
International Journal on Arti�cial Intelligence ToolsVol. 10, No. 4 (2001) ???|???fc World Scienti�c Publishing CompanyEFFICIENT DEFEASIBLE REASONING SYSTEMSMICHAEL J. MAHERDepartment of Computer Science, Loyola University Chicago6525 N. Sheridan Road, Chicago, IL 60626, USAmjm@cs.luc.eduANDREW ROCKSchool of Computing and Information Technology, Gri�th UniversityNathan, Queensland 4111, Australiaarock@cit.gu.edu.auGRIGORIS ANTONIOUDepartment of Computer Science, University of BremenP.O. Box 330440, D-28334 Bremen, Germanyga@tzi.deDAVID BILLINGTONSchool of Computing and Information Technology, Gri�th UniversityNathan, Queensland 4111, Australiadb@cit.gu.edu.auTRISTAN MILLERDepartment of Computer Science, University of Toronto10 King's College Road, Toronto, ON M5S 3G4, Canadapsy@cs.toronto.eduReceived 9 Oct 2001Revised 1 Nov 2001For many years, the non-monotonic reasoning community has focussed on highly expres-sive logics. Such logics have turned out to be computationally expensive, and have givenlittle support to the practical use of non-monotonic reasoning. In this work we discussdefeasible logic, a less-expressive but more e�cient non-monotonic logic. We report ontwo new implemented systems for defeasible logic: a query answering system employingabackward-chaining approach, and a forward-chaining implementation that computes allconclusions. Our experimental evaluation demonstrates that the systems can deal withlarge theories (up to hundreds of thousands of rules). We show that defeasible logic haslinear complexity, which contrasts markedly with most other non-monotonic logics andhelps to explain the impressive experimental results. We believe that defeasible logic,with its e�ciency and simplicity, is a good candidate to be used as a modeling languagefor practical applications, including modelling of regulations and business rules.Keywords: defeasible logic, defeasible reasoning, non-monotonic reasoning, rule-basedsystems, implementation

E�cient Defeasible Reasoning Systems1. IntroductionNonmonotonic reasoning was originally introduced to address certain aspectsof commonsense reasoning, mainly reasoning with incomplete information. Themotivation was to be able to \jump to conclusions" in cases where not all necessaryinformation is available, yet certain plausible assumptions can be made.A great amount of research has been conducted in nonmonotonic reasoning 1;2.Despite many conceptual advances some negative aspects have become apparent.The �rst one comes from the computational complexity analysis: it turns out thatmost nonmonotonic reasoning systems have high computational complexity 3;4;5which seems to be contrary to the original motivation of \jumping to conclusions".The second negative observation is the failure of mainstream nonmonotonic systemsto �nd their way into applications. Only quite recently did applications in reasoningabout action 6;7;8 and the solution of NP-hard problems 9 appear.Our paper is not concerned with the classes of nonmonotonic reasoning ap-proaches mentioned above. Rather, it focuses on another research stream withinnonmonotonic reasoning { an often neglected one { which is prepared to sacri�ceexpressive power in favour of simplicity, e�ciency and easy implementability. De-feasible logic 10;11 is an early such logic, and the one we will be dealing with. Itis closely related 12 to inheritance networks 13, another formalism with an e�cientimplementation 14. Recently several other systems in this class were proposed, forexample Courteous Logic Programs 15 and sceptical Logic Programming withoutNegation as Failure 16. There has been recent evidence that this is a practicableapproach 17.Defeasible logic is a sceptical nonmonotonic reasoning system based on rules anda priority relation between rules that is used to resolve con
icts among rules, wherepossible. The logic has been recently subjected to a thorough theoretical analysisby our research group. Results include representational properties and propertiesof the proof theory 18;19;20, and establishing its relationship with negation-as-failure21, argumentation 22 and other logics 23.Deafeasible reasoning has already been found to be useful in modelling elementsof legal reasoning 24;25. It has potential as an analytical tool in the process ofdrafting regulations and business rules 26. However its greatest potential may be inproviding an executable modelling tool for the legal domain 26;27;28;29;30.We believe that defeasible logic is suitable for such practical applications because(i) its basic concepts (simple rules and priorities) can be easily understood by non-experts, and (ii) because the logic is su�ciently e�cient. More generally, we believethat these kinds of nonmonotonic approaches can be used as simple and e�cientmodelling languages for situations where one needs to deal quickly and
exibly withincomplete and con
icting information (a point that is, independently, propagatedby Grosof 29). Electronic commerce, where decisions (e.g. on pricing or the grantingof credit) need to be made in real time 24 hours a day, is a particularly promisingdomain 27;28;30.

E�cient Defeasible Reasoning SystemsThe contribution of this paper is to study and demonstrate the e�ciency ofdefeasible logic. In particular we describe two implemented systems: one for queryevaluation, and one that computes all conclusions of a given theory. For each ofthe systems we describe their design, and provide a summary of their experimentalevaluation. We also argue that defeasible logic has linear complexity (in thenumber of symbols in a defeasible theory). A full proof of that result will appearelsewhere 31.The paper is organized as follows. Section 2 presents the basic notions of de-feasible logic, and summarizes some results regarding its properties and relation toother approaches. Section 3 describes our query evaluation system, while section4 is devoted to the system that computes all conclusions. Section 4 also describesthe complexity result. Section 5 brie
y discusses an independently-developed Pro-log meta-interpreter for defeasible logic, and outlines some
aws. In section 6 wedescribe the design of our experiments, and present and interpret the experimentalresults. Finally, sections 7 and 8 respectively describe our current and future work,and outline our conclusions.2. Defeasible LogicWe begin by presenting the basic ingredients of defeasible logic1. A defeasibletheory contains �ve di�erent kinds of knowledge: facts, strict rules, defeasible rules,defeaters, and a superiority relation.Facts are indisputable statements, for example, \Tweety is an emu". In thepropositional logic, this might be expressed as emu.Strict rules are rules in the classical sense: whenever the premises are indis-putable (e.g. facts) then so is the conclusion. An example of a strict rule is \Emusare birds". Written formally: emu! birdDefeasible rules are rules that can be defeated by contrary evidence. An exampleof such a rule is \Birds typically
y"; written formally:bird) flies:The idea is that if we know that something is a bird, then we may conclude that it
ies, unless there is other evidence suggesting that it may not
y.Defeaters are rules that cannot be used to draw any conclusions. Their onlyuse is to prevent some conclusions. In other words, they are used to defeat somedefeasible rules by producing evidence to the contrary. An example is \If an animalis heavy then it might not be able to
y". Formally:heavy ; :fliesThe main point is that the information that an animal is heavy is not su�cientevidence to conclude that it doesn't
y. It is only evidence that the animal may1In this paper we restrict attention to propositional defeasible logic.

