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Abstract—In this paper, we address the task of semantic
service retrieval based on natural language queries. We analyze
identifiers of services, operations, and parameters extracted from
WSDL service descriptions with respect to their semantic content.
In order to measure the semantic similarity between query and
service description, we introduce a novel computationally efficient
document similarity measure based on information content and
fuzzy set theory.

I. INTRODUCTION

The internet is probably the largest marketplace there is.
One growing segment of that marketplace is the trade with
web services. Large service repositories help bringing service
customers and service providers together. Currently one of the
largest web service repositories, SeekDa,! claims to index over
28,000 services. These services are of a wide variety from
validating email over looking up literature to booking flights.

In order to retrieve services from such a web service reposi-
tory, a potential service consumer poses a service request. The
repository search engine employs a service retrieval method
to find services fitting the functional needs expressed in the
service request and ranks them by relevance.

The standard format for web service descriptions is the
Web Service Description Language? (WSDL). However, an
end consumer will not interact with a web service on the low
technical level WSDL was designed for. It is more likely for
an end consumer to interact with a front-end application, e.g.
a web market place. Thus, instead of looking for a service to
look up the price of a book, the consumer may request find
the price of Lord of the Rings as hardcover. The web market
place then should retrieve services capable of finding the price
of the book and invoke these to retrieve the actual price to be
displayed to the consumer.

A. Service Descriptor

We take a brief look at which kind of information we find
in WSDL service descriptions (see figure 1).

Identifiers are names used to identify the service itself,
operations offered by the service as well as data types and
parameters passed to and returned from these methods. These
identifiers carry a significant amount of information about the
semantics of the entity they identify [1]. Like in programming

Ihttp://webservices.seekda.com/
2Web Service Description Language, http:/www.w3.org/TR/wsdl

languages, identifiers usually have to appear as a single token
and, thus, there are a number of conventions how to deal with
multi-word identifiers. A prominent example is CamelCase
which concatenates multiple words into a single token while
capitalizing the first letter of each word. A service retrieval
engine should be aware of such conventions, e.g. in order to
correctly tokenize getBookPrice as get, book, price.

Data types can be primitive, e.g. integer, string or boolean,
or can be structured, consisting of a number of fields, each
carrying a name and type.

Signatures define which are the input and output parameters
of operations. Each parameter carries a name and a type.

Documentation may be included in service descriptions,
however, most of the time it is not [2]. When present, it is
often very rudimentary, for example a getBookPrice operation
may simply be described as Gets the price of a book.

Service: AuthorBookmaxpriceService

Operation: get_BOOK_MAXPRICE

Input Parameter: get_BOOK_MAXPRICERequest
_AUTHOR (AuthorType)

Output Parameter: get_BOOK_MAXPRICEResponse
_MAXPRICE (MaxPriceType)
_BOOK (BookType)
isTitled (Title)
hasType (Book-Type)
writtenBy (AuthorType)

Fig. 1. Information from a WSDL service description

B. Task Description

A major problem in service retrieval is the vocabulary gap.
The problem occurs when service request and service offer use
different vocabularies. Bag-of-words based retrieval models
lead to unsatisfactory results in this case, because they require
request and offer to share the same terms (section II-A). This
problem occurs due to various causes, e.g. due to a difference
in the level of abstraction (Lord of the Rings vs. book) or due
to the use of synonyms (hardcover vs. hardback). We expect
the vocabulary gap to occur particularly often in the kind
of scenario mentioned earlier: a consumer states a concrete
request to a front-end application; the front-end tries to locate
services that can answer to the request; finally the front-end
invokes the service on behalf of the consumer.

Semantic retrieval models address the vocabulary gap by
utilizing semantic resources which link terms to concepts.



