresponding purity of ϕa and ϕe is the sum of the
maximum values in each row, divided by the total number of documents—calculating to
5/7. The inverse purity is 6/7 and can be calculated the same way, using the maximum of
each column.

While annotating the evaluation data, the goal was to obtain a good separation of totally
different topics, rather than having an in-depth separation of minor details. Documents
about Adobe Flash are for example in a different cluster than documents about flash memory
technologies, while documents about the flash memory in USB sticks are assigned to the
same cluster as documents about JFFS,31 even though the topics differ in detail.

Besides that, there are several “miscellaneous” clusters in the evaluation dataset that con-
tain rare topics with only a few (irrelevant) documents. For the query “What is flash media?”
(defQ-0), there was one document about a flash in a dice game and one document about
flash mobs32 retrieved that have been assigned to the same cluster, although there are about

31JFFS: a journaling file system for flash memory
32Flash mob: a spontaneous gathering of a crowd in a public place for performing an unusual action,

usually coordinated by internet or cell phone
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different topics. The intention was to have only a few amount of clusters that represent the
most important groups of documents and provide an appropriate summary to the user. The
expected cluster count is usually between 1 and 5. Appendix A.2 shows the list of annotated
training queries and the number of annotated clusters.

The goal of the TOPIC CLUSTERING component is not to obtain a perfect match with the
annotated data (which would be a hard task), but to model the expected topic separation
as good as possible, maybe by defining a few more clusters than necessary. Evaluation
will therefore focus on purity, because it is the best representation of above considerations.
Since purity is highest if each document is assigned to its own singleton cluster, there will
however be a tradeoff between purity and the amount of clusters. As a baseline system for
purity, the clustering is chosen according to the data source of the document.

5.6.2 Evaluation of Hierarchical Agglomerative Clustering

The first algorithm to be evaluated is hierarchical agglomerative clustering (HAC). Parame-
ters for this algorithm are the cut-off threshold and the definition of inter-cluster similarity
(i.e. complete-link, average-link and single-link). Figure 5.3 shows the performance with
all of the three similarity definitions and several corresponding cut-off thresholds. The left
side diagrams show the amount of clusters that have been generated by the algorithm, to-
gether with the expected number that is based on the evaluation corpus. On the right side,
the corresponding purity scores can be found. The dashed line there indicates the results
of the baseline system.

It is not surprising that purity increases with a higher threshold (and thus a higher number
of clusters), since purity is maximal when having a singleton cluster for each document. A
reasonable threshold should therefore be found that is both near the expected number of
clusters and provides a high purity.

The complete-link approach generates many clusters. Even with a cut-off threshold of only
0.05, the number of actual clusters is higher than the expected for every document. For
defQ-4 and defQ-13, even 13 clusters are created. The purity scores however outperform
the baseline for every query and threshold. As a reasonable value, 0.1 could be chosen,
since it leads to an average boost in purity of 6%, compared to a cut-off threshold of 0.05.
Further increasing the threshold, results in an average boost of only 2%, while 6 more
clusters would be generated for each query in average.

In the average-link approach, the number of generated clusters is lower than in complete-
link, while the purity score is also lower. The baseline is only outperformed for a cut-off
threshold greater or equal 0.15. Best choice for average-link would thus be a threshold of
0.15, resulting in an average of 11 clusters per query.

The amount of clusters is further decreased in a single-link approach. For a threshold of
0.1, the total number of clusters is even lower than the expected count. Unfortunately,
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Hierarchical Agglomerative Clustering

(a) complete-link: cluster count (b) complete-link: purity

(c) average-link: cluster count (d) average-link: purity

(e) single-link: cluster count (f) single-link: purity

Figure 5.3: Evaluation results for different parameters in Hierarchical Agglomerative Clustering
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single-link HAC does not fully outperform the baseline, which can be explained by the
chaining effect, described in section 5.2. Especially the queries defQ-0 and defQ-4 could
not outperform the baseline at any of the evaluated thresholds. For the other queries this
is at least possible for a threshold ≥ 0.2. The threshold 0.2 will thus be considered in the
following as the best choice for single-link HAC.

5.6.3 Evaluation of Newman Clustering

Newman’s clustering method has only one parameter to evaluate: the similarity threshold
for inserting edges into the graph. If the similarity score of two documents is below this
threshold, no edge will be inserted. Since a higher threshold decreases the connectivity of
the graph, the number of generated clusters usually increases with higher thresholds. Fig-
ure 5.4 shows the evaluation results for four different thresholds compared to the expected
number of clusters resp. the baseline system.

Almost all thresholds outperform the baseline, there are however two exceptions for 0.05
and 0.15. A reasonable trade-off between cluster count and purity seems the choice of 0.1,
leading to an average cluster count of 4, while the purity score is in average 3% higher than
the baseline system.

An interesting observation of Newman clustering, is the decreased purity for threshold 0.15
and query defQ-3. While the purity score was constantly increasing with higher thresholds
in hierarchical agglomerative clustering, this is no longer true for Newman clustering. A
more detailed evaluation of the similarity thresholds between 0.1 and 0.15 could thus lead
to interesting results and can be analyzed in the future.

5.6.4 Evaluation of k-Means Clustering

The results of the k-means clustering algorithm differ in the number of created clusters by
choosing parameter k. As the number of expected clusters varies from 3 to 5, these values
(and additionally k = 6) will be used to evaluate the algorithm.

Figure 5.5 shows the purity scores for these four settings. Multiple runs have been calcu-
lated, each with a different initial clustering. The diagrams show four randomly chosen
representatives to visualize the range of clustering purity scores.

The results are strongly aligned with the baseline system. For k = 3 and k = 4, the purity
score tends to be below the baseline, for k = 5 and k = 6 above. k = 5 therefore seems to
be a good trade-off between the number of clusters and the resulting purity.

Notable is the overall bad performance of k-means clustering on defQ-3, which is the query
“What is a ‘mashup’?”. This trend can also be seen in the other clustering approaches, with
the exception of complete-link HAC, which fully outperforms the baseline. Although, the
sentences in the evaluation corpus could be clearly divided into mashup in the sense of a

50



5.6. Evaluation Results

Newman Clustering

(a) cluster count (b) clustering purity

Figure 5.4: Evaluation results for different parameters in Newman Clustering

k-Means Clustering

(a) k = 3 (b) k = 4

(c) k = 5 (d) k = 6

Figure 5.5: Evaluation results for different parameters in k-Means Clustering
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musical remix and in the sense of a Web 2.0 application that combines content from several
sources (plus a third cluster for miscellaneous topics), the inter-sentence similarities seem
not to work well with this kind of data.

5.6.5 Evaluation of Cluster Merging

To overcome problems of individual algorithms like the one described above, a combination
of two of the clustering approaches could be helpful to benefit from both the advantages
of the techniques. The cluster merging approach as defined in section 5.5 will be used for
combining the results.

Figure 5.6 shows a comparison of the four best individual clustering algorithms and three
results of the merged clusterings. Following the arguments of the previous sections, as best
single clustering methods have been chosen (diagrams a–b): complete-link HAC with cut-

Single and Merged Clusterings

(a) single-algorithm: cluster count (b) single-algorithm: purity

(c) cluster merging: cluster count (d) cluster merging: purity

Figure 5.6: Comparison of single-algorithm and merged clusterings
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off threshold 0.1 (red squares), average-link HAC with threshold 0.15 (green triangles),
Newman with threshold 0.1 (orange diamonds) and k-means with k = 5 (blue circles).
As combinations (diagrams c–d) have been tried: complete-link HAC with threshold 0.15
merged with Newman 0.1 (red squares), same HAC with k-means at k = 5 (green dia-
monds), same k-means with Newman 0.1 (orange diamonds).

All the single-algorithm clusterings exceed the baseline system, but only the two HAC ap-
proaches lead to a noticeable quality boost. The purity scores of the merged clusterings are
in average 4% higher than those of the single-algorithms and are in average 11% higher
than the baseline. The merged clusterings generally produce a higher number of clusters
but as stated before in section 5.5, the number of clusters does not grow quadratically and
is only 4.4 clusters per query.

If the number of clusters exceeds 15, the system gets impractical, because the user has to
enable/disable lots of clusters to get an appropriate summary. Unfortunately HAC generates
up to 25 clusters and will not be considered in following. The remaining algorithms are
maximized, resulting in the merged clustering of Newman 0.1 and k-means with k = 5.
This configuration is used for the TOPIC CLUSTERING component.
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Chapter 6

Answer Summarization
and Presentation

The final task of this thesis is generating a summary of the relevant information found in
the previous components. After removing invalid sentences, a ranking is computed to find
out what are the most important sentences to be included in the summary. The chapter
concludes with the presentation of the system’s graphical user interface and an evaluation
of the summary results.

6.1 Invalid and Duplicate Sentence Removal

In section 4.2, duplicate documents have been removed by the DUPLICATE DOCUMENT RE-
MOVER component to avoid processing identical documents, which would not lead to new
results. The remaining documents could however still contain duplicate sentences. This is
e.g. the case in FAQ articles that have been derived from each other. Although the main
text of the two articles is identical, adding only one additional information would cause the
DUPLICATE DOCUMENT REMOVER to keep both documents. Duplicate sentences also emerge
from Wikipedia’s article templates that provide standardized headers (like “External links”
or “This section requires expansion”).