E�cient Defeasible Reasoning Systemsnot be able to
y. In other words, we don't wish to conclude :flies if heavy, wesimply want to prevent a conclusion flies.The superiority relation among rules is used to de�ne priorities among rules,that is, where one rule may override the conclusion of another rule. For example,given the defeasible rules r : bird) fliesr0 : brokenWing) :flieswhich contradict one another, no conclusive decision can be made about whethera bird with a broken wing can
y. But if we introduce a superiority relation >with r0 > r, then we can indeed conclude that the bird cannot
y. It turns outthat we only need to de�ne the superiority relation over rules with contradictoryconclusions.It is not possible, in this paper, to give a complete formal description of the logic.However, we hope to give enough information about the logic to make the discussionof the implementations intelligible. Our presentation follows the formulation of 32.For more details, we refer the reader to 20;31.A rule r consists of its antecedent (or body) A(r) which is a �nite set of literals,an arrow, and its consequent (or head) C(r) which is a literal. Given a set R ofrules, we denote the set of all strict rules in R by Rs, the set of strict and defeasiblerules in R by Rsd, the set of defeasible rules in R by Rd, and the set of defeaters inR by Rdft. R[q] denotes the set of rules in R with consequent q. If q is a literal,�qdenotes the complementary literal (if q is a positive literal p then�q is :p; and if qis :p, then�q is p).A defeasible theory D is a triple (F;R;>) where F is a �nite set of literals (calledfacts), R a �nite set of rules, and > a superiority relation on R.A conclusion of D is a tagged literal and can have one of the following fourforms:+�q, which is intended to mean that q is de�nitely provable in D (i.e., usingonly facts and strict rules).��q, which is intended to mean that we have proved that q is not de�nitelyprovable in D.+@q, which is intended to mean that q is defeasibly provable in D.�@q which is intended to mean that we have proved that q is not defeasiblyprovable in D.Provability is based on the concept of a derivation (or proof) in D = (F;R;>).A derivation is a �nite sequence P = (P (1); : : :P (n)) of tagged literals constructedby inference rules. There are four inference rules (corresponding to the four kindsof conclusion) that specify how a derivation can be extended. Here we brie
y statethe inference rules for the two positive conclusions. (P (1::i) denotes the initial partof the sequence P of length i):

E�cient Defeasible Reasoning Systems+�: We may append P (i+ 1) = +�q if eitherq 2 F or9r 2 Rs[q] 8a 2 A(r) : +�a 2 P (1::i)This means, to prove +�q we need to establish a proof for q using facts and strictrules only. This is a deduction in the classical sense { no proofs for the negation ofq need to be considered (in contrast to defeasible provability below, where opposingchains of reasoning must be taken into account, too).+@: We may append P (i+ 1) = +@q if either(1) +�q 2 P (1::i) or(2) (2.1) 9r 2 Rsd[q]8a 2 A(r) : +@a 2 P (1::i) and(2.2) ���q 2 P (1::i) and(2.3) 8s 2 R[�q] either(2.3.1) 9a 2 A(s) : �@a 2 P (1::i) or(2.3.2) 9t 2 Rsd[q] such that8a 2 A(t) : +@a 2 P (1::i) and t > sLet us work through this inference rule. To show that q is provable defeasibly wehave two choices: (1) We show that q is already de�nitely provable; or (2) we needto argue using the defeasible part of D as well. In particular, we require that theremust be a strict or defeasible rule with head q which can be applied (2.1). But nowwe need to consider possible \attacks", that is, reasoning chains in support of�q.To be more speci�c: to prove q defeasibly we must show that�q is not de�nitelyprovable (2.2). Also (2.3) we must consider the set of all rules which are not knownto be inapplicable and which have head�q (note that here we consider defeaters,too, whereas they could not be used to support the conclusion q; this is in line withthe motivation of defeaters given earlier). Essentially each such rule s attacks theconclusion q. For q to be provable, each such rule s must be counterattacked bya rule t with head q with the following properties: (i) t must be applicable at thispoint, and (ii) t must be stronger than s. Thus each attack on the conclusion qmust be counterattacked by a stronger rule.3. A System for Query EvaluationThe query answering system, Deimos, is a suite of tools that supports ourongoing research in defeasible logic. The centre of the system is the prover. Itimplements a backward-chaining theorem prover for defeasible logic based almostdirectly on the inference rules, such as those given in Section 2. The system alsoincludes a program that generates the scalable theories used as test cases in thispaper. It is accessible through a command line interface and a CGI interface athttp://www.cit.gu.edu.au/~arock/defeasible/ Defeasible.cgi The system is im-plemented in about 4000 lines of Haskell2.2Much of this code, along with the design strategy, is common to the Phobos query answeringsystem for Plausible logic33;34 which has been developed in parallel with Deimos.