Thus, it becomes possible to calculate the similarity at the
level of concepts and find a service offer matching the request
if they contain no shared terms but are semantically related.
Additionally, service retrieval has particular demands to-
wards the retrieval model. Information retrieval models often
consider documents containing information beyond what was
requested in the query as less relevant than documents contain-
ing only information stated in the query. In service retrieval,
though, it should not have a negative impact if a service
provides functionality beyond what was requested. We will
later refer to this as the particular nature of service retrieval.
Looking at several existing semantic retrieval models (sec-
tion II-B), we notice they belong to either of two classes:

1) corpus-based retrieval models (section II-B1) use com-
putationally efficient vector space models that derive
semantic similarity from term co-occurrences but allow
little control over the semantic relations deduced;

2) knowledge-based retrieval models (section II-B2) use
path-based similarity measures that work with an explicit
semantic resource allowing detailed control over the
semantic relations such as hypernymy, hyponymy, and
synonymy, but tend to be computationally inefficient.

Our contribution is a computationally efficient knowledge-
based semantic retrieval model using fuzzy sets (section III),
which we experimentally evaluate in the context of service
retrieval (sections IV and V). Being knowledge-based, our
model allows full control over the semantic relations used in
the retrieval process. This can be helpful e.g. to fine-tune the
retrieval to a particular domain such as literature or medicine
or even to the product catalog of a vendor.

Most work on service retrieval, like [3]—[5], assumes that a
service request is posed using the same formalism that is also
used for the service description — in our scenario that would
be WSDL. Thus, these approaches can exploit the structured
nature of the service description and e.g. search for optimal
matches between operations specified in the service request
and operations specified in the service offer. Compared to this,
the information present in a natural language query is quite
limited. This should be taken into account when comparing
our work with the state-of-the-art in service retrieval.

II. SERVICE RETRIEVAL MODELS

At the core of service retrieval, as a kind of information
retrieval, is the retrieval model which is used to match
documents to a query and to rank them by relevance. In the
context of this paper, the documents to be matched and ranked
are service offers in the form of WSDL service descriptions
while the queries are service requests in the form of natural
language.

A. Term-based Information Retrieval Models

This section outlines two popular term-based information
retrieval models — the Standard Boolean Model and the Vector
Space Model — which represent a strong baseline and allow for
short query response times. Both models, however, have the
drawback that a document can only be retrieved if the query

contains at least one of the document’s terms. Thus there is a
vocabulary gap if a document should semantically match the
query, but does not because it does not contain a query term.

The Standard Boolean Model (SBM) of information re-
trieval is based on set-theory. Both, query and document are
interpreted as sets of terms. A document matches the query if
the intersection of their respective sets of terms is non-empty.
The model allows complex boolean queries using the boolean
operators and, or and not. This model does not allow the query
writer to weight the query terms, nor does it take into account
that some documents matching the query may be more relevant
than others.

The Vector Space Model (VSM, [6]) is a retrieval model
that treats queries and documents as sets of terms represented
as vectors in an n-dimensional space. The elements of these
vectors represent the relevance or importance of a term.
The relevance of a term to a document r4(d) is commonly
calculated by multiplying the frequency of the term in the
document T'F' with the inverse document frequency IDF,
which is the logarithm of the number of documents containing
the term [7].

ri(d) =

The importance of a query term is typically 1 unless
explicitly stated otherwise by the query writer. The similarity
between query and document is calculated by a vector product,
typically the cosine.

Using a VSM to retrieve services based on identifiers and
documentation contained in the service descriptions has been
recognized as providing a good baseline for service retrieval
and is incorporated by various state-of-the-art approaches, e.g.
[21-[4], 8]

The SBM and the VSM are often combined. When adding
a document to an information retrieval system based on a
combined approach, documents are indexed twice. The first
index is a reverse document index that allows to quickly
look up those documents containing at least one query term,
which is used to search documents using the Standard Boolean
Model. The second index stores the term vectors for each
document. This index is used to rank documents according to
the VSM. Together, the indexes allow for short query response
times.

TF(d,t) « IDF(t)

B. Semantic Service Retrieval Models

While the traditional VSM is based on sets of terms, there
are also alternative models that employ vectors representing
sets of concepts — we will refer to these as semantic vector
space models (SVSM). Semantic retrieval models address the
vocabulary gap by allowing a document to be retrieved if it
shares a common concept with the query. For example, a query
term hardcover would match a document term hardback as
both terms are synonymous, representing the same concept.

