International Journal on Artificial Intelligence Tools
Vol. 10, No. 4 (2001) 777—777
© World Scientific Publishing Company

EFFICIENT DEFEASIBLE REASONING SYSTEMS

MICHAEL J. MAHER

Department of Computer Science, Loyola University Chicago
6525 N. Sheridan Road, Chicago, IL 60626, USA

mjm@cs.luc.edu

ANDREW ROCK

School of Computing and Information Technology, Griffith University
Nathan, Queensland 4111, Australia
arock@cit.gu.edu.au

GRIGORIS ANTONIOU

Department of Computer Science, University of Bremen
P.O. Box 830440, D-2833/ Bremen, Germany
ga@tzi.de

DAVID BILLINGTON

School of Computing and Information Technology, Griffith University
Nathan, Queensland 4111, Australia
db@cit.gu.edu.au

TRISTAN MILLER

Department of Computer Science, University of Toronto
10 King’s College Road, Toronto, ON M55 8G4, Canada

psy@cs.toronto.edu

Received 9 Oct 2001
Revised 1 Nov 2001

For many years, the non-monotonic reasoning community has focussed on highly expres-
sive logics. Such logics have turned out to be computationally expensive, and have given
little support to the practical use of non-monotonic reasoning. In this work we discuss
defeasible logic, a less-expressive but more efficient non-monotonic logic. We report on
two new implemented systems for defeasible logic: a query answering system employing a
backward-chaining approach, and a forward-chaining implementation that computes all
conclusions. Our experimental evaluation demonstrates that the systems can deal with
large theories (up to hundreds of thousands of rules). We show that defeasible logic has
linear complexity, which contrasts markedly with most other non-monotonic logics and
helps to explain the impressive experimental results. We believe that defeasible logic,
with its efficiency and simplicity, is a good candidate to be used as a modeling language
for practical applications, including modelling of regulations and business rules.

Keywords: defeasible logic, defeasible reasoning, non-monotonic reasoning, rule-based
systems, implementation

Efficient Defeasible Reasoning Systems

1. Introduction

Nonmonotonic reasoning was originally introduced to address certain aspects
of commonsense reasoning, mainly reasoning with incomplete information. The
motivation was to be able to “jump to conclusions” in cases where not all necessary
information is available, yet certain plausible assumptions can be made.

A great amount of research has been conducted in nonmonotonic reasoning 2.
Despite many conceptual advances some negative aspects have become apparent.
The first one comes from the computational complexity analysis: it turns out that
most nonmonotonic reasoning systems have high computational complexity %3
which seems to be contrary to the original motivation of “jumping to conclusions”.
The second negative observation is the failure of mainstream nonmonotonic systems
to find their way into applications. Only quite recently did applications in reasoning

about action 7% and the solution of NP-hard problems ° appear.

Our paper is not concerned with the classes of nonmonotonic reasoning ap-
proaches mentioned above. Rather, it focuses on another research stream within
nonmonotonic reasoning — an often neglected one — which is prepared to sacrifice

expressive power in favour of simplicity, efficiency and easy implementability. De-

10,11

feasible logic is an early such logic, and the one we will be dealing with. It

is closely related 12 to inheritance networks 2, another formalism with an efficient

implementation '*. Recently several other systems in this class were proposed, for

example Courteous Logic Programs 13

16

and sceptical Logic Programming without
Negation as Failure '®. There has been recent evidence that this is a practicable

approach 7.

Defeasible logic is a sceptical nonmonotonic reasoning system based on rules and
a priority relation between rules that is used to resolve conflicts among rules, where
possible. The logic has been recently subjected to a thorough theoretical analysis
by our research group. Results include representational properties and properties

of the proof theory 819,20

21

, and establishing its relationship with negation-as-failure

, argumentation 22 and other logics 23.

Deafeasible reasoning has already been found to be useful in modelling elements

24,25

of legal reasoning It has potential as an analytical tool in the process of

drafting regulations and business rules 26, However its greatest potential may be in
providing an executable modelling tool for the legal domain 2627282930,

We believe that defeasible logic is suitable for such practical applications because
(i) its basic concepts (simple rules and priorities) can be easily understood by non-
experts, and (ii) because the logic is sufficiently efficient. More generally, we believe
that these kinds of nonmonotonic approaches can be used as simple and efficient
modelling languages for situations where one needs to deal quickly and flexibly with
incomplete and conflicting information (a point that is, independently, propagated
by Grosof 2%). Electronic commerce, where decisions (e.g. on pricing or the granting
of credit) need to be made in real time 24 hours a day, is a particularly promising

domain 27,2830,

Efficient Defeasible Reasoning Systems

The contribution of this paper is to study and demonstrate the efficiency of
defeasible logic. In particular we describe two implemented systems: one for query
evaluation, and one that computes all conclusions of a given theory. For each of
the systems we describe their design, and provide a summary of their experimental

evaluation. We also argue that defeasible logic has linear complexity (in the
number of symbols in a defeasible theory). A full proof of that result will appear
elsewhere 31,

The paper is organized as follows. Section 2 presents the basic notions of de-
feasible logic, and summarizes some results regarding its properties and relation to
other approaches. Section 3 describes our query evaluation system, while section
4 is devoted to the system that computes all conclusions. Section 4 also describes
the complexity result. Section 5 briefly discusses an independently-developed Pro-
log meta-interpreter for defeasible logic, and outlines some flaws. In section 6 we
describe the design of our experiments, and present and interpret the experimental
results. Finally, sections 7 and 8 respectively describe our current and future work,
and outline our conclusions.

2. Defeasible Logic

We begin by presenting the basic ingredients of defeasible logic!. A defeasible
theory contains five different kinds of knowledge: facts, strict rules, defeasible rules,
defeaters, and a superiority relation.