E�cient Defeasible Reasoning SystemsDeimos has been designed primarily for
exibility (so that we can explore vari-ants of defeasible logic) and traceability (so that we can understand the computa-tional behavior of the logics and their implementations). Nevertheless, signi�cante�ort has been expended to make the system reasonably e�cient.The present implementation performs a depth-�rst search, with memoizationand loop-checking, for a proof in defeasible logic. Memoization allows the systemto recognize that a conclusion has already been proved (or disproved), while loop-checking also detects when a conclusion occurs twice in a branch of the searchtree. Loop-checking is necessary for the depth-�rst search to be complete, whereasmemoization is purely a matter of e�ciency. Loop-checking and memoization areimplemented using a balanced binary tree of data.A proof is performed by a pair of mutually recursive functions |-- and |-. Theformer de�nes the inference rules, and the latter performs any state modi�cations(for example, updating the record of conclusions proved and I/O).The function |-- is de�ned by an equation for each inference rule in defeasiblelogic. Each equation is de�ned in terms of logic combinators (&&&, |||, fA and tE)and functions such as rsdq (rsdq t q returns Rsd[q]), and beats (beats t u sreturns u > s). The +@ inference rule above is expressed as:(|--) t (Plus PS_d q) (|-) =t |- Plus PS_D q |||tE (rsdq t q) (\r -> fA (ants t r) (\a -> t |- Plus PS_d a)) &&&t |- Minus PS_D (neg q) &&&fA (rq t (neg q)) (\s ->tE (ants t s) (\a -> t |- Minus PS_d a) |||tE (rsdq t q) (\u ->fA (ants t u) (\a -> t |- Plus PS_d a) &&& beats t u s))The one-to-one correspondence between the inference rule and its representationas a Haskell expression ensures that the implementation is easy to verify and easyto modify as new inference rules are developed for variants of defeasible logic. Thesystem provides di�erent de�nitions of |- so that memoization and/or loop-checkingcan be turned o�. Similarly, only the logic combinators, which specify depth-�rstsearch, need to be rede�ned to specify other search strategies.In fact, there are several searches required to prove +@p. First there is the searchfor a (strict or defeasible) rule for p whose body is proved defeasibly. Then thereis the search for a proof of ���p. Then, a search for a rule for�p whose body isproved defeasibly, and, �nally, a search for a rule for p that will overrule the rulefor�p. The order of these searches follows the order in the presentation of the +@inference rule. While this ordering is not always the best { it is not possible to �nda good ordering a priori { the use of memoization and loop-checking minimize bad

E�cient Defeasible Reasoning Systemsinitialize SK = ;while (S 6= ;)choose s 2 Sadd s to Kcase s of+@p:delete all occurrences of p in rule bodieswhenever a body with head h becomes emptyrecord +�hCheckInference(+�h; S)�@p:delete all rules where p occurs in the bodywhenever there are no more rules for a literal hrecord ��hCheckInference(��h; S)end caseend while Figure 1: All conclusions algorithme�ects of the search order.A defeasible logic theory is stored in a data structure containing: a balancedtree and array for mapping from textual literal names to integral representationsand back; an array of booleans indexed by the literals to represent the facts; parallelarrays to represent the consequent of, body of, and set of indices of rules beaten by,each rule; and arrays, indexed by head, of the indices of the rules Rs[q], Rsd[q] andR[q]. Access to the lists of rule indices required by any of the inference rules canbe gained in constant time; facts can be tested in constant time and priorities canbe tested in O(logn) time where n is the number of rules that a rule beats (n willusually be small).4. A System for Computing All ConclusionsThe system that computes all conclusions, Delores, is based on forward chaining,but this is only for the positive conclusions. The negative conclusions are derivedby a dual process. The system is implemented in about 4,000 lines of C. We beginby presenting the algorithm for defeasible theories containing only defeasible rules(i.e. without strict rules, defeaters or superiority relation).In the algorithm presented in Figure 1, p ranges over literals and s ranges overconclusions. K and S are sets of conclusions. K accumulates the set of conclusionsthat have been proved, while S holds those proven conclusions that have not yet

E�cient Defeasible Reasoning Systemsbeen used to establish more conclusions.To begin the algorithm we initialize the set S with those conclusions that canimmediately be established: all facts are provable, while those literals with no rulesfor them are unprovable. Thus S contains +@f for each fact f and �@p for eachproposition p not appearing in the head of a rule.The algorithm proceeds by modifying the rules in the theory. When inferringpositive consequences, the algorithm is somewhat similar to unit resolution for de�-nite clauses in classical logic: when an atom is proved, it can be eliminated from thebodies of all other de�nite clauses. In this case, when a literal is established defea-sibly it can be deleted from the body of all rules. Similarly, when it is establishedthat a literal p cannot be proved then those rules which have p as a pre-conditioncannot be used to prove the head, and so they can be deleted.However, in inferring a positive conclusion +@p, defeasible provability is com-plicated, in comparison to de�nite clauses, by the need to consider rules for�p. We�rst de�ne notation for the \uncomplicated" inference and then relate it to defeasi-ble provability. Let +�q denote that 9r 2 Rsd[q] 8a 2 A(r) : +@a and ��q denotethat 8r 2 Rsd[q] 9a 2 A(r) : �@a. Thus we can conclude +�q precisely when thebody of a rule for q becomes empty, and ��q precisely when there are no more rulesfor q.If we examine the inference rule for +@, in the absence of defeaters and superi-ority relation it can be simpli�ed to+@p i� +�p or (+�p and ���p and � ��p)Similarly, we can simplify the inference rule for �@ to�@p i� ��p and (��p or + ��p or + ��p)Each time a statement such as +�p is inferred by the system the statement isrecorded and we check to see whether either of the above simpli�ed inference rulescan be applied, using all recorded information. This task is performed by CheckIn-ference, which will add either +@p or �@p, if justi�ed, to the set S3.The key to an e�cient implementation of this algorithm is the data structureused to represent the rules. It is exempli�ed (albeit incompletely) in Figure 2 forthe theory r1 : b; c; d) ar2 : :b; d;:e) ar3 : d;:e) aEach rule body is represented as a doubly-linked list (horizontal arrows in Figure2). Furthermore, for each literal p there are doubly-linked lists of the occurrences ofp in the bodies of rules (diagonal arrows). For each literal p, there is a doubly-linkedlist of rules with head p (dashed arrows). Each literal occurrence has a link to therecord for the rule it occurs in (not shown in Figure 2).3Note that defeasible logic will never infer both +@p and �@p 32.