Corpus-based methods use the semantic relatedness im-
plicitly induced by the fact that semantically related terms
often occur together. By automatically analyzing term co-
occurrences in a sufficiently large document collection, they



aim to provide an objective semantic similarity measure.
Knowledge-based methods on the other hand, use detailed
explicit semantic relations modeled by a knowledge engineer
and encoded in a semantic resource such as an ontology.

1) Corpus-based Retrieval Models: Latent Semantic Anal-
ysis (LSA, [9]) is a corpus-based SVSM which uses singular
value decomposition to reduce the dimensionality of traditional
VSM term vectors. The process conflates dimensions associ-
ated with terms commonly co-occurring in a training corpus
into a single dimension which is thought to represent the
concept of which the terms are representatives. For example,
it is likely that LSA folds the synonymous terms student and
pupil into the same dimension. Thus, the process converts term
vectors to concept vectors. The concept vector for a document
is calculated by summing up the concept vectors associated
with each of the document terms. The dimensionality of the
LSA vectors needs to be defined prior to indexing. Landauer
et al. [9] found 300 dimensions to yield the best results on a
document collection with 60.000 unique words.

Explicit Semantic Analysis (ESA, [10]) is another corpus-
based SVSM which assumes that terms co-occurring in docu-
ments frequently are semantically related. Further, it assumes
that each corpus document focusses on a particular idea and
thus can be interpreted as a concept. Consequently, the dimen-
sionality of an ESA vector equals the number of documents in
the corpus. Generating a concept vector for a set of terms is a
two-step process in ESA: 1) a term concept vector is formed
in which the elements are TF*IDF values of the terms in each
document; 2) a document concept vector is computed as the
centroid of the term concept vectors for each term occurring
in the document. The fact that the dimensionality of the ESA
vector space corresponds to the number of documents in the
corpus can easily become an issue for large corpora.

2) Knowledge-based Retrieval Models: Exploiting an ex-
plicit semantic resource such as a thesaurus or an ontology
typically means that the resource is used to calculate the
semantic relatedness between two concepts, one represented
by a query term, and the other by a document term. Applicable
term relatedness measures have been introduced by [11]-[15].
Each of these measures calculates the relatedness in terms of a
path of hypernym/hyponym relations connecting two concepts.

To compare two sets of terms using these measures, an
aggregation strategy is required, such as averaging scores
or weighted bipartite graph matching (WBPGM). WBPGM
is the problem of finding a pairwise matching between the
elements of two sets A and B such that the sum of a function
w: A x B — R is optimized and that no element of either
set is paired more than once. Knowledge-based approaches
in combination with algorithms for WBPGM have been used
in particular for signature matching where it is expected that
each input/output parameter in the service request should
have exactly one corresponding input/output parameter in the
service offer [4], [5].

Models using aggregated pair-wise term scores do not
share the characteristics that make VSM or SVSM compu-
tationally efficient. Because the aggregated relatedness score

corpus-based knowledge-based
i Lin, Resnik, !
document ESA LSA ; J&C KB-FSM
level ! (Path-based) |
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Fig. 2. Strategies to generalize term measures to document measures (dashed
line indicates models that were not intended to be used at the document level)

is calculated from the pair-wise relatedness scores of each
combination of query and document terms, it is not possible
to pre-calculate any information on a per-document level, as
is the case for the VSM and SVSMs. Instead, all pair-wise
relatedness scores within the knowledge-base need to be pre-
calculated. Unfortunately, the number of required computa-
tions grows quadratically with the size of the knowledge base
and quickly becomes unmanageable.

Still, it is desirable to be able to efficiently employ
knowledge-based approaches as they offer a great degree of
control over the semantic matching process. As previously
stated, they allow, for example, to fine tune the matching
process to a particular domain such as literature or medicine
or even to the product catalog of a vendor.