Facts are indisputable statements, for example, “Tweety is an emu”. In the
propositional logic, this might be expressed as emu.

Strict rules are rules in the classical sense: whenever the premises are indis-
putable (e.g. facts) then so is the conclusion. An example of a strict rule is “Emus
are birds”. Written formally:

emu — bird

Defeasible rules are rules that can be defeated by contrary evidence. An example
of such a rule is “Birds typically fly”; written formally:

bird = flies.

The idea is that if we know that something is a bird, then we may conclude that it
flies, unless there ts other evidence suggesting that it may not fly.

Defeaters are rules that cannot be used to draw any conclusions. Their only
use 1s to prevent some conclusions. In other words, they are used to defeat some
defeasible rules by producing evidence to the contrary. An example is “If an animal
is heavy then it might not be able to fly”. Formally:

heavy ~ —flies

The main point is that the information that an animal is heavy is not sufficient
evidence to conclude that it doesn’t fly. It is only evidence that the animal may

1In this paper we restrict attention to propositional defeasible logic.

Efficient Defeasible Reasoning Systems

not be able to fly. In other words, we don’t wish to conclude = flies if heavy, we
simply want to prevent a conclusion flies.

The superiority relation among rules is used to define priorities among rules,
that is, where one rule may override the conclusion of another rule. For example,
given the defeasible rules

T bird = flies
v’ brokenWing = —flies

which contradict one another, no conclusive decision can be made about whether
a bird with a broken wing can fly. But if we introduce a superiority relation >
with 7/ > r, then we can indeed conclude that the bird cannot fly. It turns out
that we only need to define the superiority relation over rules with contradictory
conclusions.

It is not possible, in this paper, to give a complete formal description of the logic.
However, we hope to give enough information about the logic to make the discussion

of the implementations intelligible. Our presentation follows the formulation of 32

For more details, we refer the reader to 293!,

A rule v consists of its antecedent (or body) A(r) which is a finite set of literals,
an arrow, and its consequent (or head) C(r) which is a literal. Given a set R of
rules; we denote the set of all strict rules in R by R, the set of strict and defeasible
rules in R by R4, the set of defeasible rules in R by R4, and the set of defeaters in
R by Rgs:. R[q] denotes the set of rules in R with consequent ¢. If ¢ is a literal, ~¢
denotes the complementary literal (if ¢ is a positive literal p then ~¢ is —p; and if ¢
is —p, then ~q¢ is p).

A defeasible theory D is a triple (F, R, >) where F is a finite set of literals (called
facts), R a finite set of rules, and > a superiority relation on R.

A conclusion of D is a tagged literal and can have one of the following four
forms:

+Agq, which is intended to mean that ¢ is definitely provable in D (i.e., using
only facts and strict rules).

—Agq, which is intended to mean that we have proved that ¢ is not definitely
provable in D.

+0q, which is intended to mean that ¢ is defeasibly provable in D.

—0q which is intended to mean that we have proved that ¢ is not defeasibly
provable in D.

Provability is based on the concept of a derivation (or proof) in D = (F, R, >).
A derivation is a finite sequence P = (P(1),...P(n)) of tagged literals constructed
by inference rules. There are four inference rules (corresponding to the four kinds
of conclusion) that specify how a derivation can be extended. Here we briefly state
the inference rules for the two positive conclusions. (P(1..i) denotes the initial part
of the sequence P of length 7):

Efficient Defeasible Reasoning Systems

+A: We may append P(i+ 1) = +Agq if either
g€ 'or
dr € R,[q] Va € A(r) : +Aa € P(1..9)

This means, to prove +Aq we need to establish a proof for ¢ using facts and strict
rules only. This is a deduction in the classical sense — no proofs for the negation of
q need to be considered (in contrast to defeasible provability below, where opposing
chains of reasoning must be taken into account, too).

+9: We may append P(i+ 1) = 4+9q if either
(1) +Aq € P(1..i) or
(2) (2.1) 3Ir € Ryalq]Va € A(r) : +0a € P(1..4) and
(2.2) —A~q € P(1..7) and
(2.3) Vs € R[~q] either
(2.3.1) Ja € A(s) : —=Ga € P(1..i) or
(2.3.2) 3t € Ryqg] such that
Va € A(t) : +8a € P(l..i) and t > s

Let us work through this inference rule. To show that ¢ is provable defeasibly we
have two choices: (1) We show that ¢ is already definitely provable; or (2) we need
to argue using the defeasible part of D as well. In particular, we require that there
must be a strict or defeasible rule with head ¢ which can be applied (2.1). But now
we need to consider possible “attacks”, that is, reasoning chains in support of ~q.
To be more specific: to prove ¢ defeasibly we must show that ~¢ is not definitely
provable (2.2). Also (2.3) we must consider the set of all rules which are not known
to be inapplicable and which have head ~¢ (note that here we consider defeaters,
too, whereas they could not be used to support the conclusion ¢; this is in line with
the motivation of defeaters given earlier). Essentially each such rule s attacks the
conclusion ¢. For ¢ to be provable, each such rule s must be counterattacked by
a rule t with head ¢ with the following properties: (i) ¢ must be applicable at this
point, and (ii) ¢ must be stronger than s. Thus each attack on the conclusion ¢
must be counterattacked by a stronger rule.

3. A System for Query Evaluation

The query answering system, Deimos, is a suite of tools that supports our
ongoing research in defeasible logic. The centre of the system is the prover. It
implements a backward-chaining theorem prover for defeasible logic based almost
directly on the inference rules, such as those given in Section 2. The system also
includes a program that generates the scalable theories used as test cases in this
paper. It is accessible through a command line interface and a CGI interface at
http://www.cit.gu.edu.au/ arock/defeasible/ Defeasible.cgi The system is im-
plemented in about 4000 lines of Haskell?.