E�cient Defeasible Reasoning Systems
r1 a b c d

r2 a ¬b d ¬e

r3 ¬a d ¬e

d ¬eca

Figure 2: Data Structure for RulesThis data structure allows the deletion of literals and rules in time proportionalto the number of literals deleted. Furthermore, we can detect in constant timewhether a literal deleted was the only literal in that body, and whether a ruledeleted with head h was the only rule for h. Each literal occurrence is deleted atmost once, and the test for empty body is made at most once per deletion. Similarly,each rule is deleted at most once, and the test for no more rules is made once perdeletion. Thus the cost of the algorithm is O(N), where N is the number of literaloccurrences in D.This algorithm, for positive conclusions, is similar to the bottom-up linear al-gorithm for determining satis�ability of Horn clauses of Dowling and Gallier 35;36.One di�erence is in the data structures: the Dowling-Gallier algorithm keeps acount of the number of atoms in the body of a rule, rather than keep track of thebody. The latter results in greater memory usage, but allows us to reconstruct theresidue of the computation: the simpli�ed rules that remain. This residue is usefulin understanding the behavior of a theory.When we admit strict rules, the algorithm is complicated by� the need to consider four kinds of conclusions, instead of two;� the relationship between +� and +@, and �� and �@; and� the fact that strict rules can be used for both de�nite and defeasible reasoning.The resulting algorithm has the same structure as Figure 1 but more details. Thedata structure also retains the same structure, but there are more lists and strictrules are represented twice.The algorithm extends to general defeasible theories through the use of a pre-processing transformation that eliminates all uses of defeaters and superiority re-lation. The transformation was designed to provide incremental transformationof defeasible theories, and systematically uses new atoms and new defeasible rulesto simulate the eliminated features. Presentation of the transformation occupiestoo much space to give it here. Parts of the transformation were presented in 18.

E�cient Defeasible Reasoning SystemsA full treatment of the transformation, including proofs of correctness and otherproperties, is presented in 20.The transformation can increase the size of the theory by at most a factor of12. Furthermore, the time taken to produce the transformed theory is linear in thesize of the input theory. Consequently, the implementation of full defeasible logicby �rst transforming the input theory to a theory without defeaters and superioritystatements, and then applying an algorithm like Figure 1 to the transformed theoryprovides a linear implementation of defeasible logic.Theorem 1 The consequences of a defeasible theory D can be computed inO(N) time, where N is the number of symbols in D.A more complete argument of correctness and complexity analysis for the fullalgorithm is presented in 31.5. d-PrologIn addition to the two implementations described above, there is another im-plementation of defeasible logic. d-Prolog 37 is a query-answering interpreter fordefeasible logic implemented in about 300 lines of Prolog. Its intended input ismostly small, non-recursive inheritance problems. The strict rules are implementeddirectly as Prolog rules. Thus when we time the execution of a theory with onlystrict rules, we are measuring the speed of the underlying Prolog system. Thesearch for a defeasible proof follows the same pattern as used in Deimos, but withno loop-checking or memoization.The interpreter is designed to allow experimentation, and includes an implicitde�nition of the superiority relation in terms of speci�city; that capability wasdisabled for our experiments. d-Prolog also treats strict rules slightly di�erentlyfrom the formulation of defeasible logic that we use, and it has been modi�ed sothat it implements the same semantics as Deimos and Delores.Unfortunately, the d-Prolog implementation of defeasible logic is
awed. Theinterpreter follows the Prolog computation rule and consequently has the sameincompleteness that Prolog has.For example, the theory r! rr! pq! pqr; t! simplies +�p, and ��s, but d-Prolog does not terminate on these queries.The incompleteness of Prolog also a�ects defeasible provability in d-Prolog, andin less predictable ways. For example, the theory

E�cient Defeasible Reasoning Systemstrue) pp ! pq) q:qsr1 : s) tr2 : u) tu) ur1 > r2should conclude +@p, �@q and +@t, but d-Prolog loops on each of these queries.This behaviour will be visible in some of the experiments. However, most ofthe experiments do not contain cyclic dependencies among literals so that for theseexperiments the
aw has no e�ect.6. Experimental EvaluationIn the experiments, we ran d-Prolog compiled to Sicstus Prolog 3.7 fastcode,using the default memory allocation. The times presented in the experiments arethose measured by the Sicstus Prolog statistics built-in. When timing several exper-iments in the same Prolog session the �rst experiment consistently took signi�cantlylonger than later identical experiments. In our data we have omitted the �rst timingin a session.Deimos is compiled using the Glasgow Haskell Compiler 4.04, with optimization
ags, and times are measured using the CPUTime library. The system begins witha stack space of 40M and a heap of 100M. The lazy execution strategy of Haskellcan make timing of just part of an execution di�cult. Care has been taken to forcethe complete evaluation of the theory data structure before starting timing of aproof. This avoids mis-allocation of work that could be deferred to run-time by thelaziness of the language.Delores is written in C and compiled using gccwithout optimization
ags. Timesare measured using the standard time library. In the experiments, the atom andrule symbol tables have size 1,000,000. Memory is allocated in chunks of 65536bytes. This system is still under development: the implementation of the basicalgorithm for strict and defeasible rules is complete, but the implementation ofthe pre-processing transformation still requires tuning. For this reason we chose tomeasure both the full system and the partial system that omits the transformation.All experiments were performed on the same lightly loaded Sun Ultra 2. Eachtiming datum is the mean of several executions. There was no substantial variationamong the executions, except as noted.6.1. Design of experimentsOur initial experiments are on parameterized problems designed to test di�er-