If a sentence appears twice in a summary text, the result looks unnatural and contains ob-
vious redundancy. Therefore, duplicates are removed by the DUPLICATE SENTENCE REMOVER

component, which applies the same method used before in the DUPLICATE DOCUMENT RE-
MOVER component: For each sentence an MD5 hash is calculated and saved. If a sentence
with the same hash exists already, the sentence is removed.

Looking through the remaining text, there are often invalid or incomplete sentences. Many
of them have been used as keywords, headlines or list items, like “∗ Flash crowd”, “Slashdot
effect” or “Types of green flashes”. They may however also occur if the text contains ortho-
graphical or grammatical errors, e.g. “yes its possible.” or “computer into media centre?”.
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Figure 6.1: Number and percentage of sentences removed by the Duplicate Sentence Remover

Figure 6.2: Number and percentage of sentences removed by the Invalid Sentence Remover

Invalid sentences are usually confusing the reader if they are found within a summary and
should thus be removed. A possible method for identifying these sentences is linguistic
parsing. The input sentence is valid if a feasible parse tree can be derived, or invalid
otherwise. Parsing is however very time-consuming, which is the reason for choosing a
simpler method here: Based on the part-of-speech annotations of the tokens, a sentence
is considered valid if it consists of at least one noun and at least one verb. Part-of-speech
annotations have been created during the preprocessing steps (cf. section 3.1) and can
therefore be reused for the INVALID SENTENCE REMOVER component.

Figure 6.1 shows the amount of duplicate and figure 6.2 the amount of invalid sentences for
some example queries of the training dataset. Most sentences are removed from Wikipedia
articles, which is due to the high number of repeating headings and keywords. Besides that,
the Wikipedia articles simply contain the most sentences (in average 890 compared to 121
in Yahoo! Answer documents and 89 in FAQs). There is no need to evaluate the perfor-
mance of the duplicate sentence removal, since the method is exact. The removal of invalid
sentences could be evaluated with precision and recall on a manually annotated corpus. A
quantitative analysis for the training dataset has not yet been done. Manually inspection
showed however that the result quality is appropriate for the summarization task.
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6.2 Sentence Ranking

Until now, only the Boolean relevance of passages has been considered, without any par-
ticular order. Jansen et al. (2000) found out that most users of a search engine tend to
only look at the first page of results before reformulating their query. The same may ap-
ply to summaries: The user might stop reading if the answer starts with irrelevant or less
interesting sentences.

Figure 6.3 shows two example summaries for the training question “What is flash media?”
(defQ-0) that combines the same six sentences in two different orders. Although all of the
six sentences are somehow relevant for the query (interpreted as topic Adobe Flash), the
summary in (a) does not explain what flash really is in the beginning. The reader finds out
that flash is something from Macromedia, which can be installed and maybe comes already
with the browser. Summary (b) in contrast, provides more important information in the
beginning, viz. that flash is a multimedia plug-in for web pages, allowing users to create
animations that can be seen in the web browser.

Thus, it is an important task to provide the most informative information at the beginning
of the answer to convince the reader of its relevance and usefulness. Sentence ranking
methods can be used to determine an ordered list of the relevant sentences with the most
important ones at the top and the least important at the bottom.

A naïve approach simply orders the sentences according to their occurrence in the input
document with the idea that the most informative sentences appear at the beginning of the
retrieved documents. This observation holds if one considers Wikipedia articles, which usu-
ally provide the most important information in the beginning of the article. The approach
will be referred to as Position Rank and acts as a baseline in the upcoming evaluation.

What is flash media?

Installing Flash from Macromedia’s web site
is quick and easy. Flash was known as Fu-
tureSplash until 1997, when Macromedia Inc.
bought the company that developed it. While
most computer systems and browsers come
pre-packaged with Flash, your configuration
may vary. Flash animations will look the same
in all browsers. With Flash, users can draw
their own animations or import other vector-
based images. Macromedia Flash is a pow-
erful multimedia plug-in that allows you to
view rich media content on the internet.

What is flash media?

Macromedia Flash is a powerful multimedia
plug-in that allows you to view rich media
content on the internet. With Flash, users can
draw their own animations or import other
vector-based images. Flash animations will
look the same in all browsers. While most
computer systems and browsers come pre-
packaged with Flash, your configuration may
vary. Installing Flash from Macromedia’s web
site is quick and easy. Flash was known as
FutureSplash until 1997, when Macromedia
Inc. bought the company that developed it.

(a) (b)

Figure 6.3: Two example summaries with different sentence rankings
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Another simple method makes use of the similarity scores, which have been calculated
during the passage extraction task (cf. chapter 4). The sentence with the highest similarity
score (i.e. the most informative) is annotated with rank 1, followed by the sentence with
the next smaller similarity score and so forth. The method will be called Similarity Rank.
To obtain the ranking, the σ value of each sentence is used; σ has been introduced as
emission probability during passage extent determination (cf. section 4.5) and represents
a combination of a scaled PMI and ESA similarity score.

In the following, a third, more elaborated approach will be introduced that does not rely
on the independent sentences only, but considers the whole document collection by taking
into account the similarities between each pair of sentences.

6.2.1 Biased LexRank

Some common ranking techniques are based on graphs. The idea of most algorithms is that
the most prominent nodes in the graph should receive the highest ranks. Such prominent
nodes are often defined to be at central positions of the network (so called central nodes or
hubs), which can be identified by calculating a centrality score for each node and rank the
nodes according to this score in descending order.

The centrality score of a node can be calculated during a (Markov) random-walk through
the graph. A random-walk starts at an arbitrary node and randomly follows one of the
incident edges in each step. The basic idea of this technique is that important (i.e. central)
nodes are often visited, as they can be reached from many other nodes. Good overviews on
random-walk theory and centrality measures can be found in Henzinger et al. (1999) and
Freeman (1978/79).

Possibly the most famous random-walk algorithm is PageRank, the basic ranking algorithm
of the Google33 search engine. Brin and Page (1998) implement a random-walk on the
World Wide Web, based on the hyperlinks between pages. In each step, the algorithm
chooses between following an incident edge or jumping to a random node. The latter is
necessary to ensure termination of the algorithm.

Erkan and Radev (2004) present an extension of the PageRank algorithm that focuses espe-
cially on ranking sentences. The method is called LexRank and uses inter-sentence similar-
ity scores as (weighted) graph edges instead of the (unweighted) hyperlinks in PageRank.
A further improvement for generating focused summaries has been recently introduced in
Otterbacher et al. (2009) and is known as Biased LexRank. The similarity score between the
sentence and a certain context or topic is included in this approach and allows a ranking
with respect to the given context. More precisely, the random jump is weighted according
to the node’s similarity to the context. For the question answering system, the query will be
used as context, resulting in the following definition of the Biased LexRank algorithm:

33Google – http://www.google.com
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Definition 19 (Biased LexRank) Let G = (V, E, w) be the weighted graph of all sentences
V that have been connected by an edge (u, v) ∈ E between node u and v and weighted
according to the cosine similarity score w(u, v) of each sentence pair. The Biased LexRank
LR(u) of node u ∈ V is defined as:

LR(u) = d · b(u)∑
z∈V b(z)

+ (1− d)
∑

v∈adj[u]

w(v, u)∑
z∈adj[v]w(v, z)

LR(v),

with b(u) denoting the similarity of sentence u with the user’s query and adj[u] denoting
the set of incident edges of node u ∈ V .

The probability d allows to control the balance between inter-sentence similarity and query-
sentence similarity. In Otterbacher et al. (2009), the best results have been produced with
d in a range of [0.65, 0.95]. Ibid., a similarity threshold for the insertion of edges into the
graph has been introduced as a second parameter. The researchers found the best range for
this threshold to be between 0.14 and 0.20.

Calculation of the Biased LexRank can be done efficiently by using the power method,
which has been previously used to solve PageRank and derived problems. Kamvar et al.
(2004) describes the method and its application to the PageRank computation in detail,
making it easy to adapt the method for the calculation of Biased LexRank.

6.2.2 Evaluation Results

An evaluation of the three ranking algorithms should focus on the number of relevant sen-
tences that received a high ranking position and thus are treated as important information.
To achieve that, the common measure precision at rank could be applied, which divides the
number of correct (i.e. relevant) sentences by the number of considered items (i.e. the rank
of interest). This measure is mainly useful for evaluating the quality of the results on the
first page of a search engine query, because the total number of considered items is fixed
(a search engine usually presents the same number of items on a page for each query). If
there are e.g. 3 relevant sentences within the top 10 ranked sentences, the precision at 10
is 3/10 = 0.3.

Unfortunately, there is no fixed number of sentences to be used for the summary. In fact,
it depends on the query, how much information is retrieved and makes sense to use in the
resulting summary. Another problem is that the number of relevant sentences varies a lot
depending on the query. For a query with a total of 100 relevant sentences, the precision at
10 is naturally higher than for a query with only 5 relevant sentences.

Above problems can be solved by using the R-precision score. R-precision equates to the
precision at rank score, evaluated where rank is the total number of relevant sentences in
the document collection. It is defined as follows:
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Definition 20 (R-precision) Let S = (s1, s2, . . . , sn) be a ranking, i.e. an ordered sequence
of sentences, and r(s) denote the relevance of sentence s with r(s) = 1 if s is relevant and
r(s) = 0 otherwise. The total number of relevant sentences in the document collection
calculates to R=

∑n
i=1 r(si). The corresponding R-precision is:

R-precision(S) =

∑R
i=1 r(si)

R

Consider for instance a collection of 100 sentences, of which 30 have been annotated as
relevant. The number of relevant sentences within the top 30 sentences of a ranking are
then counted to 20, which results in an R-precision of 20/30 = 0.66 (the precision at 30).
A nice introduction to R-precision and some other evaluation measures for rankings can be
found in Manning et al. (2008), chapter 8.