?Much of this code, along with the design strategy, is common to the Phobos query answering
system for Plausible logic®3:3* which has been developed in parallel with Deimos.

Efficient Defeasible Reasoning Systems

Deimos has been designed primarily for flexibility (so that we can explore vari-
ants of defeasible logic) and traceability (so that we can understand the computa-
tional behavior of the logics and their implementations). Nevertheless, significant
effort has been expended to make the system reasonably efficient.

The present implementation performs a depth-first search, with memoization
and loop-checking, for a proof in defeasible logic. Memoization allows the system
to recognize that a conclusion has already been proved (or disproved), while loop-
checking also detects when a conclusion occurs twice in a branch of the search
tree. Loop-checking is necessary for the depth-first search to be complete, whereas
memoization is purely a matter of efficiency. Loop-checking and memoization are
implemented using a balanced binary tree of data.

A proof 1s performed by a pair of mutually recursive functions |-- and |-. The
former defines the inference rules, and the latter performs any state modifications
(for example, updating the record of conclusions proved and I/0).

The function |--is defined by an equation for each inference rule in defeasible
logic. Each equation is defined in terms of logic combinators (&&&, | | |, £A and tE)
and functions such as rsdq (rsdq t q returns Rgq[q]), and beats (beats t u s
returns u > s). The + inference rule above is expressed as:

(I--) t (Plus PS_d q) (l-) =
t |- Plus PS_D q |||
tE (rsdg t q) (A\r -> fA (ants t r) (\a -> t |- Plus PS_d a)) &&&
t |- Minus PS_D (neg q) &&&
fA (rq t (neg q9)) (\s —>
tE (ants t s) (\a -=> t |- Minus PS_d a) |||
tE (rsdq t q) (\u ->
fA (ants t u) (\a => t |- Plus PS_d a) &&& beats t u s))

The one-to-one correspondence between the inference rule and its representation
as a Haskell expression ensures that the implementation is easy to verify and easy
to modify as new inference rules are developed for variants of defeasible logic. The
system provides different definitions of |- so that memoization and/or loop-checking
can be turned off. Similarly, only the logic combinators, which specify depth-first
search, need to be redefined to specify other search strategies.

In fact, there are several searches required to prove +3Jp. First there is the search
for a (strict or defeasible) rule for p whose body is proved defeasibly. Then there
is the search for a proof of —A ~p. Then, a search for a rule for ~p whose body 1s
proved defeasibly, and, finally, a search for a rule for p that will overrule the rule
for ~p. The order of these searches follows the order in the presentation of the 40
inference rule. While this ordering is not always the best — it is not possible to find
a good ordering a priori — the use of memoization and loop-checking minimize bad

Efficient Defeasible Reasoning Systems

initialize S

K=10

while (S #0)
choose s € S
add s to K
case s of
+0p:
delete all occurrences of p in rule bodies
whenever a body with head h becomes empty
record +oh
CheckInference(+oh, S)
—0p:
delete all rules where p occurs in the body
whenever there are no more rules for a literal h
record —oh
CheckInference(—ch, S)
end case
end while

Figure 1: All conclusions algorithm

effects of the search order.

A defeasible logic theory 1s stored in a data structure containing: a balanced
tree and array for mapping from textual literal names to integral representations
and back; an array of booleans indexed by the literals to represent the facts; parallel
arrays to represent the consequent of, body of, and set of indices of rules beaten by,
each rule; and arrays, indexed by head, of the indices of the rules R[q], Rs4[g] and
R[q]. Access to the lists of rule indices required by any of the inference rules can
be gained in constant time; facts can be tested in constant time and priorities can
be tested in O(logn) time where n is the number of rules that a rule beats (n will
usually be small).

4. A System for Computing All Conclusions

The system that computes all conclusions, Delores, is based on forward chaining,
but this is only for the positive conclusions. The negative conclusions are derived
by a dual process. The system is implemented in about 4,000 lines of C. We begin
by presenting the algorithm for defeasible theories containing only defeasible rules
(i.e. without strict rules, defeaters or superiority relation).

In the algorithm presented in Figure 1, p ranges over literals and s ranges over
conclusions. K and S are sets of conclusions. K accumulates the set of conclusions
that have been proved, while S holds those proven conclusions that have not yet

Efficient Defeasible Reasoning Systems

been used to establish more conclusions.

To begin the algorithm we initialize the set S with those conclusions that can
immediately be established: all facts are provable, while those literals with no rules
for them are unprovable. Thus S contains +3Jf for each fact f and —3dp for each
proposition p not appearing in the head of a rule.

The algorithm proceeds by modifying the rules in the theory. When inferring
positive consequences, the algorithm is somewhat similar to unit resolution for defi-
nite clauses in classical logic: when an atom is proved, it can be eliminated from the
bodies of all other definite clauses. In this case, when a literal is established defea-
sibly it can be deleted from the body of all rules. Similarly, when it is established
that a literal p cannot be proved then those rules which have p as a pre-condition
cannot be used to prove the head, and so they can be deleted.

However, in inferring a positive conclusion +3dp, defeasible provability is com-
plicated, in comparison to definite clauses, by the need to consider rules for ~p. We
first define notation for the “uncomplicated” inference and then relate it to defeasi-
ble provability. Let +0q denote that Ir € Ry4q] Ya € A(r) : +0a and —oq denote
that Vr € Ryqlg] 3a € A(r) : —Ja. Thus we can conclude +oq precisely when the
body of a rule for ¢ becomes empty, and —oq precisely when there are no more rules
for ¢.