E�cient Defeasible Reasoning SystemsTable 1. Sizes of scalable test theoriesTheory Facts Rules Priorities Sizeempty() 0 0 0 0chain(n) 1 n 0 2n+ 1chains(n) 1 n 0 2n+ 1circle(n) 0 n 0 2ncircles(n) 0 n 0 2ntree(n;k) kn Pn�1i=0 ki 0 (k+ 1)Pn�1i=0 ki + kndag(n; k) k nk + 1 0 nk2 + (n+ 2)k + 1levels-(n) 0 4n+ 5 0 6n+ 7levels(n) 0 4n+ 5 n+ 1 7n+ 8teams(n) 0 4Pni=0 4i 2Pni=0 4i 10Pn�1i=0 4i + 6(4n)mix(m;n; k) 2mn 2m+ 2mnk 0 2m+ 4mn+ 4mnkent aspects of the implementations. We have not yet been able to create realisticrandom problems. Since defeasible logic has linear complexity, the approach of 38,which maps NP-complete graph problems to default rules, is not applicable. In theexperiments we focus on defeasible inference.The �rst group of problems test only undisputed inferences. In empty() thereare no rules. In chain(n), a0 is at the end of a chain of n rules ai+1) ai.In circle(n), a0 is part of a circle of n rules ai+1 mod n) ai. chains(n) andcircles(n) are versions of the above using strict rules. In tree(n,k), a0 is the rootof a k-branching tree of depth n in which every literal occurs once. In dag(n,k), a0is the root of a k-branching tree of depth nk in which every literal occurs k times.In levels-(n), there is a cascade of n disputed conclusions: there are rulestrue) ai and ai+1) :ai, for 0 � i < n. In levels(n), there are, in addition, su-periority statements stating that, for odd i, the latter rule is superior. In teams(n),every literal is disputed, with two rules for ai and two rules for :ai, and the rulesfor ai are superior to the rules for :ai. This situation is repeated recursively toa depth n. All the above problems involve only defeasible rules. In mix(m,n,k),there are m defeasible rules for a0 and m defeaters against a0, where each rule hasn atoms in its body. Each atom can be established by a chain of strict rules oflength k.For each of these theories, except the circular theories, a proof of +@a0 will useall facts, rules and superiority statements. The circular theories cannot prove +@a0.There are various metrics that give an indication of the size or complexity of adefeasible theory. These metrics might be used to estimate the memory required tostore a theory or estimate the time taken to respond to queries to them. Table 1lists the formulae for these metrics for the scalable test theories described above.

E�cient Defeasible Reasoning SystemsThe metrics reported are:Facts the number of facts in the theory;Rules the number of rules in the theory;Priorities the number of superiority statements in the theory; andSize the overall \size" of the theory, de�ned as the sum of the numbers of facts,rules, superiority statements, and literals in the bodies of all rules.The size is the total number of non-label, non-arrow symbols in the theory.6.2. Experimental resultsThe tables describe the time (in cpu seconds) required to �nd the appropriateconclusion for a0. Note that Delores �nds conclusions for all literals, not simply a0,whereas Deimos and d-Prolog terminate when a0 is proved. However, our experi-ments are designed to exercise all rules and literals, so that, for these experiments,Deimos will have conclusions memoized for all atoms.The times for Deimos include time spent garbage collecting, whereas the timesfor d-Prolog do not. This adds signi�cantly to the time in problems where the spaceusage approaches the heap space allocated to the Haskell run-time environment.In the tables, 1 denotes that the system will not terminate, � denotes thatthe default memory allocation of Sicstus Prolog was exhausted, - denotes thatthe experiment was not performed because the runtime required was excessive, ?denotes that the experiment could not be performed. The times recorded refer onlyto the computation time, and do not include the time for loading the theory.We begin by addressing the two query-answering implementations.Comparison of the behaviour of d-Prolog on strict and defeasible versions of theproblems in the �rst group demonstrates the expected overhead of interpretation wrtdirect execution. Nevertheless, d-Prolog is substantially more e�cient than Deimoswhen there are no disputing rules (as in chain(n) and tree(n,k)). However, whendisputing rules are common (as in levels-(n), levels(n) and teams(n)) d-Prologperforms badly, with time growing exponentially in the problem size. In the table weonly provide the data on this behaviour for levels-(n). The exponential behaviourcan be attributed to a duplication of work { for example, in (2.1) and (2.3.3) ofthe +@ inference rule { that is repeated recursively. Deimos avoids this duplicationthrough memoization.d-Prolog shows its incompleteness when it loops on circle(n). d-Prolog was un-able to execute mix(m,n,k), due to an incompatibility with the underlying Prologsystem.For the problems under discussion, Deimos exercises all rules. In these and otherexperiments, when space is not an issue, the time for Deimos grows at O(N logN),as expected (the loop-checking contributes the logN factor). For some of the prob-lems, like chain() and levels(), the loop-checking and memoization of Deimos has

