
An Architecture to Support Intelligent User Interfaces for
Wikis by Means of Natural Language Processing

Johannes Hoffart, Torsten Zesch, Iryna Gurevych
Ubiquitous Knowledge Processing Lab

Computer Science Department
Technische Universität Darmstadt, Hochschulstraße 10

D-64289 Darmstadt, Germany
www.ukp.tu-darmstadt.de

ABSTRACT
We present an architecture for integrating a set of Natural
Language Processing (NLP) techniques with a wiki plat-
form. This entails support for adding, organizing, and find-
ing content in the wiki. We perform a comprehensive analy-
sis of how NLP techniques can support the user interaction
with the wiki, using an intelligent interface to provide sug-
gestions. The architecture is designed to be deployed with
any existing wiki platform, especially those used in corpo-
rate environments. We implemented a prototype integrating
the NLP techniques keyphrase extraction and text segmen-
tation, as well as an improved search engine. The prototype
is integrated with two widely used wiki platforms: Media-
Wiki and TWiki.

Categories and Subject Descriptors
H.1.0 [User/Machine Systems]: Human factors; H.3.1
[Content Analysis and Indexing]: Linguistic processing;
H.3.3 [Information Search and Retrieval]: Retrieval
models, Search Process; H.3.5 [On-line Information Ser-
vices]: Web-based services; H.5.2 [User Interfaces]: User-
centered design; H.5.4 [Hypertext/Hypermedia]: Archi-
tectures, Navigation, User issues; H.5.3 [Group and Or-
ganization Interfaces]: Collaborative computing, Web-
based interaction; I.2.7 [Natural Language Processing]:
Text analysis

General Terms
Design, Human Factors

Keywords
Natural language processing, Wiki, User interaction, Con-
tent organization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WikiSym ’09, October 25-27, 2009, Orlando, Florida, U.S.A.
Copyright c© 2009 ACM 978-1-60558-730-1/09/10...$10.00.

1. INTRODUCTION
Wikis are a fairly new kind of content management system.
In companies, wikis are often used to capture knowledge like
brainstorming minutes or draft documents that would be
lost when using centrally managed content management sys-
tems [1]. The benefit of using wikis for collaboration is that
they provide a simple and fast way to add and edit content
[19]. Majchrzak et al. [20] studied the behavior of corporate
wiki users, and concluded that wikis are indeed sustainable
in a corporate environment. However, some corporate wikis
have been abandoned, as wikis tend to get too disorganized
during growth. For example, Buffa [1] reports that the wiki
at New York Times Digital, after a very promising begin-
ning, grew to a mass of unmanageable pages with meaning-
less page titles and no usable link structure. Though very
attractive at first, the open editing policy of wikis seems to
encourage a wild growth of content, lacking a coherent struc-
ture which is necessary for finding the content that resides
in the wiki.

The main problem that users report when using wikis is
the disorganized content, that makes “navigation, orienta-
tion and search sometimes difficult” [1]. In wikis, search is
very often used as a navigational aid, where the user knows
the page to be retrieved in advance. If the search does not
return a certain page the user knows to be there, the user’s
trust in the search is lost. Other studies revealed that prob-
lems caused by the lack of structure, like not finding con-
tent and also the unwitting recreation of existing content
in knowledge management systems, are the source of high
costs [7]. In wikis, this is even more problematic because
of the aforementioned difficulties when searching for redun-
dant content, and because wikis are not as well structured as
classical content management systems. Nevertheless, wikis
are recognized by companies to be a valuable tool to man-
age knowledge [20], as corporate knowledge is more easily
shared and reused. Thus, it is important to find a way for
improving the content organization in the wiki while still
retaining its open and collaborative nature.