Figure 6.4 shows the R-precision scores for the three ranking algorithms. Again 8 queries
of the training dataset (cf. section 2.5) have been used for the evaluation. The base-
line (Position Rank) is only outperformed for the four queries defQ-3, defQ-4, defQ-10
and defQ-13. A possible explanation for the relatively good performance of Position Rank
could be that the training queries are rather less specific, but ask for general information
on a certain topic, which is usually found at the beginning of a document. Another obser-
vation is the bad performance of the Biased LexRank approach that outperforms the other
approaches only once for defQ-10. This is a surprising result as the method worked fine in
Otterbacher et al. (2009) and by design includes the Similarity Rank method to some ex-
tent (as bias). Focusing on the similarity scores between the sentences thus does not seem
to be a good idea with regard to this question answering system.

Figure 6.4: Performance of different answer ranking algorithms on 8 training queries
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s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Position Rank 2 3 1 5 10 4 7 9 8 6
Similarity Rank 3 1 4 6 2 5 8 7 9 10
Biased LexRank 2 4 6 1 5 8 3 7 9 10
Average rank score 2.33 2.67 3.67 4.00 5.67 5.67 6.00 7.67 8.67 8.67
Merged Rank 1 2 3 4 5 6 7 8 9 10

Table 6.1: Example for the Merged Rank calculation

Figure 6.5: Comparison of the average R-precision of 4 answer ranking algorithms

If one looks at the rankings more closely, it turns out that the algorithms lead to overall
different rankings. Although there are several similarities, the relevant sentences are highly
distributed within the rankings. As relevant sentences are often ranked at top positions in
only two of the algorithms, a combination of the approaches could be useful to benefit from
the advantages of the individual algorithms. This observation has also been made during
the topic clustering algorithms (cf. section 5.5) and seems to be a robust technique when
working with heterogeneous data.

The combination method will be called Merged Rank. Its performance results are also shown
in figure 6.4. The method simply averages the ranking positions of the three input rankings
and reranks the sentences according to this average value. Consider e.g. the 10 sentences
in table 6.1 and their rankings with Position Rank, Similarity Rank and Biased LexRank.
The average rank score for sentence s2 is e.g. calculated as (3 + 1 + 4)/3 = 2.67. The
Merged Rank approach outperforms the baseline for 6 of the training queries. Similarity
Rank and Biased LexRank are overall outperformed with the exception of one query each
(defQ-10 and defQ-13).

Figure 6.5 displays a comparison of the average R-precision of the four algorithms over the
8 training queries. Additionally, the R-precision2 score has been calculated and averaged.
R-precision2 considers only definitely relevant sentences and is therefore in general lower
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than the R-precision for all relevant sentences (possibly and definitely relevant). The modest
performance of Similarity Rank and Biased LexRank can also be observed for R-precision2.
The best results of the four are in both cases those of the Merged Rank approach, which
will therefore be used for the system.

6.3 Topic Labeling and Ranking

Clustering algorithms have been used in chapter 5 to identify different topics within the
document collection. These topics should be shown together with the summary and allow
the user to choose the topics of interest resp. the topic that was initially meant when posting
the question. Both a topic label and a ranking of the topics is required for a comfortable
use of the topic selection.

There are different methods for automatically assigning a label to a document cluster, like
using the n most frequent words, extracting frequent noun phrases or using terms that
can be found more likely in one of the clusters. While the first approaches use a token or
phrase index, the latter relies on statistical significance. Applications of these methods are
e.g. discussed in Chuang and Chien (2004) or Stefanowski and Weiss (2007).

For the system in this thesis a simple bag-of-words index is created for each cluster and the
3 most frequent words are used as cluster labels. The individual terms are separated with
commas, like in the label flash, download, player that has been generated for the example
query “What is flash media?” (defQ-0). Words with only 1 or 2 characters are omitted as
well as numbers, punctuation and symbols.

The most promising topic should be the first one in the list of topics and its contents are to
be displayed directly on the response page. The other topics are collapsed in the beginning
and can be expanded by the user if necessary. Different criterion are possible to define the
most promising topic. They can be mainly divided into the two techniques that consider
either the cluster’s size or the similarity to the query.

The cluster size can be measured by counting the contained documents, paragraphs, sen-
tences or words. A ranking is then created that sorts the topics with descending order by
their cluster size. The idea is that most of the retrieved information belongs to the user’s
query as the query was well chosen, such that the biggest cluster is also the most promis-
ing. There are several drawbacks of this method: If much information for a certain topic
has been retrieved, which is not at all related to the query, the wrong topic is on top of the
topic list. Another problem occurs if the clustering does not work well on a certain docu-
ment collection. A usual result in these cases is the chaining effect that has been introduced
in section 5.2.

For calculating the similarity score between a cluster and the query, there are several meth-
ods. Besides the choice of the definition of similarity between two texts (cf. section 3.4 for
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an overview of possible measures) the combination of the similarity scores for each docu-
ment can be chosen. Particularly, the three different approaches single-link, average-link
and complete-link can be used, as introduced during hierarchical agglomerative clustering
(section 5.2). Single-link employs the similarity score of the document that is most similar
to the query, while average-link considers the cluster as a single document and uses the
mean similarity score. Complete-link however uses the score of the least similar document.
One drawback of this method can be observed if the cluster is big and maybe still contains
several sub topics that could not be well divided. The cluster similarity is then composed
of both the relevant and the irrelevant topic such that the cluster is maybe ranked at an
average position although it contains the most prominent information. Another problem
occurs if the requested information is very general or consists of only stop words and is thus
not well classified by a similarity measure.

Although both the approaches are reasonable and could be useful for this thesis’ system,
only the method that ranks according to the number of contained documents is used here.

6.4 Summary Views

The multi-document summarization can now be achieved by combining the annotations of
the previous components. In fact, the sentences will be ordered according to their rank,
annotated by the SENTENCE RANKER component (section 6.2) and then concatenated to
form a continuous paragraph of text that will be used as resulting summary. This simple
summarization technique is known as extractive summarization and has successfully been
used in question answering tasks before, e.g. in Liu et al. (2008). There are however also
more elaborated summarization techniques, which have not been considered for this thesis.
An overview on multi-document summarization techniques can be found in Mani (2001)
and Torralbo et al. (2005).

In chapter 5, a topic for each document has been automatically identified and then labeled
and ranked according to section 6.3. These topics can be used to filter the resulting sum-
mary for displaying only information about a certain topic. The same option can be used
for the different data sources, the documents are taken from (currently Yahoo! Answers,
FAQs and Wikipedia). It should thus be possible for the user to view for instance a summary
exclusively about downloading Adobe’s flash player, whose sentences have been taken only
from the FAQ collection. With this type of filtering, the system gets highly flexible even if
the initial result, which is the system’s recommendation, does not contain the topic of inter-
est. Filtering data sources is particularly useful for subjective queries as Wikipedia usually
does not include subjective comments.

Continuous textual summaries are fine for answering definition questions. For list and
factoid questions, there is however a better choice for presenting the answer. Kaisser et al.
(2008) evaluated the ideal length and textual form for different question and answer types.
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They found out that factoid questions like asking for a certain person, organization, place,
time or number, a single phrase would be the ideal answer, while list questions that search
for a resource, product or website are best answered by a list of result items or links.
Although the main focus of this thesis are definition queries, there will be a list view and a
link view on the result page that intends to cope with above issue. The user then has the
possibility of switching from the text view for continuous reading to the list or link view.

While the link view simply contains a list of web links that have been found in the doc-
uments, there is no exact definition of what to use as list items in the list view. Like for
topic labeling, frequent words or phrases (particularly noun phrases) can be used. Since
the most frequent words are already included in the topic label itself, this is not an optimal
choice to use in the list view because of the relatively low information gain. Noun phrases
are usually a good choice, although they fail to answer questions like “What are synonyms
for (to) walk?”, which expects a list of verbs as result.

Lin (2007) introduces a redundancy-based method for answering factoid questions. This
system overcomes the problem of using frequent noun phrases by considering frequent
n-grams, which are defined as follows:

Definition 21 (n-gram) Let T = t1t2 . . . tm be a text of length m ∈ �. An n-gram

g = ti . . . ti+n−1 with i ∈ {1, . . . , m− n}
is a sub sequence of T that consists of n consecutive tokens. A 1-gram is usually called
a unigram, a 2-gram a bigram and a 3-gram a trigram. The query “What is flash media?”
consists for instance of three bigrams: (What, is), (is, flash) and (flash, media).

Consider the two phrases “Obama runs for president” and “Yes, we can”. Since the first
contains a verb phrase and the second consist of stop words only, both the examples could
neither be found within the most frequent words nor the most prominent noun phrases. n-
grams however do not rely on part-of-speech tags or stop words, so both the phrases would
be added to the list view if they tend to appear more often than other n-grams.

To find out, which n-grams are informative, Lin (2007) computes a TF-IDF-like score for
each n-gram that is used for ranking the results. The original scoring model is slightly mod-
ified to work with the specificity scores that have already been calculated by the SPECIFICITY

ANNOTATOR (introduced in section 3.2). The specificity value of each token in the n-gram
is averaged and then multiplied with the number of occurrences of the n-gram within the
document collection. Only n-grams with n = 2, . . . , 5, an average score of at least 1.0 and
a minimum occurrence of 3 are considered as frequent n-gram. n-grams that start or end
with a stop word are currently also filtered out.