If we examine the inference rule for +0, in the absence of defeaters and superi-
ority relation it can be simplified to

+9p iff +Ap or (+op and —A~p and —o~p)
Similarly, we can simplify the inference rule for —9 to
—9p iff —Ap and (—op or +A~p or +o~p)

Each time a statement such as +op is inferred by the system the statement is
recorded and we check to see whether either of the above simplified inference rules
can be applied, using all recorded information. This task is performed by Checkin-
ference, which will add either 4+8p or —dp, if justified, to the set S3.

The key to an efficient implementation of this algorithm is the data structure
used to represent the rules. Tt is exemplified (albeit incompletely) in Figure 2 for
the theory

ry be,d= a
ro: —byd,—me= a
r3 d,—e= a

Fach rule body is represented as a doubly-linked list (horizontal arrows in Figure
2). Furthermore, for each literal p there are doubly-linked lists of the occurrences of
p in the bodies of rules (diagonal arrows). For each literal p, there is a doubly-linked
list of rules with head p (dashed arrows). Each literal occurrence has a link to the
record for the rule it occurs in (not shown in Figure 2).

3Note that defeasible logic will never infer both +8p and —dp 2.

Efficient Defeasible Reasoning Systems

Figure 2: Data Structure for Rules

This data structure allows the deletion of literals and rules in time proportional
to the number of literals deleted. Furthermore, we can detect in constant time
whether a literal deleted was the only literal in that body, and whether a rule
deleted with head A was the only rule for h. Each literal occurrence is deleted at
most once, and the test for empty body is made at most once per deletion. Similarly,
each rule is deleted at most once, and the test for no more rules 1s made once per
deletion. Thus the cost of the algorithm is O(N), where N is the number of literal
occurrences in 1.

This algorithm, for positive conclusions, is similar to the bottom-up linear al-
gorithm for determining satisfiability of Horn clauses of Dowling and Gallier 35:36,
One difference is in the data structures: the Dowling-Gallier algorithm keeps a
count of the number of atoms in the body of a rule, rather than keep track of the
body. The latter results in greater memory usage, but allows us to reconstruct the
residue of the computation: the simplified rules that remain. This residue is useful
in understanding the behavior of a theory.

When we admit strict rules, the algorithm is complicated by

e the need to consider four kinds of conclusions, instead of two;
o the relationship between +A and +0, and —A and —3; and
e the fact that strict rules can be used for both definite and defeasible reasoning.

The resulting algorithm has the same structure as Figure 1 but more details. The
data structure also retains the same structure, but there are more lists and strict
rules are represented twice.

The algorithm extends to general defeasible theories through the use of a pre-
processing transformation that eliminates all uses of defeaters and superiority re-
lation. The transformation was designed to provide incremental transformation
of defeasible theories, and systematically uses new atoms and new defeasible rules
to simulate the eliminated features. Presentation of the transformation occupies

too much space to give it here. Parts of the transformation were presented in '®.

Efficient Defeasible Reasoning Systems

A full treatment of the transformation, including proofs of correctness and other

properties, is presented in 2°.

The transformation can increase the size of the theory by at most a factor of
12. Furthermore, the time taken to produce the transformed theory is linear in the
size of the input theory. Consequently, the implementation of full defeasible logic
by first transforming the input theory to a theory without defeaters and superiority
statements, and then applying an algorithm like Figure 1 to the transformed theory
provides a linear implementation of defeasible logic.

Theorem 1 The consequences of a defeasible theory D can be computed in
O(N) time, where N is the number of symbols in D.

A more complete argument of correctness and complexity analysis for the full

algorithm is presented in 3'.

5. d-Prolog

In addition to the two implementations described above, there is another im-
plementation of defeasible logic. d-Prolog 37 is a query-answering interpreter for
defeasible logic implemented in about 300 lines of Prolog. Its intended input is
mostly small, non-recursive inheritance problems. The strict rules are implemented
directly as Prolog rules. Thus when we time the execution of a theory with only
strict rules, we are measuring the speed of the underlying Prolog system. The
search for a defeasible proof follows the same pattern as used in Deimos, but with
no loop-checking or memoization.

The interpreter is designed to allow experimentation, and includes an implicit
definition of the superiority relation in terms of specificity; that capability was
disabled for our experiments. d-Prolog also treats strict rules slightly differently
from the formulation of defeasible logic that we use, and it has been modified so
that it implements the same semantics as Deimos and Delores.

Unfortunately, the d-Prolog implementation of defeasible logic is flawed. The
interpreter follows the Prolog computation rule and consequently has the same
incompleteness that Prolog has.

For example, the theory

r—

r—

q—>

R =T B B

rt—

implies +Ap, and —As, but d-Prolog does not terminate on these queries.

The incompleteness of Prolog also affects defeasible provability in d-Prolog, and
in less predictable ways. For example, the theory

Efficient Defeasible Reasoning Systems

true = p
p - p
q = q
-q
s
T s i
ro @ U = i
U U
r| > o

should conclude +dp, —dq and +0t, but d-Prolog loops on each of these queries.

This behaviour will be visible in some of the experiments. However, most of
the experiments do not contain cyclic dependencies among literals so that for these
experiments the flaw has no effect.

6. Experimental Evaluation

In the experiments, we ran d-Prolog compiled to Sicstus Prolog 3.7 fastcode,
using the default memory allocation. The times presented in the experiments are
those measured by the Sicstus Prolog statistics built-in. When timing several exper-
iments in the same Prolog session the first experiment consistently took significantly
longer than later identical experiments. In our data we have omitted the first timing
in a session.

Deimos is compiled using the Glasgow Haskell Compiler 4.04, with optimization
flags, and times are measured using the CPUTime library. The system begins with
a stack space of 40M and a heap of 100M. The lazy execution strategy of Haskell
can make timing of just part of an execution difficult. Care has been taken to force
the complete evaluation of the theory data structure before starting timing of a
proof. This avoids mis-allocation of work that could be deferred to run-time by the
laziness of the language.