E�cient Defeasible Reasoning SystemsTable 2. Undisputed inferencesProblem Deimos d-Prolog Delores DeloresSize (partial)empty() 0 0.0 0.0 0.18 0.18chains(n)n = 25,000 50,001 3.12 0.10 8.61 0.50n = 50,000 100,001 6.50 0.19 - 0.82n = 75,000 150,001 10.47 0.28 - 1.11n = 100,000 200,001 14.49 0.38 - 1.47circles(n)n = 25,000 50,000 3.32 1 7.98 0.24n = 50,000 100,000 7.39 1 - 0.30n = 75,000 150,000 10.63 1 - 0.35n = 100,000 200,000 14.43 1 - 0.40chain(n)n = 25,000 50,001 17.54 3.22 6.38 0.24n = 50,000 100,001 38.48 6.48 62.08 0.30n = 75,000 150,001 57.28 9.63 - 0.36n = 100,000 200,001 82.03 12.54 - 0.41circle(n)n = 25,000 50,000 8.55 1 6.03 0.24n = 50,000 100,000 17.87 1 - 0.30n = 75,000 150,000 27.75 1 - 0.36n = 100,000 200,000 42.42 1 - 0.41tree(n,k)n=8, k=3 19,681 5.24 0.61 0.38 0.24n=9, k=3 59,047 16.62 1.89 0.81 0.34n=10, k=3 177,145 55.41 5.19 22.70 0.64dag(n,k)n=3, k=3 43 0.00 0.06 0.19 0.19n=4, k=4 89 0.05 8.80 0.19 0.19n=100, k=10 11,021 1.06 � 0.22 0.19n=1,000, k=10 110,021 11.60 � 0.50 0.20n=100, k=40 164,041 9.73 � 0.31 0.20no e�ect. In these cases, a comparison of executions with and without these fea-tures also reveals the logN factor. For problems of size about 200,000, memoizationincreased time by a factor of about 10. In problems dag() and teams() the useof memoization, without loop-checking resulted in a small, but signi�cant speed-upover the loop-checking implementation. All the same, loop-checking is necessaryfor completeness and the advantage of memoization has already been seen, so thesetime overheads are acceptable. The memory requirement for proofs, over and abovetheory storage, is O(m) (measured using a heap pro�ling version of Hugs 39) withor without memoization and loop-checking, where m is the number of sub-goalsrequired for the proof.Since Deimos exercises all rules in the problems we have addressed, its advantageover Delores when responding to a single query in more realistic situations has notbeen assessed by these experiments. That will be addressed in future work.We now turn to an assessment of Delores. empty() shows that Delores has asmall but signi�cant overhead on start-up. This is the initialization of S, which visits

E�cient Defeasible Reasoning SystemsTable 3. Disputed inferencesProblem Deimos d-Prolog DeloresSizelevels-(n)n=10 67 0.01 1.61 0.19n=11 73 0.01 3.07 0.19n=12 79 0.01 6.24 0.19n=13 85 0.01 12.80 0.19n=14 91 0.01 26.17 0.19n=15 97 0.01 53.46 0.19n=20 127 0.01 - 0.19n=1,000 6,007 1.37 - 0.30n=5,000 30,007 6.47 - 0.78n=10,000 60,007 14.40 - -n=30,000 180,007 46.44 - -levels(n)n=10 78 0.01 1.70 0.19n=1,000 7,008 1.35 - 0.29n=5,000 35,008 6.48 - 0.87n=10,000 70,008 14.14 - -n=30,000 210,008 48.67 - -teams(n)n=3 594 0.05 - 0.20n=4 2,386 0.25 - 0.22n=5 9,554 1.12 - 0.33n=6 38,226 4.41 - 2.85n=7 152,914 21.19 - -mix(m,n,k)n=10, k=0m=100 4200 0.40 ? 0.22m=1000 42000 3.83 ? 0.45m=5000 210000 21.15 ? 1.36the entire atom table. Above this overhead, the cost of initialization is proportionalto the number of distinct atoms in the theory. In the worst case, the initializationcalls a memory allocation routine for each atom.Except for the direct execution of strict rules by Prolog, the partial implemen-tation of Delores is clearly the fastest of the implementations, when it is applicable.Thus the basic engine has excellent performance. The �gures support the claim thatits complexity is linear in the size of the input theory. In many of the experimentswith full Delores the linear complexity is also apparent.However, it is apparent that the overhead introduced by the pre-processingtransformation varies quite signi�cantly from problem to problem and is some-times extraordinarily high, well above what would be expected for a transformationthat increases the size of the program only by a factor of 12 (see, for example,