As the scoring model is rather naïve, a dedicated evaluation has not been done yet. Manual
review of the high scored n-grams suggests that a more elaborated method could definitely
be useful in order to obtain better results. The quality of the actual available n-grams
however seemed to be promising.
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6.5 Graphical User Interface

The question answering system should provide a graphical user interface that allows the
user to post a question and view the results. To achieve that, a web service QASRV has
been created from the components described above and deployed on an Apache Tomcat
application server. It can be accessed by the search-engine-like JSP application QAWEB. See
section 2.4 for details on the system architecture.

It is not part of the project to implement or connect a document retrieval engine. But
although there is no such component yet, the system has been designed to be able to add
an engine later on. Until then, only the 60 questions from the evaluation corpus can be
used. A full list of these questions can be found in appendix A.1.

The system consists of three JSP pages. The first comes with a form field to type in the
question. A short list of clickable training questions is shown for convenience. The question
is posted by using the “Ask” button that submits the form and thus invokes the web service.
On the following JSP page, the user receives a permanent status feedback from the web
service, while the components are executed and the summary is composed. A typical run
takes about 90–120 seconds,34 which strengthens the need of such a status page to inform
the user about the progress and that the system is still alive and working. Figure 6.6 shows
these first two pages in a web browser screenshot.

As soon as the web service has finished its computation, the user is redirected to the answer
page, where the resulting summary is shown. The result consists of three different views:

For the text view, a short paragraph of text is composed from the most informative sen-
tences that have been extracted from the retrieved documents. The sentences, which have
been classified as relevant within the PASSAGE EXTRACTION task are sorted by their rank in
descending order. The merged ranks, calculated in section 6.2, are used. Since the number
of relevant sentences is highly different for each topic, not every sentence can be consid-
ered in order to provide a “readable” amount of text for each topic. In fact, only the top 10
sentences have been used for the system described here. Clicking on a sentence, brings up a
detail pane with the context of the sentence, its determined topic and the original source it
has been taken from. This is mainly necessary if the meaning of a sentence highly depends
on the previous or following sentence, which is maybe not included in the summary.

The list view can be directly built from the results of the previous component, which anno-
tates each n-gram of size 2–5 that occurs at least 3 times and has a score of at least 1.0.
Only the top 40 frequent n-grams are used for this view. Each item is again clickable to
reveal a detail pane with the n-gram’s different contexts to get a better impression of what
is meant by the n-gram or which fact it belongs to.

The link view consists of the top 200 links that have been identified by the URLANNOTATOR.
The view is built exactly like the list view but provides also a “Follow” button to open the

34Calculation done on Intel Core2 Quad CPU, 2.4 GHz, 3 GB RAM, Windows Vista, Java 1.6.0.2
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Figure 6.6: The system’s web interface: start page (top) and status indicator (bottom)
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Figure 6.7: The system’s web interface: text view (top) and list view (bottom) of the result page
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Figure 6.8: The system’s web interface: link view of the result page

linked URL in a new browser window. Note, that URLs have been normalized to generate
valid HTML code; if no protocol was given, http has been assumed.

The control bar on the right allows the user to switch between the three views. Certain top-
ics or data sources can be excluded from the view by simply clicking on the corresponding
toggle button—the green bar indicates that information from this topic resp. data source is
currently shown. Within the control bar, there are also convenience links for expanding or
collapsing all detail panes and for enabling/disabling the keyword highlighting. If the key-
word highlighting is activated, each occurrence of a query token is highlighted in a certain
neon color like the highlighting function of e.g. the Google Toolbar.35 Only non-stop words
are considered for highlighting to preserve the overview and clarity of the system’s answer.

Figure 6.7 shows the text and list view for the example query “What is flash media?”
(defQ-0). For the top image—the text view—the second topic “Flash, player, web” has
been selected to display information about the Adobe Flash player. One of the sentences
has been clicked on to open the detail pane. The second picture shows the list view for the
same query. However, the topic selection has been changed to get information about flash
memory. In total, three topics have been selected, whose frequent terms are combined to
a single list. Frequent terms from the FAQ data source have been excluded from the view

35Google Search Toolbar – http://toolbar.google.com
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for demonstration purpose. The detail pane for the term “computer storage medium” has
been opened, which shows 2 occurrences of this n-gram within the original context of the
document (2 more occurrences can be found after scrolling down a bit). Finally, the link
view is shown in figure 6.8. The last topic “download, player, flash” was chosen for the link
view, which contains only a single URL (in fact, it is a valid download link for Adobe’s Flash
player). The follow button can be used to open the link in a new window, while the detail
pane shows the context of the link, which was initially found in a Yahoo! Answer.

6.6 Evaluation Results

Evaluating the results of an automatic summarization algorithm is hard, since the definition
of a good summary is mainly subjective. A good summary of course needs to contain all of
the most important information and be shorter in length than the input documents. The
expected length depends both on the amount of data that is to be summarized and on the
purpose of the summary. For the question answering system here, the size of the summary
was chosen to approximately fit on a web page such that scrolling is not necessary. The
presented information should be basically free of redundancy to keep the summary as short
as possible. Besides these content-related aspects, a good summary also needs to be of
consistent style and fluent readability.

Manual evaluations are only possible for small-scale applications due to the time-consuming
annotation and revision work. According to Lin (2004a), a manual evaluation of the re-
sults of the Document Understanding Conference36 would take over 3,000 hours of human
effort. A bunch of automatic evaluation methods has therefore been proposed to ease the
extensive manual process. Possibly the most common toolkit for the evaluation of automatic
summarization is ROUGE,37 which has been introduced in Lin (2004b). ROUGE allows to
compare two summaries, mostly based on the overlap of n-grams. If a reference summary
(i.e. a model in ROUGE terminology) is given, the evaluation toolkit is able to determine
the quality of the corresponding automatically computed summary (resp. peer) by compar-
ing it to the reference summary and check for the overlap percentage. However, to capture
the absolute quality of a summarization system, the results of at least one other system has
to be compared against the reference summary, too.

For the evaluation here, the 20 definition queries have been used. A full list of these queries
can be found in appendix A.1. The reference summaries are taken from Ask.com and An-
swerbag.38 Ask.com offers a specialized Q&A search mode that implements a question an-
swering system and is able to retrieve an answer for most of the evaluation questions. Using
Answerbag, a collaborative question answering platform, allows to find exact answers for
the evaluation questions, since they originally have been taken from Answerbag. Both the

36Document Understanding Conference – http://duc.nist.gov
37Recall-Oriented Understudy for Gisting Evaluation (ROUGE) – http://berouge.com
38Ask.com – http://www.ask.com; Answerbag – http://www.answerbag.com
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systems have not been used as a data source, which was another criteria for choosing a
reference corpus (as Ask.com produces links to arbitrary web pages, links to Wikipedia, Ya-
hoo! Answers or dedicated FAQ pages have been omitted). If multiple appropriate answers
could be found, up to four different versions per platform have been used.

As comparable systems, START and MEAD have been chosen. START39 is an open-domain
question answering system that extracts data from several databases. It has been introduced
in Katz (1997) and Katz et al. (2002), while its relevance for this thesis has been addressed
in section 2.6. Reference summaries for the training questions could be generated by simply
posting the answer to the web interface and copying the result to a plain text file. START
was able to generate an answer for 16 of the 20 training questions. MEAD40 is a general
purpose multi-document summarization system that has been introduced in Radev et al.
(2004). For each training question, MEAD was supplied with all of the retrieved documents
(converted to MEAD’s desired input format) and parameterized to produce a summary of
about 10 sentences. This should allow best comparability with the other systems. Each of
the 20 training questions could be processed and led to an appropriate answer.

Table 6.9 shows the recall, precision and F -measure (with F = 1) scores of the ROUGE-1,
ROUGE-2, ROUGE-L and the ROUGE-W measure. The scores have been averaged over the
20 training queries. While ROUGE-1 and ROUGE-2 are instances of ROUGE-N with param-
eter N = 1 and N = 2 that measures the co-occurrence of N -grams, ROUGE-L determines
the longest common subsequence of the two input summaries. ROUGE-W is a weighted
version of ROUGE-L with weighting parameter 1.2; cf. Lin (2004b) for the exact definition
of the four measures. Besides the performance of START and MEAD, three different con-
figurations for the system of this thesis have been tried. QA includes the text view of each
topic individually. For the query “What is flash media?” (defQ-0) there are 5 summaries
with topic labels “Flash, mob, http”, “flash, drives, memory”, “flash, systems, file”, “Flash,
download, website” and “PlayStation, camcorder, Portable”. As the topics have been ranked
according to their importance, the first topic will most likely contain the best answer. The
QA-first dataset therefore uses only the first topic’s summary. Since the user is able to man-
ually select the topic of interest, also the performance of the best answer is compared to
the other systems. The best answer in this case is the one with the highest recall score of
the QA run. This dataset will be called QA-best in the following.