III. KNOWLEDGE-BASED Fuzzy SET MODEL

We propose a computationally efficient knowledge-based
semantic retrieval model based on fuzzy sets that combines
the computational efficiency of a VSM with the control over
semantic relations offered by a knowledge-based approach —
we call it Knowledge-based Fuzzy Set Model (KB-FSM). In
contrast to other knowledge-based models (cf. section 1I-B2),
which first calculate pair-wise similarities between query and
document terms and then aggregate over the scores, our
approach produces an aggregate fuzzy-set representation for
each document (section III-B), without knowing the query.
This provides computational efficiency similar to that of VSMs
because the fuzzy concept sets can be pre-calculated for each
document. We use Dice’s coefficient (section III-C) to calcu-
late the similarity between the fuzzy sets derived from queries
and documents and later also experiment with a slight variation
of that coefficient (section V-D). A schematic comparison of
the aggregation strategies used by our approach and by the
other retrieval models mentioned in section II is given in
figure 2.

A. Semantic Representation on the Term-Level

Like the knowledge-based term relatedness measures by
[13]-[15], our method is based on the idea of information
content (IC). IC measures a concept’s specificity, e.g. the very
general concept thing has a very low information content while
that of the more specific concept book is much higher. One
way of measuring the IC is using a knowledge base K. The



intrinsic information content IIC [16] determines the IC of a
concept ¢ based on the number of its hyponyms A (c) compared
to the total number of concepts in the knowledge base K.
The intuition here is that a term that has many hyponyms
is less specific (contains less information) than a term that
has few hyponyms or none at all. It is defined as a function
IIC : C — [0,1]:

log(|h(c)] +1)

log| K|

We turn to creating a semantic representation of a single
term using IC. Assume a query () and a set of documents D1,
Dy, and D3 each containing a single term:

IIC(c)=1—-

Q@ : ’book’
Dy : ’book’
Dy : ’fantasy’
D3 : hardcover’

In addition, assume a knowledge base defining the concepts
book and fantasy as subclasses of thing and hardcover as a
subclass of book. The IC is noted in parentheses.

,— fantasy (1.0)

thing (0.0) {

‘- book (0.5) —- hardcover (1.0)

Obviously, document D; is more relevant to the query @
than the document D5. We also take DDy to be more relevant
to the query than D3 since we assume that there was a good
reason for the query to refer to the more general concept
book and not to hardcover. To reflect this, template-based
approaches (e.g. [2]) build separate vectors for e.g. direct
hypernyms, direct hyponyms and siblings of concepts and
assign different weights to each of these vectors. Our method
represents this idea using the link strength (LS) introduced by
[15]. The link strength LS(c, h) is calculated as the difference
of the IC of a concept ¢ and some hypernym/hyponym h.

LS(c,h) = |IC(c)—IC(h)]

As it is defined, the LS is a distance measure, but we are
interested in a similarity measure to determine how close a
term and its hypernym are in terms of IC. Therefore, we define
the inverse link strength (ILS) as:

ILS(c,h) = 1—LS(c,h)

To get a semantic representation of a term, we now calculate
the ILS between the term and all of its hypernyms. For
the purpose of building this representation, we assume the
hypernym relation to be reflexive and also include the concept
representing the term itself. For the document D3 containing
the term hardcover this yields the following results:

0.0 = ILS(’hardcover’, thing’)

0.5 = ILS(’hardcover’, book’)

1.0 = ILS( hardcover’, hardcover’)

D3 — (’thing’(0.0), ’book’(0.5), hardcover’(1.0))

This representation, that we call the semantic context of
the term, constitutes a fuzzy set [17]. In a fuzzy set, each set
element € A has a degree of membership in the set A written
as A(z). In the semantic context of a term, the ILS score cal-
culated between the term and one of its hypernyms represents
the degree of membership of that particular hypernym. The
semantic contexts for the query and each of the documents
are consequently

@ — (’thing’(0.0), book’(1.0))
D; — (’thing’(0.0), book’(1.0))
Dy — (’thing’(0.0), fantasy’(1.0))
Ds — (’thing’(0.0), ’book’(0.5), "hardcover’(1.0))

B. Aggregation to Document-Level

We now extend this approach to documents containing more
than one term by examining how to aggregate the semantic
contexts of two terms. If the two terms share a common
hypernym, both induce an ILS score for it. For the aggregated
semantic context, we choose the highest of these ILS scores
for each concept in the original semantic contexts.