E�cient Defeasible Reasoning Systemstree(10,3)). The timings of such problems were the only ones to vary signi�cantlywhen experiments were repeated. It turns out that the initialization of S consumesthe bulk of this time. Furthermore, it is on those problems that contain many di�er-ent atoms that Delores performs worst. This is evident in comparing the behaviourof Delores on tree() and dag() problems. It is also apparent when comparing thedata for Delores on the problems with undisputed inferences (Table 2) { where thecomplexity comes mostly from the number of atoms { and problems with disputedinferences (Table 3), where the number of di�erent atoms is smaller.We have not yet properly accounted for Delores's sensitivity to the number ofatoms. Certainly the transformation exacerbates the situation by introducing manymore atoms. In addition, an attempt to optimize inference by extracting commonsubgoals in a single rule has back�red by introducing further new literals, possiblydoubling the number of literals. Thus, although the time for inference has been im-proved, initialization time has worsened. We could partly address the problem byomitting the \optimization" and implementing defeaters directly, in a similar man-ner to defeasible rules. These would require only minor modi�cations to the existingsystem and would reduce the number of distinct atoms by about 1/8. We couldalso redesign the transformation, trading incrementality for a more parsimoniousintroduction of new atoms. However, the main problem is the apparent nonlinear-ity of initializing S and the source of this behaviour requires further investigation.Current indications are that it is caused by a hash function that does not handlegracefully the arti�cial names generated by the transformation.Another point to note is that, in contrast to the query answering systems, De-lores performs slightly worse on problems with strict rules. The reason is that strictrules are duplicated and so the inferences performed by the system are e�ectivelydoubled.7. Current and Future WorkWhile defeasible logic was the original formalism we investigated, it has alsoserved as the starting point for the development of variants with di�erent represen-tational properties, or for expansions of the logic 21;40. These include (a) ambiguitypropagating defeasible logic; (b) defeasible logic without team defeat; (c) defeasiblelogic with dynamic priorities; (d) well-founded defeasible logic. Most of the abovemodi�cations and extensions have already been implemented as additional featuresof Deimos, our query evaluation system discussed above.We have designed a powerful extension of defeasible logic, called plausible logic33;34. The computational complexity of plausible logic is exponential, in the worstcase. However, in practical problems it seems to work with reasonable e�ciency, asour experiments with an implementation4 using the same approach as Deimos haveshown. For further discussion of plausible logic and its implementation we refer thereader to 33;34.4See www.cit.gu.edu.au/�arock/plausible/Plausible.cgi

E�cient Defeasible Reasoning SystemsOn the theoretical side, our e�orts concentrate on the establishment of connec-tions to argumentation systems 22;41, and the development of semantics for defea-sible logic 21;42.Finally we are investigating the applicability of defeasible logic (and its variants)as a modelling languages in the domains of regulations, business rules, electroniccommerce, and the legal domain. We believe that e�cient con
ict resolution rule-based systems with priorities are a useful tool that can represent in a natural waymany solution procedures that are currently applied manually.8. ConclusionWe have presented two new implementations of defeasible logic, based on sub-stantially di�erent techniques. Our experiments on query-answering implementa-tions have demonstrated that both Deimos and the existing d-Prolog system canhandle very large rule sets, although d-Prolog is e�ective on only a narrow rangeof rule sets. Deimos is clearly superior in the more realistic situations when somerules con
ict.We have seen that the complexity of computing consequences in defeasible logicis linear in the size of the input theory. Our experiments with the partial imple-mentation of Delores have con�rmed this claim. Indeed the partial implementationof Delores was clearly the faster system in almost all experiments on which it couldbe run. However, the transformation implemented in full Delores did not behavelinearly. Since theoretically it is of linear complexity, there is clearly an engineeringissue to be addressed here.In summary, both Deimos and Delores show promise as high-speed implementa-tions of defeasible logic, and Deimos has already partly ful�lled its promise. Con-sequently it appears that defeasible logic provides rule prioritization and defeasiblereasoning in an e�ciently implementable way.Work is continuing on both systems. For Deimos, we are implementing memo-ization using mutable arrays, instead of a balanced tree, in order to eliminate theO(logN) factor. For Delores, we are addressing the problems of initialization andthe pre-processing transformation that were exposed by our experimental evalua-tion.AcknowledgementsWe thank Scott Brady and Chris Herring for their work on a preliminary all-conclusions system, and Guido Governatori for his work on the transformationsused in Delores and for discussions on defeasible logic. Much of this research wasperformed while the authors were employed by Gri�th University. This researchwas supported by the Australian Research Council under grant A49803544. Anearlier version of this paper was presented at ICTAI 2000.

E�cient Defeasible Reasoning SystemsReferences[1] V. Marek and M. Truszczynski, Nonmonotonic Logic, Springer (1993).[2] G. Antoniou, Nonmonotonic Reasoning, MIT Press (1997).[3] H. Kautz and B. Selman, Hard Problems for Simple Default Logics, Arti�cial intelli-gence, 49 (1991) 243{279.[4] G. Gottlob, Complexity Results for Nonmonotonic Logics, Journal of Logic and Com-putation 2 (1992) 397{425.[5] M. Cadoli and M. Schaerf, A Survey of Complexity Results for Nonmonotonic Logics,Journal of Logic Programming 17 (1993) 127{160.[6] M. Gelfond and V. Lifschitz, Representing Action and Change by Logic Programs,Journal of Logic Programming 17 (1993) 301{322.[7] H.J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R.B. Scherl, GOLOG: A LogicProgramming Language for Dynamic Domains, The Journal of Logic Programming 31(1997) 59{84.[8] M. Shanahan, Solving the Frame Problem: A Mathematical Investigation of the Com-mon Sense Law of Inertia, MIT Press (1997).[9] I. Niemel�a and P. Simons, Smodels { an Implementation of the Stable Model and Well-Founded Semantics for Normal Logic Programs, in Proc. 4th International Conferenceon Logic Programming and Nonmonotonic Reasoning, LNAI 1265, Springer-Verlag(1997) 420{429.[10] D. Nute, Defeasible Reasoning, in Proc. 20th Hawaii International Conference on Sys-tems Science, IEEE Press (1987) 470{477.[11] D. Nute, Defeasible Logic, in D.M. Gabbay, C.J. Hogger and J.A. Robinson (Eds.):Handbook of Logic in Arti�cial Intelligence and Logic Programming Vol. 3, OxfordUniversity Press (1994) 353{395.[12] D. Billington, K. de Coster and D. Nute, A Modular Translation from Defeasible Netsto Defeasible Logic, Journal of Experimental and Theoretical Arti�cial Intelligence 2(1990) 151{177.[13] J.F. Horty, R.H. Thomason and D. Touretzky, A Skeptical Theory of Inheritance inNonmonotonic Semantic Networks, in Proc. American National Conference on Arti�-cial Intelligence, (1987) 358{363.[14] L.A. Stein, Resolving Ambiguity in Nonmonotonic Inheritance Hierarchies, Arti�cialIntelligence 55 (1992) 259-310.[15] B.N. Grosof, Prioritized Con
ict Handling for Logic Programs, in Proc. Int. LogicProgramming Symposium, J. Maluszynski (Ed.), 197{211, MIT Press (1997).[16] Y. Dimopoulos and A. Kakas, Logic Programming without Negation as Failure, in Proc.5th International Symposium on Logic Programming, MIT Press (1995) 369{384.[17] L. Morgenstern, Inheritance Comes of Age: Applying Nonmonotonic Techniques toProblems in Industry, Arti�cial Intelligence 103 (1998) 1{34.[18] G. Antoniou, D. Billington and M.J. Maher, Normal Forms for Defeasible Logic, inProc. 1998 Joint International Conference and Symposium on Logic Programming,MIT Press (1998) 160{174.[19] M. Maher, G. Antoniou and D. Billington, A Study of Provability in Defeasible Logic,in Proc. Australian Joint Conference on Arti�cial Intelligence, LNAI 1502, Springer(1998) 215{226.[20] G. Antoniou, D. Billington, G. Governatori and M.J. Maher, Representation Resultsfor Defeasible Logic, ACM Transaction on Computational Logic 2 (2001) 255{287.[21] M. Maher and G. Governatori, A Semantic Decomposition of Defeasible Logics, Proc.American National Conference on Arti�cial Intelligence, AAAI/MIT Press (1999) 299{