Delores is written in C and compiled using gcc without optimization flags. Times
are measured using the standard time library. In the experiments, the atom and
rule symbol tables have size 1,000,000. Memory is allocated in chunks of 65536
bytes. This system is still under development: the implementation of the basic
algorithm for strict and defeasible rules is complete, but the implementation of
the pre-processing transformation still requires tuning. For this reason we chose to
measure both the full system and the partial system that omits the transformation.

All experiments were performed on the same lightly loaded Sun Ultra 2. Each
timing datum is the mean of several executions. There was no substantial variation
among the executions, except as noted.

6.1. Design of experiments

Our initial experiments are on parameterized problems designed to test differ-

Efficient Defeasible Reasoning Systems

Table 1. Sizes of scalable test theories

Theory Facts Rules Priorities Size
empty() 0 0 0 0
chain(n) 1 n 0 2n 4+ 1
chains(n) 1 n 0 2n 4+ 1
circle(n) 0 n 0 2n
circles(n) 0 n 0 2n
tree(n, k) kol SR 0 (k1) 0 K
dag(n, k) k nk+1 0 nk? 4+ (n+2)k+1
levels-(n) 0 4n+ 5 0 6n+7
levels(n) 0 4n+ 5 n+1 n + 8
teams(n) 0 a3 ab |23 4| 103 4l e(an)

mix(m,n, k) 2mn 2m + 2mnk 0 2m + 4mn + 4mnk

ent aspects of the implementations. We have not yet been able to create realistic
random problems. Since defeasible logic has linear complexity, the approach of 38,
which maps NP-complete graph problems to default rules, is not applicable. In the
experiments we focus on defeasible inference.

The first group of problems test only undisputed inferences. In empty() there
are no rules. In chain(n), ap is at the end of a chain of n rules a;41 = a;.
In circle(n), ap is part of a circle of n rules @;11 mod n = @;. chains(n) and
circles(n) are versions of the above using strict rules. In tree(n.k), aq is the root
of a k-branching tree of depth n in which every literal occurs once. In dag(n,k), ag
is the root of a k-branching tree of depth nk in which every literal occurs k times.

In levels-(n), there is a cascade of n disputed conclusions: there are rules
true = a; and a;41 = —a;, for 0 < i < n. In levels(n), there are, in addition, su-
periority statements stating that, for odd 4, the latter rule is superior. In teams(n),
every literal 1s disputed, with two rules for a; and two rules for —a;, and the rules
for a; are superior to the rules for —a;. This situation is repeated recursively to
a depth n. All the above problems involve only defeasible rules. In mix(m,n.k),
there are m defeasible rules for ay and m defeaters against ap, where each rule has
n atoms in its body. Each atom can be established by a chain of strict rules of

length %.

For each of these theories, except the circular theories, a proof of +dag will use
all facts, rules and superiority statements. The circular theories cannot prove +dag.

There are various metrics that give an indication of the size or complexity of a
defeasible theory. These metrics might be used to estimate the memory required to
store a theory or estimate the time taken to respond to queries to them. Table 1
lists the formulae for these metrics for the scalable test theories described above.

Efficient Defeasible Reasoning Systems

The metrics reported are:

Facts the number of facts in the theory;

Rules the number of rules in the theory;

Priorities the number of superiority statements in the theory; and

Size the overall “size” of the theory, defined as the sum of the numbers of facts,
rules, superiority statements, and literals in the bodies of all rules.

The size is the total number of non-label, non-arrow symbols in the theory.

6.2. Ezperimental results

The tables describe the time (in c¢pu seconds) required to find the appropriate
conclusion for ag. Note that Delores finds conclusions for all literals, not simply ayp,
whereas Deimos and d-Prolog terminate when ag is proved. However, our experi-
ments are designed to exercise all rules and literals, so that, for these experiments,
Deimos will have conclusions memoized for all atoms.

The times for Deimos include time spent garbage collecting, whereas the times
for d-Prolog do not. This adds significantly to the time in problems where the space
usage approaches the heap space allocated to the Haskell run-time environment.

In the tables, co denotes that the system will not terminate, * denotes that
the default memory allocation of Sicstus Prolog was exhausted, - denotes that
the experiment was not performed because the runtime required was excessive, ?
denotes that the experiment could not be performed. The times recorded refer only
to the computation time, and do not include the time for loading the theory.

We begin by addressing the two query-answering implementations.

Comparison of the behaviour of d-Prolog on strict and defeasible versions of the
problems in the first group demonstrates the expected overhead of interpretation wrt
direct execution. Nevertheless, d-Prolog is substantially more efficient than Deimos
when there are no disputing rules (as in chain(n) and tree(n,k)). However, when
disputing rules are common (as in levels-(n), levels(n) and teams(n)) d-Prolog
performs badly, with time growing exponentially in the problem size. In the table we
only provide the data on this behaviour for levels-(n). The exponential behaviour
can be attributed to a duplication of work — for example, in (2.1) and (2.3.3) of
the 40 inference rule — that is repeated recursively. Deimos avoids this duplication
through memoization.

d-Prolog shows its incompleteness when it loops on circle(n). d-Prolog was un-
able to execute mix(m,n.,k), due to an incompatibility with the underlying Prolog
system.