This corresponds to the fuzzy union operation (AU B)(x),
which directly reflects our intention of choosing the highest
ILS score. To illustrate this, we introduce a document D, :
“fantasy book’ being the concatenation of Dy and D;:

D, : ‘’fantasy book’
D4 — (D2 U Dl)(I)
—  (’thing’(0.0), *fantasy’(1.0), "book’(1.0))
C. Calculation of Semantic Similarity

To calculate the similarity between two concept vectors,
we again apply the fuzzy set theory. The Dice coefficient
calculates the similarity of two sets using the set union, set
intersection, and set cardinality operations — all of which are
defined on fuzzy sets:

(ANB)(z) = min[A(x), B(x)]
(AUB)@) =
|Al(z)

The Dice coefficient on fuzzy sets dy therefore is
2[(AN B)|(x)
Al (z) + | B(x)
23 min[A(z), B(x)]
2. A(x) + 3. B(x)
Finally, we can calculate the semantic similarity between
the query and each of the documents.

d(A(z), B(z))

ds(Q, D) 1.000  (*book’, ’book’) (1)
1(Q,D2) = 0.000 (’book’, fantasy’) (2)
d;(Q,D3) = 0.400 (’book’, hardcover’) 3)
+(Q,Ds) = 0.666 (’book’,fantasy book’) (4)



TABLE I
OWLS-TC 3REV1 DATASET STATISTICS AFTER PREPROCESSING

TABLE I
PREPROCESSING STEPS AND TOOLS

The measure correctly calculates similarity for the trivial
cases of self-comparison (1) as 1.0 and comparison between
non-related concepts (2) as 0.0. The reason for (4) to yield a
higher similarity than (3) is that D4 uses the same level of
abstraction as the query, both referring to the concept book
while D3 uses a more specific level of abstraction using the
concept hardcover. This illustrates that the measure assigns a
higher score if the query and a document refer to a concept
at the same level of abstraction.

IV. EXPERIMENTS
A. Dataset

For our experiments, we used the OWLS-TC benchmark.?
Since — to the best of our knowledge — no standard benchmark
for service retrieval with natural language service requests
exists, using OWLS-TC seems to provide the best means
for experimental results. This benchmark has been used in
previous related work by [4], [8], and it is used as a shared
dataset in the annual Semantic Service Selection Contest* held
since 2007. The current version OWLS-TC 3revl includes the
WSDL documents we use for our experiments.

In total, OWL-S®> and WSDL descriptions for 999 services
are included in the dataset. We use only the WSDL descrip-
tions in our experiments. Each service has a single operation
with several input and output parameters. No documentation
is included in any of the WSDL service descriptions. After
preprocessing, this yields a corpus of 388,586 tokens and
11, 222 unique tokens. The dataset contains 29 service descrip-
tions serving as queries. We use the description field from the
OWL-S version of these service descriptions as queries, €.g.:

o This service returns lecturer of a university

o This service finds a comedy film for a title

o This service returns the destination where both games
hiking and surfing are available

Finally, the dataset contains 3,584 relevance judgements
which we use for our evaluation. Table I gives a detailed
overview of the dataset characteristics.

3http://www.semwebcentral.org/frs/?group_id=89
“http://www-ags.dfki.uni-sb.de/~klusch/s3/
Shttp://www.w3.org/Submission/OWL-S

Services 999 [ Processing step [ Processing component
Tokens . 388,586 Initial tokenization DKPro Core GPL® StanfordSegmenter
Types (umque'tokens) 11,222 Re-tokenization 1 DKPro Core ASL’ CamelCaseTokenSegmenter
Type/token ratio . 0.33 Re-tokenization 2 DKPro Core ASL PatternBasedTokenSegmenter
Average types per service 11.2 using the split pattern

Queries 29 [N/2163\" <> =171+
Tokens 167 Re-tokenization 3 DKPro Core ASL TokenTrimmer removing
Types (unique tokens) 163 leading and trailing dashes
Type/token ratio 0.98 Part-of-Speech tagging | DKPro Core ASL TreeTagger wrapper using the
Average types per query 5.6 & lemmatization model for English