We propose a system to support wiki users with the tasks of
adding, organizing, and finding content in a wiki by apply-
ing Natural Language Processing1 (NLP) techniques. We
analyze different types of user interactions corresponding to
these tasks and identify NLP techniques that can aid the

1For a detailed description of Natural Language Processing,
refer to [17]

user, e. g. by providing suggestions of where to add or how
to organize content. In order to support these user interac-
tions, we propose a general and extensible architecture to
build an intelligent user interface for wikis using the iden-
tified NLP techniques. To be able to display suggestions
to the user, the architecture needs to be coupled with the
wiki interface itself. The direct integration into the interface
is also necessary for giving the user a seamless experience,
thus fostering usability. With the resulting system called
“Wikulu”2, we envision an interactive process where the user
is involved at every step, supported by NLP techniques [14].
We do not aim at a kind of “black box” approach where the
user presses a single button and is then confronted with a re-
structured wiki. This has two main reasons: (i) the current
state of research in NLP is not advanced enough to support
such content re-organization with perfect results, and (ii)
users need to be able to assess the quality of the process.
If changes are made in different parts of the wiki without a
possibility to actually see what is going on, the acceptance
of users would be low. Thus, we need an intelligent user in-
terface that gives the user full control over every step, only
suggesting possible and relevant actions.

The NLP techniques that can be employed to derive intel-
ligent suggestions are diverse, including e. g. text segmenta-
tion [4, 16], keyphrase extraction [23], and calculating text
similarity using semantic relatedness [13, 34]. The corres-
ponding system architecture needs to be general enough to
be able to integrate simple NLP techniques working on a
single document as well as very complex ones requiring ac-
cess to additional resources. Additionally, the architecture
should work with arbitrary wiki platforms, as there are a
lot of different platforms in use and our approach should
not be restricted to a specific platform. The approach itself
is actually not limited to wikis, it is general enough to be
applied to any web-based document collection. Neverthe-
less, because of the increased difficulty of organizing content
in wikis, the need for user support is more pressing there.
Thus, we focus our research on wikis, and present a system
architecture to integrate NLP techniques into wikis, keeping
the architecture as independent from specific wiki platforms
as possible.

The remainder of this paper is organized as follows. We an-
alyze different types of user interaction and NLP techniques
to support them in Section 2, followed by a discussion of the
system architecture in Section 3. Section 4 takes a look at
related work, and Section 5 concludes with a summary and
an outlook.

2. THE WIKULU APPROACH
Wikulu focuses on helping the user to organize the wiki
content by providing suggestions of where content could be
added or how existing content can be re-organized. The
task of re-organizing a wiki is already possible in current
wikis, albeit very tedious, by moving pages or copying con-
tent manually. We aim at improving the user interaction in
this process, so that it is easier for wiki users to organize the
content.

2http://www.ukp.tu-darmstadt.de/projects/wikulu/

NLP User

Wiki Wiki-Mining

Suggestions

Interactions Enhanced

Information

Information

Figure 1: Intelligent User Interface Wiki Cycle

Figure 1 displays the basic steps of our approach, forming
a cycle. The most important step is the interaction of the
user with the wiki, which we try to improve by providing
suggestions. To derive suggestions that support the user, we
can make use of the wiki content that is already available.
The wiki structure contains useful information, e. g. links or
the revision history. The extraction of such information is
called Wiki-Mining [21]. Wiki-mined information can then
be utilized as additional input for the NLP algorithms, which
in turn provide the suggestions. The better the wiki pages
are structured, the more information can be extracted in the
Wiki-Mining process, and subsequently used for the NLP
algorithms. This will in turn lead to better suggestions for
the user, thus closing the wiki cycle.

Helping to organize the wiki content is our major focus, but
other types of interaction can also be improved. There are
three major types of user interactions that arise when wikis
are used: (i) adding content, (ii) organizing content, and
(iii) finding content. Each type of interaction comes with
specific challenges, and there are different ways to address
them. Table 1 presents an overview of the interaction types
which will be discussed next.