The highest (1•) and lowest (0
) scores of each row have been highlighted in the data ta-
ble. Generally, MEAD obtains the highest recall, START the highest precision and QA-best
the highest F -measure. The summarization system MEAD focuses on composing the most
important information and therefore achieves an excellent recall. Manual inspection how-
ever showed that there was some redundancy in the summaries and the sentences were
often of different topics, which reduces the readability and understandability of the sum-
mary. START uses redacted texts from the World Wide Web, like excerpts of Wikipedia,

39START, Natural Language Question Answering System – http://start.csail.mit.edu
40MEAD – http://www.summarization.com/mead

70

http://start.csail.mit.edu
http://www.summarization.com/mead


6.6. Evaluation Results

Measure START MEAD QA QA-first QA-best
ROUGE-1 – Recall 0.26270
 0.41681• 0.30568 0.35244 0.39607
ROUGE-2 – Recall 0.07031 0.07762• 0.04517
 0.06401 0.07464
ROUGE-L – Recall 0.24432
 0.38586• 0.27930 0.32378 0.36131

ROUGE-W – Recall 0.08793
 0.12384• 0.09049 0.10446 0.11791
ROUGE-1 – Precision 0.32325• 0.11284
 0.19482 0.18621 0.20377
ROUGE-2 – Precision 0.09266• 0.02097
 0.03354 0.03314 0.03864
ROUGE-L – Precision 0.29742• 0.10480
 0.17970 0.17169 0.18631

ROUGE-W – Precision 0.20239• 0.06279
 0.11126 0.10263 0.11276
ROUGE-1 – F -measure 0.25150 0.17022
 0.21900 0.23431 0.25682•
ROUGE-2 – F -measure 0.07164• 0.03168
 0.03274 0.04209 0.04872
ROUGE-L – F -measure 0.23270 0.15794
 0.20091 0.21567 0.23452•

ROUGE-W – F -measure 0.10708 0.07865
 0.09107 0.09882 0.10904•

Recall Precision F -measure

Figure 6.9: Evaluation of the different summarization approaches

Webopedia, WhatIs.com or the Merriam-Webster Dictionary.41 Summaries are therefore un-
derstandable and usually correct. Most of the time, the answers are however quite short
like only 1 or 2 sentences and do thus not fully reflect all the information of the reference
corpus. In fact, START’s recall is almost fully outperformed by all QA variants. The same
applies to MEAD’s precision, which is fully outperformed by START and all QA variants.
The overall good F -measure performance of QA-best shows that the system, developed in
this thesis, combines advantages of the two other systems and provides acceptable results
in both precision and recall. The difference between QA-best and QA-first is only 1.7% in
average and thus leads to a good topic ranking. Particularly, the best topic is also the first
for 50% of the queries and the second for 25%. Only in one query the best topic is ranked
to a position greater than 3.

The differences in precision, recall and F -measure between QA-best and START as well as
QA-best and MEAD have then been tested for statistical significance. Table 6.2 shows these
results. The significance has been determined by a paired t-test. Values with at least 99.0%

41 Webopedia – http://www.webopedia.com; WhatIs.com – http://whatis.techtarget.com;
Merriam-Webster Dictionary – http://www.m-w.com
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Measure QA-best − START QA-best − MEAD
ROUGE-1 – Recall 0.13337∗ −0.02074
ROUGE-2 – Recall 0.00433 −0.00298
ROUGE-L – Recall 0.11699∗ −0.02455

ROUGE-W – Recall 0.02998∗ −0.00593
ROUGE-1 – Precision −0.11948 0.09093∗
ROUGE-2 – Precision −0.05402 0.01767∗
ROUGE-L – Precision −0.11111 0.08151∗

ROUGE-W – Precision −0.08963 0.04997∗
ROUGE-1 – F -measure 0.00532 0.08660∗
ROUGE-2 – F -measure −0.02292 0.01704∗
ROUGE-L – F -measure 0.00182 0.07658∗

ROUGE-W – F -measure 0.00196 0.03039∗

Table 6.2: Recall/Precision/F-measure improvement of QA-best and its statistical significance

confidence have been highlighted in the table and marked with an asterisk (∗). The test
reveals that QA-best has a significantly better precision and F -measure than MEAD, while
its recall is also better than START’s. The higher recall scores of MEAD and the higher
precision of START turned however out to be not statistical significant (the confidence is
between 77.1% and 98.9%), which strengthens the usefulness of the system. Note that
although the difference of the averaged precision values of QA-best and START is quite
high, START was not able to retrieve an answer for 4 of the 20 queries and thus leads to a
confidence of only 98.4%.

A representative of each system type for the training query “What is DHCP?” (defQ-10) can
be found in figure 6.10. Note that some of the texts have been shortened (indicated by
[..]) for convenience. Besides the 4 system results in the figure, there are 2 answers from
Ask.com and 4 from the QA dataset, which have been used for the evaluation. START shows
the definition of DHCP from the corresponding Wikipedia article. The text is informative
and redundancy-free, but some information are missing due to the small length, like who
is generally using DHCP or what is needed to use DHCP. The summaries of MEAD and QA-
first are longer and thus are able to provide more information. They both contain some
redundancy, e.g. that DHCP is short for Dynamic Host Configuration Protocol. All the
three systems are however definitely providing comparable or even better results than the
user-generated reference answer of Answerbag.

Figure 6.11 shows 4 answers for the training query “What is a ‘mashup’?” (defQ-3). In
the evaluation dataset there are beyond that 2 answers from Answerbag, 1 from Ask.com
and 2 from QA. START again shows the corresponding Wikipedia article, which is a disam-
biguation page in this case. Although this offers a good overview, what the meaning of the
term could be, the provided definitions are again quite short such that a new query would
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DHCP (Dynamic Host Configuration Protocol) is a communica-
tions protocol that lets network administrators centrally man-
age and automate the assignment of Internet Protocol (IP) ad-
dresses in an organization’s network. DHCP is short form of
dynamic host configuration protocol.This protocol is used by
ISP (internet service provider ) or companies whose network
is very vast its function is to provide ip address to the client
automatically.If you are using DHCP the you dont need to give
ip address to the clients it will automatically give the ip ad-
dress to its clients with in the particular range and this makes
the administrators job more easy as he need not go to each
and every system in the network and configure the ipaddress.
To implement DHCP, you must have a DHCP server. [..]

Through the DHCP server, you can control the assignment of
addresses and the configuration of other TCP/IP protocol pa-
rameters in whatever way is appropriate for your network and
your organization. The DHCP server can be setup to hand out
or "lease" an IP number to a client for a specific amount of
time. DHCP (Dynamic Host Configuration Protocol) is a way
to automatically configure TCP/IP on client computers on a
network. DHCP just determines how your devices will receive
an IP address. Thus, the DHCP server acts as the network ad-
ministrator’s agent for managing the configurations of DHCP
clients. DHCP is short form of dynamic host configuration pro-
tocol. [..]

(MEAD) (QA-first)

Dynamic Host Configuration Protocol (DHCP) is a protocol
used by networked devices (clients) to obtain various parame-
ters necessary for the clients to operate in an Internet Protocol
(IP) network. By using this protocol, system administration
workload greatly decreases, and devices can be added to the
network with minimal or no manual configurations.

DHCP stands for Dynamic Host Control Protocol. In order to
configure a computer to access the Internet, you need about
five numbers, including its IP address. You can set these all up
by hand, which is a real pain unless you are a serious Geek.
DHCP is a simple way for the computer to send out a call ask-
ing any machine listening to send it those numbers so that it
can configure itself without bothering the user (who probably
wouldn’t know what to do anyway). It is the way almost all
"end user" machines are configured on the Internet.

(START) (Answerbag)

Figure 6.10: Different summaries for query “What is DHCP?” (defQ-10)

"Red Red Wine" is a song originally written by Neil Diamond
that was then covered by Tony Tribe and more famously by
UB40 in later years. Inside Out was a Hardcore and/or Met-
alcore band from Orange County, California - notable for be-
ing the first band fronted by Zack de la Rocha, later of Rage
Against the Machine. :Mother Nature’s Son is also the title
of an episode of Only Fools and Horses "Mother Nature’s Son"
is a Lennon/McCartney song, released by The Beatles on the
White Album. The Anti-Hit List is a weekly music column by
Canadian music critic John Sakamoto. Electronic civil disobe-
dience, also known as ECD or cyber civil disobedience, can re-
fer to any type of civil disobedience in which the participants
use information technology to carry out their actions. [..]

This is also known as a mashup. In practice, since Web 2.0 is
a title given by web designers it is more to do with the under-
lying technology. Without getting too technical, web services
can ’talk’ to each other. AJAX is just a fancy way of saying
that information is passed to and from the web browser using
Javascript rather than HTML. Finally, Web 2.0 is considered
by some to be the way in which these individual services and
data stores can now intract with each other. The theory here
is that each individual web service becomes much more useful
when combined with others. This would be a job for a Google
maps mashup, which combines Google maps and other data.
* http://www.themolu.com Molu - The search spider Mashup
based search engine. [..]

(MEAD) (QA-best)

Mashup may refer to:
•Mashup (digital), a digital media file containing any or all of
text, graphics, audio, video, and animation, which recombines
and modifies existing digital works to create a derivative work.
• Mashup (music), the musical genre encompassing songs
which consist entirely of parts of other songs
• Mashup (video), a video that is edited from more than one
source to appear as one
• Mashup (web application hybrid), a web application that
combines data and/or functionality from more than one
source

The Wikipedia defines a mashup as ’a website or application
that combines content from more than one source into an in-
tegrated experience’. This is a useful basic definition but a
more complete enterprise-relevant description would be: A
mashup is a user-driven micro-integration of Web-accessible
data. While short, this definition contains a number of im-
portant points worth considering: "User-driven" - Mashups are
executed for the user, not the by black-box back-end integra-
tion systems such as ESB, BPM, BPEL, etc. In this sense, a
mashup must be completed by the users themselves. Without
this guiding principle, we are merely sending the users back
to IT for more development. [..]