Judgements 3,584 Stop word removal DKPro Core ASL StopwordRemover using
relevant 1,333 Snowball stop word list for English extended for
not relevant 2,251 XML Schema type names

Stemming DKPro Core ASL Snowball stemmer®

B. Evaluation Criteria

We evaluate the measures based on the following metrics:

Mean Average Precision (MAP): The precision P(q) is
the ratio of relevant documents S(q) in the set of retrieved
documents T'(q) for a query ¢ from the query set Q:

1S(q) NT(q)

Pl ()]

The average precision AP(q) calculates the sum over the
precision-at-rank P(q, r), if the document at rank r is relevant,
divided by the number of relevant documents. P(q,r) takes
only retrieved documents up to rank 7 into account. Whether
a document is relevant to the query is determined by the
relevance function 7 : Q x D — {0,1}. T,.(¢) is the retrieved
document at rank 7.

SO (P(g,r) * (g, T2 (9)))
1S(q)]

AP(q) =

The mean average precision (M AP) is calculated from the
average precision for each query:

MAP =
@

Missed relevant documents: The number of relevant docu-
ments that were not retrieved is an indicator for the impact of
the vocabulary gap on the retrieval method in our experiments.
The number is calculated as the sum of relevant documents
missed over all queries and, thus, is a fraction of the total
number of documents judged as relevant.

C. Experimental Setup

We perform tokenization, lemmatization, stop-word re-
moval, and stemming using components from the Darmstadt
Knowledge Processing (DKPro) software repository.” More
detailed information is given in table II.

Shttp://dkpro-core-gpl.googlecode.com
"http://dkpro-core-asl.googlecode.com
Shttp://snowball.tartarus.org/
“http://www.ukp.tu-darmstadt.de/research/projects/dkpro/



To calculate similarity, we use the following methods and
implementations:

e bag-of-word based VSM implemented by the Apache
Lucene project;'®

o ESA [10] as implemented by [18];

o LSA [9] as implemented by the S-Space project'! modi-
fied to follow our tokenization scheme;

o the semantic term similarity measures developed by
Resnik [13], Lin [14], and Jiang & Conrath [15].

To aggregate pair-wise term similarities, we use

o Kuhn-Munkres’ algorithm [19] for weighted bi-partite
graph matching as implemented by the TimeFinder'?
project to aggregate term similarity scores into document
similarity scores;

¢ geometric mean, harmonic mean, max, mean and median
calculation as implemented by Apache Commons Math.'3

We use WordNet as a semantic resource for our semantic
VSM as well as for the knowledge-based semantic simi-
larity measures used for comparison. The knowledge-based
approaches work with WordNet and thus require a lemma-
tized representation of queries and documents. We chose to
use the same lemmatized representation for the corpus-based
approaches as well for better comparability of results.

ESA is a corpus-based approach using term co-occurrence
frequencies instead of hypernym/hyponym relations. We cre-
ated two models for ESA. One model is based on WordNet,
treating each synset as a concept, and its gloss (together with
the example sentences) as the concept’s textual representation.
The other model is based on Wiktionary glosses. Using Wik-
tionary for the computation of semantic relatedness has shown
good results in the past [20]. Since glosses are often missing in
Wiktionary, we also construct pseudo glosses by concatenating
concepts that are in close relation (synonymy, hypernymy,
meronymy, etc.) to the original concept as proposed in [21].

We apply LSA directly to the service descriptions from the
OWLS-TC dataset. In their evaluation of LSA, Landauer et
al. [9] observe the best results with a 300-dimensional concept
space on a corpus with around 60,000 unique words. Given the
comparatively small number of unique tokens (approx. 11,000,
cf. table I) in the service descriptions, we used a concept space
of only 100 dimensions.

V. RESULTS
A. Aggregated term-level semantic similarity measures

In our first experiment, we calculate semantic similarity
at the term-level and use different aggregation strategies to
aggregate term-level scores to document-level scores. We use
MAP as an evaluation measure. Table III compares the results
obtained from the measures by Resnik [13], Lin [14], and
Jiang & Conrath [15] as well as KB-FSM, ESA, and LSA.