For the problems under discussion, Deimos exercises all rules. In these and other
experiments, when space is not an issue, the time for Deimos grows at O(N log N),
as expected (the loop-checking contributes the log N factor). For some of the prob-
lems, like chain() and levels(), the loop-checking and memoization of Deimos has

Efficient Defeasible Reasoning Systems

Table 2. Undisputed inferences

Problem | Deimos | d-Prolog | Delores Delores
Size (partial)
empty() 0 0.0 0.0 0.18 0.18
chains(n)
n = 25,000 50,001 3.12 0.10 8.61 0.50
n = 50,000 100,001 6.50 0.19 - 0.82
n = 75,000 150,001 10.47 0.28 - 1.11
n = 100,000 200,001 14.49 0.38 - 1.47
circles(n)
n = 25,000 50,000 3.32 0 7.98 0.24
n = 50,000 100,000 7.39 0 - 0.30
n = 75,000 150,000 10.63 0 - 0.35
n = 100,000 200,000 14.43 00 - 0.40
chain(n)
n = 25,000 50,001 17.54 3.22 6.38 0.24
n = 50,000 100,001 38.48 6.48 62.08 0.30
n = 75,000 150,001 57.28 9.63 - 0.36
n = 100,000 200,001 82.03 12.54 - 0.41
circle(n)
n = 25,000 50,000 8.55 0 6.03 0.24
n = 50,000 100,000 17.87 00 - 0.30
n = 75,000 150,000 27.75 0 - 0.36
n = 100,000 200,000 42.42 00 - 0.41
tree(n,k)
n=38, k=3 19,681 5.24 0.61 0.38 0.24
n=9, k=3 59,047 16.62 1.89 0.81 0.34
n=10, k=3 177,145 55.41 5.19 22.70 0.64
dag(n,k)
n=3, k=3 43 0.00 0.06 0.19 0.19
n=4, k=4 89 0.05 8.80 0.19 0.19
n=100, k=10 11,021 1.06 * 0.22 0.19
n=1,000, k=10 110,021 11.60 * 0.50 0.20
n=100, k=40 164,041 9.73 * 0.31 0.20

no effect. In these cases, a comparison of executions with and without these fea-
tures also reveals the log N factor. For problems of size about 200,000, memoization
increased time by a factor of about 10. In problems dag() and teams() the use
of memoization, without loop-checking resulted in a small, but significant speed-up
over the loop-checking implementation. All the same, loop-checking is necessary
for completeness and the advantage of memoization has already been seen, so these
time overheads are acceptable. The memory requirement for proofs, over and above
theory storage, is O(m) (measured using a heap profiling version of Hugs 3°) with
or without memoization and loop-checking, where m i1s the number of sub-goals
required for the proof.

Since Deimos exercises all rules in the problems we have addressed, its advantage
over Delores when responding to a single query in more realistic situations has not
been assessed by these experiments. That will be addressed in future work.

We now turn to an assessment of Delores. empty() shows that Delores has a
small but significant overhead on start-up. This is the initialization of S, which visits

Efficient Defeasible Reasoning Systems

Table 3. Disputed inferences

Problem | Deimos | d-Prolog | Delores
Size

levels-(n)
n=10 67 0.01 1.61 0.19
n=11 73 0.01 3.07 0.19
n=12 79 0.01 6.24 0.19
n=13 85 0.01 12.80 0.19
n=14 91 0.01 26.17 0.19
n=15 97 0.01 53.46 0.19
n=20 127 0.01 - 0.19
n=1,000 6,007 1.37 - 0.30
n=5,000 30,007 6.47 - 0.78
n=10,000 60,007 14.40 - -
n=30,000 180,007 46.44 - -
levels(n)
n=10 78 0.01 1.70 0.19
n=1,000 7,008 1.35 - 0.29
n=>5,000 35,008 6.48 - 0.87
n=10,000 70,008 14.14 - -
n=30,000 210,008 48.67 - -
teams(n)
n=3 594 0.05 - 0.20
n=4 2,386 0.25 - 0.22
n=>5 9,554 1.12 - 0.33
n=>6 38,226 4.41 - 2.85
n="7 152,914 21.19 - -
mix(m,n,k)
n=10, k=0
m=100 4200 0.40 ? 0.22
m=1000 42000 3.83 ? 0.45
m=5000 210000 21.15 ? 1.36

the entire atom table. Above this overhead, the cost of initialization is proportional
to the number of distinct atoms in the theory. In the worst case, the initialization
calls a memory allocation routine for each atom.

Except for the direct execution of strict rules by Prolog, the partial implemen-
tation of Delores is clearly the fastest of the implementations, when it 1s applicable.
Thus the basic engine has excellent performance. The figures support the claim that
its complexity is linear in the size of the input theory. In many of the experiments
with full Delores the linear complexity is also apparent.

However, it is apparent that the overhead introduced by the pre-processing
transformation varies quite significantly from problem to problem and is some-
times extraordinarily high, well above what would be expected for a transformation
that increases the size of the program only by a factor of 12 (see, for example,

Efficient Defeasible Reasoning Systems

tree(10,3)). The timings of such problems were the only ones to vary significantly
when experiments were repeated. It turns out that the initialization of S consumes
the bulk of this time. Furthermore, it is on those problems that contain many differ-
ent atoms that Delores performs worst. This is evident in comparing the behaviour
of Delores on tree() and dag() problems. It is also apparent when comparing the
data for Delores on the problems with undisputed inferences (Table 2) — where the
complexity comes mostly from the number of atoms — and problems with disputed
inferences (Table 3), where the number of different atoms is smaller.

We have not yet properly accounted for Delores’s sensitivity to the number of
atoms. Certainly the transformation exacerbates the situation by introducing many
more atoms. In addition, an attempt to optimize inference by extracting common
subgoals in a single rule has backfired by introducing further new literals, possibly
doubling the number of literals. Thus, although the time for inference has been im-
proved, initialization time has worsened. We could partly address the problem by
omitting the “optimization” and implementing defeaters directly, in a similar man-
ner to defeasible rules. These would require only minor modifications to the existing
system and would reduce the number of distinct atoms by about 1/8. We could
also redesign the transformation, trading incrementality for a more parsimonious
introduction of new atoms. However, the main problem is the apparent nonlinear-
ity of initializing S and the source of this behaviour requires further investigation.
Current indications are that it is caused by a hash function that does not handle
gracefully the artificial names generated by the transformation.