(START) (Ask.com)

Figure 6.11: Different summaries for query “What is a ‘mashup’?” (defQ-3)
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be necessary for retrieving more information. MEAD’s summary is mainly about musical
mashups, except the last sentence, which is about civil disobedience and thus irrelevant for
the query (regardless of its meaning). The remaining summary could be useful but does not
explain what a mashup is, in fact the term “mashup” is not even included in the summary.
As 16 of the 25 retrieved documents are about musical mashups (compared to 7 about
mashups in the World Wide Web), a summary about this topic is definitely a good guess.
In fact, also the QA dataset’s first topic is about musical mashups. The original query was
however taken from the computer category of Answerbag, so the intended meaning is the
definition of a web mashup. Within the QA result, there is a topic that contains an answer
about web mashups and that can be selected by the user. Although the summary is not very
well structured, the user can find out that it is possible to combine different web services
in a so called mashup, which is basically the information provided also in START and in the
reference summary of Ask.com. The QA result however names the Google Maps mashup
and the Molu search engine42 as two concrete mashup examples. The user also learns that
web mashups must have something to do with HTML, AJAX and Javascript. This technical
aspect can neither be found in the START result nor in any of the reference summaries.

The query “What does the abbreviation IDK stand for?” (defQ-1) could not be answered
by START. The MEAD summary contains several sentences about abbreviations, but none
of them explains what IDK could stand for. A similar text could be observed in QA-first,
which is a general text about different abbreviations—none of them about IDK. The second
topic however consists of only the single sentence “IDK means, I Don’t Know” that perfectly
answers the question. Table 6.12 shows the corresponding answers from MEAD, QA and
the reference corpus.

As regards list and factoid questions, the results have been manually inspected. Figure 6.13
shows the list and link view for the list question “Where do you search for downloading your
books of interest?” (listQ-0) and the text and list view for the factoid question “Where
do I find my Computer Processing Unit(CPU) on my computer?” (factQ-18). The link view
turns out to be helpful for the list question as there are some good links like to the American
Mathematical Society (AMS) or the Scientific American (SciAm), which offer downloadable
books. There are however also some links that are not related to the query, e.g. the link to
BMW, a German car manufacturer. Most documents addressed search engines and how to
find books in them, so the list view contains especially these terms.

The list and link view is not very helpful for the factoid question factQ-18, because they
both contain only general information about the CPU. The text view however contains the
answer, i.e. that the ‘CPU is located on the motherboard’. Considering that, it seems that
there is no exact type of view for a specific question type. The correct or best answer can
rather be included in any of the views and thus emphasizes the usefulness and flexibility of
the provided GUI.

42Molu, a meta search engine for different types of data – http://www.themolu.com
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There are two legends you can use with the maps: the orig-
inal key and a black and white key , which was developed
specifically for use with black and white copies of Sanborn
maps. Below are some of the most commonly used abbrevi-
ations for personal ads and what they mean: TLA is a three-
lettered abbreviation for Three-Letter Abbreviation or Three-
Letter Acronym. MOS is a standard motion picture jargon
abbreviation, used in production reports to indicate an asso-
ciated film segment has no synchronous audio track. * MOS
may stand for "Minus Optical Stripe," a note from a production
sound mixer, notifying recipients that he or she did not expose
an optical sound track for a particular scene or take [..]

Many words and abbreviations have been in general use, but
are not commonly used as of 2006: These abbreviations have
no relationship to letters in postal codes, which are assigned
by Canada Post on a different basis than these abbreviations.
These abbreviations allow automated sorting. The use of X
as an abbreviation for "cross" in modern abbreviated writing
(e.g. This abbreviation is most commonly used in notations
for mathematics or qualifications. ".." is an abbreviation for ",
et cetera" or ", etc." when it is used at the end of a sentence,
as in: The most common Latin words and abbreviations still in
use are: [..]

(MEAD) (QA-first)

IDK means, I Don’t Know Acronym Definition
IDK I Don’t Know
IDK I Didn’t Know
IDK Interface Development Kit
IDK I Dont Kare
IDK Internal Derangement of the Knee
IDK In Da Kitchen
IDK Individual Decontamination Kit

(QA) (Ask.com)

Figure 6.12: Different summaries for query “What does the abbreviation IDK stand for?” (defQ-1)

• Web search engine
• World Wide Web
• Web crawling
• major search-engines
• Site Search
• download pages
• Web crawler
• fraction of the Web
• Search Engine
• web crawler
• Book Search

• http://www.ams.org/featurecolumn/archive/pagerank.html
• http://news.bbc.co.uk/1/hi/technology/6198244.stm
• http://www.sciam.com/article.cfm?chanID=sa006&articleID=0006304A-37 [..]
• http://www.sitepoint.com/article/indexing-limits-where-bots-stop
• http://slashdot.org/article.pl?sid=06/02/05/235218
• http://bmw.de
• http://www.seroundtable.com/archives/003133.html
• http://click4thecause.live.com
• http://www.charitycafe.com
• http://www.goodsearch.com
• http://Yahoo.com

(listQ-0, list view) (listQ-0, link view)

• central processing unit (CPU
• processing unit (CPU
• Central Processing Unit
• Intel Pentium
• modern CPUs
• CPU design
• Central processing unit
• central processing unit
• unit (CPU
• Processing Unit
• Central Processing

The computer CPU is responsible for handling all instructions and calculation it receives
from other hardware components in the computer and software programs running on
the computer. (See also CPU design and computer architecture.) The system unit is
simply the whole computer, meaning the computer case with all components installed. In
computer engineering, an execution unit is a part of a CPU that performs the operations
and calculations called for by the program. A control unit is the part of a CPU or other
device that directs its operation. The control unit is a part of the Central Processing
Unit (The Processor). Also known as a processor or microprocessor the CPU was first
developed by Intel in 1974 and is short for Central Processing Unit. At one time control
units for CPUs were ad-hoc logic, and they were difficult to design. The CPU is located on
the motherboard and will have a cooling unit mounted on top of it. All types of control
units generate electronic control signals that control other parts of a CPU.

(factQ-18, list view) (factQ-18, text view)

Figure 6.13: Example results for the list and factoid queries listQ-0 and factQ-18
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Chapter 7

Conclusion

The goal of this thesis was the implementation of a question answering system that com-
bines answers from the three heterogeneous data sources Wikipedia, Yahoo! Answers and
a collection of Frequently Asked Questions (FAQ) in a multi-document summary. The sum-
mary should initially provide an answer to definition questions and then be extended for
factoid and list questions.

Based on a training set of 20 definition, 20 factoid and 20 list questions and the corre-
sponding result of a document retrieval engine for each data source, I identified several
challenges resulting from the heterogeneity of the data, like differences in format, length,
style, focus, type and number of errors. I defined three main tasks to solve these issues:
passage extraction, topic clustering and summarization.

For evaluating the system tasks, I have annotated eight of the definition questions by assign-
ing a relevance score between 0 (irrelevant) and 2 (definitely relevant) to each sentence as
well as a topic to each document. I then built a component to read the retrieved documents
for a single query from an XML file. UIMA was chosen as a framework for annotating and
processing large amounts of data. The data is segmented into paragraphs, sentences and
tokens. For each token, the part-of-speech, the lemma and a specificity score is determined.
A combination of DKPro and my own components are used for these preprocessing steps.
Part-of-speech and lemma annotations are created by parsing the results of TreeTagger,
while the specificity score calculation is based on the token’s frequency in the Wortschatz
corpus. Finally, I disambiguated the sense of each token by comparing the surrounding
document text with the sense glosses in WordNet using Lesk’s algorithm.

After preprocessing, I applied a passage extraction technique on the document collection
that started with removing identical duplicates from the collection to reduce the calculation
time of the upcoming components. Irrelevant paragraphs have then been filtered by calcu-
lating the semantic similarity score between the paragraph’s text and the query. I found a
high correlation between WordNet-based measures and decided to use only the measures
defined by Leacock/Chodorow and Resnik together with the cosine similarity score. The ob-
jective of the paragraph filter was removing a high number of irrelevant paragraphs while
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keeping most of the relevant ones. I have optimized the component on one of the training
queries and found the best results for removing a paragraph if its cosine similarity score is
below 0.065, its Leacock/Chodorow score is below 0.513 or its Resnik score is below 0.06.
Evaluating this configuration on the eight queries of the evaluation corpus, led to an aver-
age precision of 97% while removing 185.3 irrelevant and only 3.5 relevant paragraphs per
document collection in average (out of 286.1 available paragraphs).

I then thought about a more elaborated approach for filtering the remaining data. I have
chosen to use AltaVista-based Pointwise Mutual Information (PMI) and Wikipedia-based
Explicit Semantic Analysis (ESA) on the sentence level. Optimization led to a threshold of
0.15 for PMI and 0.017 for ESA, while the evaluation resulted in an average precision of
92%. The component thus removed 68.5 irrelevant and 2.6 relevant sentences per docu-
ment collection in average (out of 342.2 available sentences). To improve that, I focused on
finding natural boundaries between relevant and irrelevant passages by applying a Hidden
Markov Model (HMM) that has been trained by He et al. (2004). I tried 6 different scaling
functions to convert the PMI and ESA similarity scores to an emission probability for the
HMM. An evaluation showed that the results can be improved by using a Sigmoid function
(i.e. an s-curve) as scaling function. The average improvement in precision turned out to
be 7%, such that the passage extraction task could be concluded with an average precision
of 98% and a recall of 81%.