10http://lucene.apache.org/
http://code.google.com/p/airhead-research/
2http://timefinder.sourceforge.net/
Bhttp://commons.apache.org/math/

We observe that the bi-partite graph aggregation strategy
yields the best MAP score for each measure. We attribute
this to the fact, that it best reflects the particular nature of
the retrieval task: a relevant service offer should include all
features specified in the request, but it may well provide
additional features. The bi-partite graph aggregation strategy
allows for a perfect relevance score in such cases, because
a score of 1.0 can be reached if all query terms appear in
the document. This is also true for the max aggregation, but it
over-generalizes as it effectively only compares one query term
with one document term. The averaging aggregation strategies
can only reach a perfect relevance score if query and document
are actually identical.

It is interesting to observe that KB-FSM outperforms Lin,
Jiang & Conrath and Resnik, which are all also based on
information content and exploit the hierarchical structure of
the semantic resource.

The best-performing measures in this experiment are, how-
ever, the corpus-based measures ESA and LSA. We see here
that LSA performs best when trained on the dataset itself,
and ESA performs best when trained on Wiktionary, so in the
following experiments, we only use these configurations.

B. Document-level semantic similarity measures

In our second experiment, we compare the document-level
semantic similarity measures to each other. The results of this
experiment are given in the column s, of table IV. Here,
we observe LSA to perform best, followed by KB-FSM and
ESA. Internally, all document-level measures aggregate term-
level semantic vectors into a document-level semantic vector
which are then combined using an inner product to produce the
relevance score. For LSA, this seems to work well. It shows
the same performance as when used with bi-partite graph
aggregation in the previous experiment. The performance of
ESA and KB-FSM drops compared to the first experiment, so
here the vector aggregation strategy or the inner product are
problematic.

C. Combined measures

For our third experiment, we combine the similarity mea-
sures Sge., With the bag-of-word based VSM implemented by
Apache Lucene spo,, to calculate the similarity between the
service request () and the service offer D. The parameter w
controls the balance between the semantic and the bag-of-word
based components of the combined measure.

s(Q,D,w) = w * Ssem(QyD) + (1 - w) * Sbow(Q;D)

The results for sp,, alone can be found in the leftmost
column of table IV — this corresponds to choosing w = 0.0.
Comparing these results with the results of our first two
experiments, we notice that sy, alone already outperforms
all semantic similarity measures (rightmost column, w = 1.0)
except LSA. By combining sp,, with any of the semantic
similarity measures (columns 0.1 < w < (0.9), we can improve
the results. Again, the combination with LSA works best.



TABLE III
MEAN AVERAGE PRECISION (MAP) USING DIFFERENT STRATEGIES OF AGGREGATING PAIR-WISE TERM SIMILARITY

semantic inner geometric  harmonic

resource product bi-partite mean max median mean mean
LSA (d=100) OWLS-TC Cosine .68 57 37 51 .35 24
LSA (d=300) WordNet Cosine 59 41 34 12 05 03
ESA Wiktionary ~ Avg. Prod. .65 59 37 31 08 07
ESA WordNet Avg. Prod. .64 58 37 24 01 01
KB-FSM WordNet Dice .64 46 36 .10 04 02
Resnik WordNet - 53 43 32 17 12 08
Jiang & Conrath WordNet - 45 22 32 .14 15 13
Lin WordNet - 48 38 32 18 12 08

D. Modified Dice coefficient

While analyzing the results of this experiment, we noticed
that KB-FSM had problems producing good results as the
number of terms in the service description increased. We
found the reason, again, in the particular nature of the service
retrieval task, as described in section I-B. The Dice coefficient
used by KB-FSM cannot produce a perfect score unless the
query and document term sets are identical. This means,
the similarity score drops quickly if an offer provides more
features than asked for in the request.

Thus, we conducted a fourth experiment in which we used
a modified Dice coefficient dg; that focusses on a large
intersection between request and offer, and reduces the penalty
when an offer provides more features than requested. When B
is equal to or a subset of A, dy; is equal to dy (cf. section III).
If B is a superset of A, its cardinality is artificially reduced
compared to the actual Dice coefficient.

m = maz(|A|(z),|B|(x))
w = A@)
(1 +w) Y min[A(x), B(z)]
ZA(SU)+wm

As ESA and LSA are based on vectors representing sets, we
could also use the modified Dice coefficent here as the inner
vector product, trying to adapt them as well to the service
retrieval task. Detailed results for this experiment are given in
table V.