Another point to note is that, in contrast to the query answering systems, De-
lores performs slightly worse on problems with strict rules. The reason is that strict
rules are duplicated and so the inferences performed by the system are effectively

doubled.

7. Current and Future Work

While defeasible logic was the original formalism we investigated, it has also
served as the starting point for the development of variants with different represen-
tational properties, or for expansions of the logic /4%, These include (a) ambiguity
propagating defeasible logic; (b) defeasible logic without team defeat; (¢) defeasible
logic with dynamic priorities; (d) well-founded defeasible logic. Most of the above
modifications and extensions have already been implemented as additional features
of Deimos, our query evaluation system discussed above.

We have designed a powerful extension of defeasible logic, called plausible logic
33,34 The computational complexity of plausible logic is exponential, in the worst
case. However, in practical problems it seems to work with reasonable efficiency, as
our experiments with an implementation* using the same approach as Deimos have
shown. For further discussion of plausible logic and its implementation we refer the

reader to 3334,

*See www.cit.gu.edu.au/~arock/plausible/Plausible.cgi

Efficient Defeasible Reasoning Systems

On the theoretical side, our efforts concentrate on the establishment of connec-

22 41

tions to argumentation systems , and the development of semantics for defea-

sible logic 2142,

Finally we are investigating the applicability of defeasible logic (and its variants)
as a modelling languages in the domains of regulations, business rules, electronic
commerce, and the legal domain. We believe that efficient conflict resolution rule-
based systems with priorities are a useful tool that can represent in a natural way

many solution procedures that are currently applied manually.

8. Conclusion

We have presented two new implementations of defeasible logic, based on sub-
stantially different techniques. Our experiments on query-answering implementa-
tions have demonstrated that both Desmos and the existing d-Prolog system can
handle very large rule sets, although d-Prolog is effective on only a narrow range
of rule sets. Deimos is clearly superior in the more realistic situations when some
rules conflict.

We have seen that the complexity of computing consequences in defeasible logic
is linear in the size of the input theory. Our experiments with the partial imple-
mentation of Delores have confirmed this claim. Indeed the partial implementation
of Delores was clearly the faster system in almost all experiments on which it could
be run. However, the transformation implemented in full Delores did not behave
linearly. Since theoretically it is of linear complexity, there is clearly an engineering
issue to be addressed here.

In summary, both Detmos and Delores show promise as high-speed implementa-
tions of defeasible logic, and Deimos has already partly fulfilled its promise. Con-
sequently it appears that defeasible logic provides rule prioritization and defeasible
reasoning in an efficiently implementable way.

Work is continuing on both systems. For Deimos, we are implementing memo-
ization using mutable arrays, instead of a balanced tree, in order to eliminate the
O(log N) factor. For Delores, we are addressing the problems of initialization and
the pre-processing transformation that were exposed by our experimental evalua-
tion.

Acknowledgements

We thank Scott Brady and Chris Herring for their work on a preliminary all-
conclusions system, and Guido Governatori for his work on the transformations
used in Delores and for discussions on defeasible logic. Much of this research was
performed while the authors were employed by Griffith University. This research
was supported by the Australian Research Council under grant A49803544. An
earlier version of this paper was presented at ICTAT 2000.

Efficient Defeasible Reasoning Systems

References

[1]
(2]
(3]

[10]

[11]

[12]

[13]

[14]
[15]
[16]
[17]

[18]

[19]

[20]

[21]

V. Marek and M. Truszczynski, Nonmonotonic Logic, Springer (1993).

G. Antoniou, Nonmonotonic Reasoning, MIT Press (1997).

H. Kautz and B. Selman, Hard Problems for Simple Default Logics, Artificial intelli-
gence, 49 (1991) 243-279.

G. Gottlob, Complezity Results for Nonmonotonic Logics, Journal of Logic and Com-
putation 2 (1992) 397-425.

M. Cadoli and M. Schaerf, A Survey of Complexity Results for Nonmonotonic Logics,
Journal of Logic Programming 17 (1993) 127-160.

M. Gelfond and V. Lifschitz, Representing Action and Change by Logic Programs,
Journal of Logic Programming 17 (1993) 301-322.

H.J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R.B. Scherl, GOLOG: A Logic
Programming Language for Dynamic Domains, The Journal of Logic Programming 31
(1997) 59-84.

M. Shanahan, Solving the Frame Problem: A Mathematical Investigation of the Com-
mon Sense Law of Inertia, MIT Press (1997).

I. Niemela and P. Simons, Smodels — an Implementation of the Stable Model and Well-
Founded Semantics for Normal Logic Programs, in Proc. 4th International Conference
on Logic Programming and Nonmonotonic Reasoning, LNAI 1265, Springer-Verlag
(1997) 420-429.

D. Nute, Defeasible Reasoning, in Proc. 20th Hawaii International Conference on Sys-
tems Science, IEEE Press (1987) 470-477.

D. Nute, Defeasible Logic, in D.M. Gabbay, C.J. Hogger and J.A. Robinson (Eds.):
Handbook of Logic in Artificial Intelligence and Logic Programming Vol. 3, Oxford
University Press (1994) 353-395.

D. Billington, K. de Coster and D. Nute, A Modular Translation from Defeasible Nets
to Defeasible Logic, Journal of Experimental and Theoretical Artificial Intelligence 2
(1990) 151-177.