The topic clustering task aims to automatically determine the topic of each document and
thus allow the user to select the topic of interest if the query was ambiguous. I have
implemented the two well-known clustering techniques hierarchical agglomerative cluster-
ing (HAC) and k-means clustering and included an existing implementation of Newman’s
community-based clustering approach. The evaluation on the eight training queries showed
good purity scores for complete-link and average-link HAC and for Newman’s approach,
while the number of generated clusters was too high in the HAC algorithm. I then experi-
mented with a combination of the clustering results of the three algorithms and found out
that especially the combination of k-means and Newman improved the results of the indi-
vidual algorithms and outperformed the baseline’s purity scores in average by 10%. The
mean clustering purity was 88.4% for this merged clustering algorithm. As baseline, the
document’s data source has been used to form three data source clusters.

To increase the quality of the resulting summary, duplicate and invalid sentences have been
removed. For removing duplicates, I used a simple hashing function, while invalid sen-
tences have been found by checking each sentence to have at least one noun and one verb.
The extractive summary is then prepared by ranking the sentences according to their im-
portance and relevance to the query. I have used the position of a sentence within the
document as a baseline system (the earlier a sentence appears in the document, the more
important and relevant it is). After that, I compared the baseline with a ranking based on
the similarity scores of the passage extraction task (Similarity Rank) and the result of the
Biased LexRank algorithm, which I implemented as suggested by Otterbacher et al. (2009).
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I found out that none of the two approaches outperformed the baseline; in particular, the
elaborated Biased LexRank method produced the worst results in average. Each approach
however has shown its advantages in certain situations, so I tried a combination of the
rankings by calculating the mean of the three individual ranks and reordering the sen-
tences according to this new merged rank. The new ranking outperformed the three input
algorithms in almost every query and led to a 7–12% higher R-precision score on the 8
training queries.

The identified topics have then been ranked according to the number of documents that
they contain. I also determined topic labels by using the three most salient words of the
contained documents. While the ranked sentences directly form an extractive summary
that works fine for answering definition questions, I thought about a different method for
list and factoid questions: I identified the most frequent n-grams within the documents and
presented them as a list of important terms with respect to the given query. The n-grams
are ranked according to their occurrence and their average specificity. The configuration of
using n-grams of size 2–5 with a minimum average specificity of 1.0 and at least 3 occur-
rences has been chosen manually. Looking at the available n-grams, the method promised
good results, but the actual results seemed to be well improvable by choosing a better scor-
ing model. A quantitative evaluation has therefore been postponed to allow a comparison
with a better model at a later time.

Finally, I have implemented a graphical user interface to display the summarization results.
The main application is packaged in a web service QASRV, while the front end is deployed
as the JAVA web application QAWEB that provides three JSP pages. On the first page, the
user posts the query, which is submitted to the second JSP page that invokes the web
service and displays status messages to the user. After completing the calculation, the user
is redirected to the third page and can choose between three views for the answer. The
text view contains the continuous textual summary based on concatenation of relevant
sentences with high ranking scores. The list view displays the list of frequent n-grams,
which is useful for factoid and list questions and the link view shows a list of all URLs that
have been found in the documents. I focused on a flexible and fast interface that is easy
to use. In fact, the user can exclude sentences or list items from one of the data sources
or show only information on a certain topic. Each sentence or item additionally provides a
detail pane that can be opened by simply clicking on the element. It shows the context, the
topic and the data source of the element as well as a link to the original document, it has
been taken from.

The final text summaries have been compared with the results of the START question an-
swering system and the MEAD multi-document summarization system. I have chosen to
calculate the ROUGE-N, ROUGE-L and ROUGE-W scores between each system and a ref-
erence corpus, which has been created from user-contributed answers on Answerbag or
that have been found in the Ask.com Q&A engine. The evaluation showed that my system
achieved the highest F -measure scores and thus provides complete, reliable and under-
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standable information. For summaries of the MEAD system, precision was lower than in
both the other systems, while START had the lowest recall scores in average. A paired t-test
showed that the improvements in precision and F -measure of my system over MEAD were
statistically significant with a confidence of over 99.0%. The same applied to the compari-
son of my system’s recall scores with the START results. Better precision of START or better
recall scores of MEAD achieved however only a confidence between 77.1% and 98.9% and
thus were not very significant. Manual inspection also showed that the summaries of my
system usually provided the necessary information for the question and succeeded to an-
swer questions that could not be answered at all by START or not answered appropriately
by the MEAD summary.

Further work and extensions of the system can be done in many components. Besides at-
taching the document retrieval engine (which was not part of the thesis) for responding to
arbitrary questions, calculation time is an issue. Currently, the system takes 90–120 sec-
onds, but implies some query-specific caching mechanisms that cannot be used for arbitrary
questions. I have identified the bottleneck during the calculation of the PMI and ESA score,
during k-means clustering and during the calculation of the Biased LexRank scores. As each
task uses a combination of different measures or algorithms, it is easily possible to remove
some of the components in favor of a faster calculation. While working with heterogeneous
data, I found however out that a combination of different approaches is crucial to get stable
results.

Improvements of the data quality could be obtained by including more data sources and
by using a better sentence splitter, tokenizer and part-of-speech tagger. For the passage
extraction task, the HMM can be trained on the evaluation data to get better results. For
calculating the document clusterings an alternative similarity measure can be tried. The
topic labeling algorithm also offers alternatives like using noun phrases or terms that ap-
pear statistically significant in a certain document. The method to find frequent n-grams
can be improved by developing a better scoring model and quantitatively evaluating the
results compared to a baseline. The support of list and factoid questions can also be further
improved and evaluated.
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Evaluation Data

A.1 Example Queries

The following list of example queries has been used for testing, training and evaluating the
question answering system. The queries have been taken from the “Computer” category of
the Answerbag platform by Kateryna Ignatova. The original URL was:
http://www.answerbag.com/c_view/20_new

— 20 DEFINITION QUERIES —
ID Query
defQ-0 What is flash media?
defQ-1 What does the abbreviation IDK stand for?
defQ-2 What is a dvd ripper?
defQ-3 What is a ‘mashup’?
defQ-4 What is the c++ language
defQ-5 What is asp?
defQ-6 What is RAM?
defQ-7 What is DNS zone?
defQ-8 What is relay agent?
defQ-9 Whats meant by full duplex in net working
defQ-10 What is DHCP?
defQ-11 What is promiscuous mode?
defQ-12 What is the definition of an exclusive relation?
defQ-13 What is flip flop?
defQ-14 What is a relational database?
defQ-15 What is a dropper?
defQ-16 What is an AT slot?
defQ-17 What are dead pixels?
defQ-18 What is Blue-ray Disc Technology?
defQ-19 What is mac operating system?
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— 20 LIST QUERIES —
ID Query
listQ-0 Where do you search for downloading your books of interest?
listQ-1 Where can I find and download a free text-recognition image-reader that somehow

transposes text in images onto Microsoft Word (and any other word-processing docu-
ment?)

listQ-2 Where can I download a .flv to video(eg. wmv) converter?
listQ-3 What website can give me a free antivirus program?
listQ-4 Where can I download kidpix 4 for free?
listQ-5 Where can i find free flash video tutorials for download
listQ-6 Are there any free programs that will convert .3gp files into .wmv?
listQ-7 Where online can I sell my used stuff?
listQ-8 What are three programming languages that you think every programmer should know?
listQ-9 What are the different medias used in networking
listQ-10 4 main operational statements in SQL?
listQ-11 What are some good free spyware removal programs?
listQ-12 What substrate materials used in computer chip production?
listQ-13 WHAT ARE THE DIFFERENT TYPES OF MEMORY
listQ-14 What are the characteristics of postsript printer language
listQ-15 What are the main types of RAM?
listQ-16 Which laptops have the best battery life?
listQ-17 WHICH WEBSITE CAN I LEARN TO TYPE FASTER
listQ-18 What are the symptoms of computer being infected by boot sector virus?
listQ-19 What are the things that I must consider for DVD handling and storage?

— 20 FACTOID QUERIES —
ID Query
factQ-0 On average, how many dollars per gigabyte (or gigabytes per dollar) does RAM cost

today?
factQ-1 How much does the typical 1 Terabyte hard drive cost today?
factQ-2 How many different tags are there on Notepad Web Page Designing (i.e. <TEXT>)?
factQ-3 What is the Range of WiMAX?
factQ-4 How many commands we can use in Run..(like ping,msconfig etc.)?
factQ-5 Does anyone know how many channels the new latest macbook’s sound card has?
factQ-6 What’s the average lifespan of a laptop computer before it breaks down?
factQ-7 How many cents per gigabyte is hard drive space now?
factQ-8 How many cents per gigabyte is RAM now?
factQ-9 What type of connector is used with CAT-5 cable?
factQ-10 What is the purpose of cladding in optical fibre?
factQ-11 What’s the latest invented computer?
factQ-12 What is the maximum amount of data a Blu-Ray Disc can have?
factQ-13 What is good external hard drive brand? not too expensive
factQ-14 What’s the average time it takes to load a simple blog on the internet?
factQ-15 What processor is coming after the Intel 2 Extreme?
factQ-16 What is the purpose of Service Pack 2 and 3 for?
factQ-17 How long does hp deskjet ink last for?
factQ-18 Where do I find my Computer Processing Unit(CPU) on my computer?
factQ-19 How close can speakers (magnets) get to a hard-drive without risking the loss of data?
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A.2 Annotated Evaluation Data

I have manually annotated some of the example queries to evaluate the system’s perfor-
mance. The following table shows the number of possibly and definitely relevant sentences
and the number of topics that appeared in a document collection. Additionally, the total
number of documents, paragraphs and sentences within the collection is given.