E�cient Defeasible Reasoning Systems305.[22] G. Governatori and M. Maher, An Argumentation-Theoretic Characterization of De-feasible Logic, in Proc. European Conf. on Arti�cial Intelligence (2000) 469{474,[23] G. Antoniou, M.J. Maher and D. Billington, Defeasible Logic versus Logic Programmingwithout Negation as Failure, Journal of Logic Programming 42 47{57, 2000.[24] H. Prakken, Logical Tools for Modelling Legal Argument: A Study of Defeasible Rea-soning in Law, Kluwer Academic Publishers (1997).[25] H. Prakken and G. Sartor, Argument-based Extended Logic Programming with Defea-sible Priorities, Journal of Applied and Non-Classical Logics 7 (1997) 25{75.[26] G. Antoniou, D. Billington and M.J. Maher, On the Analysis of Regulations usingDefeasible Rules, in Proc. 32nd Hawaii International Conference on Systems Science,(1999).[27] G. Antoniou, On the Role of Rule-Based Nonmonotonic Systems in Electronic Com-merce { A Position Statement, in Proc. 1st Australasian Workshop on AI and ElectronicCommerce, (1999).[28] D.M. Reeves, B.N. Grosof, M.P. Wellman, and H.Y. Chan, Towards a Declarative Lan-guage for Negotiating Executable Contracts, Proceedings of the AAAI-99 Workshop onArti�cial Intelligence in Electronic Commerce, AAAI Press / MIT Press (1999).[29] B.N. Grosof, DIPLOMAT: Business Rules Interlingua and Con
ict Handling, for E-Commerce Agent Applications (Overview of System Demonstration), in Proc. IJCAI-99Workshop on Agent-mediated Electronic Commerce, (1999).[30] G. Governatori, M. Dumas, A.H.M. ter Hofstede and P. Oaks, A Formal Approach toProtocols and Strategies for (Legal) Negotiation, Proceedings of the 18th InternationalConference on Arti�cial Intelligence and Law, ACM Press (2001) 168{177.[31] M. Maher, Propositional Defeasible Logic has Linear Complexity, Theory and Practiceof Logic Programming, 1 (2001) 691{711.[32] D. Billington, Defeasible Logic is Stable, Journal of Logic and Computation 3 (1993)370{400.[33] A. Rock and D. Billington, A Propositional Plausible Logic Implementation in Haskell,in Proc. Australasian Computer Science Conference, (2000) 204{210.[34] D. Billington and A. Rock, Propositional Plausible Logic: Introduction and Implemen-tation, Studia Logica 67 (2001) 243{269.[35] W.F. Dowling and J.H. Gallier, Linear-Time Algorithms for Testing the Satis�abilityof Propositional Horn Formulae, Journal of Logic Programming 1 (1984) 267{284.[36] G. Gallo and G. Urbani, Algorithms for Testing the Satis�ability of Propositional For-mulae, Journal of Logic Programming 7 (1989) 45{61.[37] M.A. Covington, D. Nute and A. Vellino, Prolog Programming in Depth, Prentice Hall(1997).[38] P. Cholewinski, V. Marek, A. Mikitiuk and M. Truszczynski, Experimenting with Non-monotonic Reasoning, in Proc. International Conference on Logic Programming, MITPress, (1995) 267{281.[39] M.P. Jones et al, The Hugs98 User Manual, http://www.haskell.org/hugs/[40] G. Antoniou, D. Billington, G. Governatori and M. Maher, A Flexible Framework forDefeasible Logics, in Proc. American National Conference on Arti�cial Intelligence,AAAI/MIT Press (2000) 405{410.[41] G. Governatori, M.J. Maher, G. Antoniou and D. Billington, Argumentation Semanticsfor Defeasible Logics, in Proc. Paci�c Rim Conf. on Arti�cial Intelligence, 2000.[42] M. Maher, A Denotational Semantics for Defeasible Logic, in Proc. First InternationalConference on Computational Logic, LNAI 1861, Springer (2000) 209{222.