J.F. Horty, R.H. Thomason and D. Touretzky, A Skeptical Theory of Inheritance in
Nonmonotonic Semantic Networks, in Proc. American National Conference on Artifi-
cial Intelligence, (1987) 358-363.

L.A. Stein, Resolving Ambiguity in Nonmonotonic Inheritance Hierarchies, Artificial
Intelligence 55 (1992) 259-310.

B.N. Grosof, Prioritized Conflict Handling for Logic Programs, in Proc. Int. Logic
Programming Symposium, J. Maluszynski (Ed.), 197-211, MIT Press (1997).

Y. Dimopoulos and A. Kakas, Logic Programming without Negation as Failure, in Proc.
5th International Symposium on Logic Programming, MIT Press (1995) 369-384.

L. Morgenstern, Inheritance Comes of Age: Applying Nonmonotonic Techniques to
Problems in Industry, Artificial Intelligence 103 (1998) 1-34.

G. Antoniou, D. Billington and M.J. Maher, Normal Forms for Defeasible Logic, in
Proc. 1998 Joint International Conference and Symposium on Logic Programming,
MIT Press (1998) 160-174.

M. Maher, G. Antoniou and D. Billington, A Study of Provability in Defeasible Logic,
in Proc. Australian Joint Conference on Artificial Intelligence, LNAT 1502, Springer
(1998) 215-226.

G. Antoniou, D. Billington, G. Governatori and M.J. Maher, Representation Results
for Defeasible Logic, ACM Transaction on Computational Logic 2 (2001) 255-287.

M. Maher and G. Governatori, A Semantic Decomposition of Defeasible Logics, Proc.
American National Conference on Artificial Intelligence, AAAT/MIT Press (1999) 299-

[22]
[23]
[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]
33]
[34]
[35]
[36]
37]

[38]

[41]

[42]

Efficient Defeasible Reasoning Systems

305.

G. Governatori and M. Maher, An Argumentation-Theoretic Characterization of De-
feasible Logic, in Proc. European Conf. on Artificial Intelligence (2000) 469-474,

G. Antoniou, M.J. Maher and D. Billington, Defeasible Logic versus Logic Programming
without Negation as Failure, Journal of Logic Programming 42 47-57, 2000.

H. Prakken, Logical Tools for Modelling Legal Argument: A Study of Defeasible Rea-
soning in Law, Kluwer Academic Publishers (1997).

H. Prakken and G. Sartor, Argument-based Fxtended Logic Programming with Defea-
sible Priorities, Journal of Applied and Non-Classical Logics 7 (1997) 25-75.

G. Antoniou, D. Billington and M.J. Maher, On the Analysis of Regulations using
Defeasible Rules, in Proc. 32nd Hawaii International Conference on Systems Science,
(1999).

G. Antoniou, On the Role of Rule-Based Nonmonotonic Systems in FElectronic Com-
merce — A Position Statement,in Proc. 1st Australasian Workshop on Al and Electronic
Commerce, (1999).

D.M. Reeves, B.N. Grosof, M.P. Wellman, and H.Y. Chan, Towards a Declarative Lan-
guage for Negotiating Executable Contracts, Proceedings of the AAAI-99 Workshop on
Artificial Intelligence in Electronic Commerce, AAAT Press / MIT Press (1999).

B.N. Grosof, DIPLOMAT: Business Rules Interlingua and Conflict Handling, for E-
Commerce Agent Applications (Overview of System Demonstration),in Proc. IICAI-99
Workshop on Agent-mediated Electronic Commerce, (1999).

G. Governatori, M. Dumas, A.H.M. ter Hofstede and P. Oaks, A Formal Approach to
Protocols and Strategies for (Legal) Negotiation, Proceedings of the 18th International
Conference on Artificial Intelligence and Law, ACM Press (2001) 168-177.

M. Maher, Propositional Defeasible Logic has Linear Complexity, Theory and Practice
of Logic Programming, 1 (2001) 691-711.

D. Billington, Defeasible Logic is Stable, Journal of Logic and Computation 3 (1993)
370-400.

A. Rock and D. Billington, A Propositional Plausible Logic Implementation in Haskell,
in Proc. Australasian Computer Science Conference, (2000) 204-210.

D. Billington and A. Rock, Propositional Plausible Logic: Introduction and Implemen-
tation, Studia Logica 67 (2001) 243-269.

W.F. Dowling and J.H. Gallier, Linear-Time Algorithms for Testing the Satisfiability
of Propositional Horn Formulae, Journal of Logic Programming 1 (1984) 267-284.

G. Gallo and G. Urbani, Algorithms for Testing the Satisfiability of Propositional For-
mulae, Journal of Logic Programming 7 (1989) 45-61.

M.A. Covington, D. Nute and A. Vellino, Prolog Programming in Depth, Prentice Hall
(1997).

P. Cholewinski, V. Marek, A. Mikitiuk and M. Truszczynski, Faxperimenting with Non-
monotonic Reasoning, in Proc. International Conference on Logic Programming, MIT
Press, (1995) 267-281.

M.P. Jones et al, The Hugs98 User Manual, http://www.haskell.org/hugs/

G. Antoniou, D. Billington, G. Governatori and M. Maher, A Flexible Framework for
Defeasible Logics, in Proc. American National Conference on Artificial Intelligence,
AAAT/MIT Press (2000) 405-410.

G. Governatori, M.J. Maher, G. Antoniou and D. Billington, Argumentation Semantics
for Defeasible Logics, in Proc. Pacific Rim Conf. on Artificial Intelligence; 2000.

M. Maher, A Denotational Semantics for Defeasible Logic, in Proc. First International
Conference on Computational Logic, LNAT 1861, Springer (2000) 209-222.