Using the modified coefficient, KB-FSM gets back to the
level of performance it showed as a term-level similarity
measure aggregated using the bi-partite graph strategy, which
also reflects the particular nature of the task. For ESA, we
can see a slight improvement when used stand-alone, but an
overall drop in combination with Lucene. LSA consistently
performs worse with this inner product. The reason for this
should lie in the nature of the semantic vectors used by the
different measures. The semantic vectors of KB-FSM are of
variable size, depending on the number of concepts appearing
in the query and in the document. For ESA and LSA, the
vectors have a fixed size. The size of the ESA vectors depends
on the number of documents in the training corpus, while

the size of LSA vectors is an arbitrary parameter set during
training. Therefore, those approaches are less susceptible to
length differences between query and document and do not
benefit from the modified coefficient.

E. Vocabulary gap

In our last experiment, we examine whether the semantic
approaches were able to reduce or eliminate the vocabulary
gap. As said initially, when the query and document use
different vocabularies, bag-of-words based retrieval methods
lead to unsatisfactory results, because they require the same
terms to exist in both. For this experiment, we compare
the bag-of-word based VSM sy, with the best-performing
configurations of ESA, LSA and KB-FSM from the previous
experiments. We examined how many of the documents judged
as relevant were not retrieved by the methods. The results are
given in table VI. As expected, Spo,, alone performs worst.
When using the combined measures (cf. section V-C), the
vocabulary gap effect is reduced or even eliminated. As LSA
is trained on the corpus itself, it cannot find a document if the
query uses only out-of-corpus vocabulary. This does not apply
to ESA and KB-FSM which use a external knowledge sources
that obviously has a good coverage of both, corpus and query
terms.

VI. CONCLUSION

We have proposed KB-FSM, a computationally efficient
knowledge-based semantic retrieval model based on fuzzy sets
that combines the computational efficiency of a VSM with the
level of control offered by a knowledge-based approach. Our
model was evaluated in the context of service retrieval along
with a set of some of the most widely used knowledge-based
and corpus-based semantic retrieval models. We show that
combinations of the semantic retrieval models with a bag-of-
words based VSM can yield better results than either semantic
or bag-of-words based models alone. In a comparative evalua-
tion, KB-FSM yielded the best result amongst the knowledge-
based approaches, performing similar to the best corpus-based
approach.

We suggest considering either LSA or KB-FSM for service
retrieval, depending if a sufficiently large training corpus
is available or if a knowledge base with explicit semantic
relations can be utilized. Both semantic approaches can benefit
from being combined with a standard boolean VSM. While
ESA has comparatively good results, it does not scale well



TABLE IV
MAP FOR DOCUMENT SIMILARITY MEASURE COMBINED WITH BAG-OF-WORD BASED VSM

Sbow W= Ssem
resource inner product 0.0 .1 2 3 4 5 .6 i .8 9 1.0
LSA (d=100) OWLS-TC cos .66 69 70 70 70 70 .70 .70 .69 .69 .68
ESA Wiktionary  avg.product .66 69 69 69 069 69 69 69 .69 .69 .56
KB-FSM ‘WordNet dy .66 69 70 69 69 69 68 67 .65 .63 .60
TABLE V
MAP FOR SIMILARITY MEASURES USING MODIFIED DICE d; COMBINED WITH BAG-OF-WORD BASED VSM
Sbow w = Ssem
resource inner product 0.0 .1 2 3 4 .5 .6 N .8 9 1.0
LSA (d=100) OWLS-TC ds .66 68 68 68 .69 .69 .69 68 67 .67 .64
ESA Wiktionary ds .66 68 68 68 67 67 .66 .64 .62 .60 .58
KB-FSM WordNet ds .66 69 70 70 70 70 69 .68 .67 .66 .64
TABLE VI
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