Query ID Documents Paragraphs Sentences definitely relevant possibly relevant Topics
defQ-0 60 458 1401 58 57 5
defQ-2 60 198 694 5 37 3
defQ-3 25 196 565 4 10 3
defQ-4 60 384 2430 20 19 2
defQ-10 42 150 457 32 63 2
defQ-13 60 320 1152 10 10 3
defQ-14 60 312 977 22 49 3
defQ-19 60 313 1134 8 13 4
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UIMA Components

The following is a list of UIMA components that have been implemented for the question
answering system. Besides the package and class name of the component, the input and
output annotations are given to allow further usage of the individual components.

— PREPROCESSOR —

annotator.UKPSentenceSplitter:
Creates an annotation for each sentence in the document.
The JAVA BreakIterator is used for the segmentation.
(DKPro component.)

Input:
—
Output:
Sentence

annotator.UKPSentenceTokenizer:
Creates an annotation for each word in the document. The
JAVA BreakIterator is used for the segmentation.
(DKPro component.)

Input:
Sentence
Output:
Token

annotator.POSLemmaAnnotator:
Annotator for part-of-speech tags and word lemmas. The
component uses an adapter to Helmut Schmid’s TreeTagger,
that determines the POS and the lemma.

Input:
Token
Output:
Lemma, POS

annotator.StopWordAnnotator:
Checks if a token or lemma is contained in the stop word
lists and creates a corresponding StopWord annotation.
(DKPro component.)

Input:
Token, Lemma
Output:
StopWord

annotator.XTokenAnnotator:
Combines token, part-of-speech and lemma annotations
to a new XToken annotation that allows a faster access
to these features. XTokens are only created for non-stop
words.)

Input:
Token, Lemma, POS,
StopWord
Output:
XToken
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annotator.TextSegmentationAnnotator:
Adds annotations for paragraphs and splits sentence anno-
tations that exceed paragraph boundaries or contain a large
amount of consecutive white spaces. Sentences of length 1
are also removed.

Input:
Sentence
Output:
Paragraph, Sentence

annotator.SpecificityAnnotator:
Annotates an IDF-like score to each XToken. The word fre-
quencies freq(w, C) in the Leipzig Wortschatz corpus are
used to calculate spec(w) = 1− log freq(w, C)/ log |C |.

Input:
XToken
Output:
XToken

annotator.WordNetSenseAnnotator:
Implementation of Lesk’s word sense disambiguation algo-
rithm that compares the sense gloss of WordNet with every
token in the document and returns the appropriate word
sense (i.e. the most probable) for every token. The sense
id, the gloss and the number of available senses will be
stored as annotation features.

Input:
XToken
Output:
WordNetSense, XToken

annotator.QueryViewGenerator:
Creates a view for the query document and duplicates each
annotation that has been added so far.

Input:
Query
Output:
View::Query

— PASSAGE EXTRACTION —

annotator.DuplicateDocumentRemover:
Calculates an MD5 hash for each document and adds a Can-
didateDocument annotation with relevant = false if the
same hash has already been seen for another document.

Input:
RetrievedAnswer
Output:
CandidateDocument

annotator.ParagraphFilterAnnotator:
Computes the semantic similarity between each paragraph
and the query. The component uses cosine similarity and
the methods defined by Leacock/Chodorow and Resnik.
A CandidateParagraph annotation is created for each pro-
cessed paragraph; the feature relevant is set to false if
the cosine similarity is below 0.065, the Leacock/Chodorow
similarity is below 0.513 or the Resnik similarity is below
0.06.

Input:
Query, Answer,
Paragraph, XToken
Output:
CandidateParagraph
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annotator.SentenceSelectorAnnotator:
Computes the semantic similarity between each sentence
and the query. The component uses AltaVista-based PMI
and Wikipedia-based ESA. Only sentences within a rele-
vant paragraph is processed (an annotation of type Candi-
dateParagraph with feature relevant needs to be present).
A CandidateSentence annotation is created for each pro-
cessed sentence; the feature relevant is set to true if the
PMI score is above 0.15 and the ESA score is above 0.017.

Input:
Query, Answer, Sentence,
XToken,
CandidateParagraph
Output:
CandidateSentence

annotator.PassageExtentDeterminationAnnotator:
Finds natural borders between relevant and irrelevant pas-
sages by computing an optimal relevance distribution for
each paragraph using a pre-trained Hidden Markov Model.
PMI and ESA score as calculated in the previous component
are used as emission probability.

Input:
Answer,
CandidateSentence
Output:
CandidateSentence

— TOPIC CLUSTERING —

annotator.KMeansTopicClusteringAnnotator:
Calculates a k-means clustering for the given input docu-
ments. The number of clusters k can be specified. An an-
notation is created for each document. Empty clusters will
not be annotated.

Input:
CandidateDocument,
XToken
Output:
KMeansTopicCluster

annotator.NewmanTopicClusteringAnnotator:
Calculates a community clustering for the given input doc-
uments. To achieve that, a graph representation is created
from the documents. The clustering is then optimized for
a good modularity score, according to Newman’s defini-
tion. The component uses the LinLogLayout implementa-
tion, which performs a greedy optimization. An annotation
is created for each cluster. The cut-off threshold (i.e. the
minimal similarity for adding an edge to the graph) can be
specified; cosine similarity is used to weigh the edges.

Input:
CandidateDocument,
XToken
Output:
NewmanTopicCluster

annotator.MergedTopicClusteringAnnotator:
Merges both the input cluster annotations to a new merged
cluster by calculating the cross product of the two cluster-
ings. Although the possible number of clusters is the prod-
uct of both the input clustering sizes, most of the clusters
will be empty. The new cluster id is a concatenated string
of the original cluster ids.

Input:
KMeansTopicCluster,
NewmanTopicCluster
Output:
MergedTopicCluster
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annotator.TopicLabelAnnotator:
Iterates through all topic clusters of the given type and de-
termines a label for the cluster. A bag-of-words index is first
built from all documents within the cluster. The tokens are
weighted by their specificity value to find rare words that
appear often within the cluster. The three words with the
highest score are finally used as topic label, separated by
commas.

Input:
MergedTopicCluster,
XToken
Output:
MergedTopicCluster

— SUMMARIZATION —

annotator.DuplicateSentenceRemover:
Calculates an MD5 hash for each sentence and changes the
CandidateSentence annotation to relevant = false if the
same hash has already been seen for another sentence.

Input:
RetrievedAnswer,
CandidateSentence
Output:
CandidateSentence

annotator.InvalidSentenceRemover:
Identifies sentences with either no noun or no verb and
changes their CandidateSentence annotation to relevant

= false.

Input:
RetrievedAnswer, Token,
POS, CandidateSentence
Output:
CandidateSentence

annotator.DocumentPositionRankAnnotator:
Ranks the sentences according to their occurrence position
in the document. Sentences in the beginning of a document
receive higher ranks than sentences in the middle or end.

Input:
Answer, Sentence,
CandidateSentence
Output:
DocumentPosition-
RankedPassage

annotator.SimilarityRankAnnotator:
Ranks the sentences according to their HMM emission
probability that has been computed during passage extent
determination. This similarity score consists of a scaled PMI
and ESA value. High similarity scores obtain a high rank.

Input:
Answer, Sentence,
CandidateSentence
Output:
SimilarityRankedPassage

annotator.BiasedLexRankAnnotator:
Calculates the Biased LexRank score for each sentence in
the document collection and ranks them in descending or-
der.

Input:
Answer, Sentence,
CandidateSentence
Output:
BiasedLexRank-
RankedPassage

88



annotator.MergedRankAnnotator:
Calculates the mean of the previous three rankings and
reranks the sentences according to this score. The result is
thus a combined ranking of Position Rank, Similarity Rank
and Biased LexRank.

Input:
DocumentPosition-
RankedPassage,
Similarity-
RankedPassage,
BiasedLexRank-
RankedPassage
Output:
MergedRankedPassage

annotator.URLAnnotator:
Uses a regular expression to find uniform resource locators
(URLs) within the documents and annotates each occur-
rence. The underlying token, lemma and part-of-speech are
removed and replaced by a new Token/XToken that spans
the whole URL.

Input:
Token, POS, Lemma,
XToken
Output:
URL, Token, XToken

annotator.FrequentNGramAnnotator:
Identifies n-grams in the document collection and adds an
annotation for those with high scores. The n-grams are
scored with their number of occurrences and their mean
specificity value. Only n-grams of size 2–5 with a mean
specificity of at least 1.0 and a minimum occurrence of 3
are considered.

Input:
Paragraph, Token,
XToken
Output:
FrequentNGram

consumer.SummaryHtmlFormatter:
Generates the HTML excerpt that is displayed in the graph-
ical user interface. A text, list and link view is created from
the ranked sentences, the frequent n-grams and the URL
annotations. A control bar is also formatted that allows a
selection of topics or data sources.

Input:
RetrievedAnswer,
Sentence, XToken,
MergedTopicCluster,
CandidateSentence,
RankedPassage,
FrequentNGram, URL
Output:
—
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