2.1 Adding Content
A major problem of collaborative content creation is the du-
plication of content in separate parts of the wiki. A study
by Feldman and Sherman [7] reveals that “an enterprise em-
ploying 1,000 knowledge workers wastes $5 million per year
because employees spend too much time duplicating infor-
mation that already exists within the enterprise”. Different
users add the same or similar content to different parts of
the wiki. This happens because most users are not aware of
all the content in the wiki. Even if they search for duplicate
content beforehand, they might not easily find it due to the
vocabulary gap, which occurs when searching for a keyword
that is not present in the content repository, although words
with similar meaning or even synonyms are present.

To reduce duplicate content, Wikulu will search for the
content the user is adding while the user is still typing. Re-
lated pages will be displayed and the user can more eas-
ily decide whether similar content is already available. By

Types of Interaction Wikulu Support NLP Techniques

Adding content
Detect duplicate content Duplicate detection, Semantic relatedness
Suggest points of insertion Semantic relatedness, Text segmentation

Organizing content
Suggest links Link detection, Word sense disambiguation
Suggest tags Keyphrase extraction, Tag prediction
Suggest page split/merge Text segmentation, Semantic relatedness

Finding content
Recall-oriented search Semantic relatedness
Show related pages while browsing Semantic relatedness

Table 1: Possibilities to Enhance User Interaction in Wikis

checking the related pages, the user can decide whether the
content is redundant or if the existing pages should be en-
hanced.

Wikulu will also propose positions in existing docu-
ments where the content could be inserted. Positions that
are suitable for insertion can be found by computing the text
similarity based on semantic relatedness measures [13, 34]. If
a highly similar page is found, the page can subsequently be
segmented into topics by means of text segmentation algo-
rithms [4, 16]. The single segments can in turn be compared
to the content that is to be inserted, identifying a possible
position for insertion inside the page.

2.2 Organizing Content
If the user has added content to the wiki, Wikulu will offer
support to link the newly added page to existing ones,
thereby integrating it with the rest of the wiki. Pages that
are not linked are hard to find, so this is a crucial task. Pos-
sible link targets will be displayed, and links can be added
simply by confirming the suggestions. Recently, highly accu-
rate methods to identify significant terms inside pages and
link them to other pages in Wikipedia have been proposed
[22, 24]. The approaches have also been tested in linking
“real world” documents to Wikipedia, with similarly good
results as when linking Wikipedia articles internally.

Tags are another way of organizing wikis. Originally, tags
have gotten popular on Web 2.0 sites like del.icio.us3 and
Flickr4, but have also been adopted in wikis, e. g. in Sweet-
Wiki [2] or TWiki. Tags add another dimension to the
navigation in wikis. They can serve as a starting point for
navigation, e. g. displayed as a tag cloud. Another way to
use tags as a navigational facility is by presenting tags on
an associated page as links. The user can then follow the
linked tag to view a list of other pages associated with the
tag. Another option to improve organization using tags is
by presenting them as keywords at the beginning of a page,
to give the reader a quick overview of what others have as-
sociated with the current page. Tags can also be used to
improve the information retrieval components by personal-
izing the search based on how users distribute their tags
[10]. Wikulu could assist the tagging process by provid-
ing tag suggestions relying on keyphrase extraction [9,
23, 28]. Tag suggestions address two problems: first, they
simplify the process of adding tags, and second, they can
be used to foster a standardization of tag usage, avoiding

3http://del.icio.us/
4http://www.flickr.com/

e. g. misspellings. Keyphrases are useful as tag suggestions
because a lot of tags actually describe the page content and
thus resemble keyphrases [12].

There are also cases where existing pages, e. g after a long
time of editing, show the need for restructuring. It might
be the case that pages get too long and should be split into
multiple smaller pages, or that content that belongs together
is actually located on different pages. Both cases signify the
need to improve the structure and require re-structuring.
Wikulu will aid the process of splitting pages by propos-
ing section boundaries, which are identified by applying text
segmentation [4, 16]. The user can initiate the split by con-
firming the suggested boundaries, creating either a better
section structure on the original page or even new pages
which are semantically more cohesive than the original one.

The need to merge pages might also arise when topically re-
lated content is added to different pages in the wiki. Wikulu
will suggest merging candidates using text similarity
measures [13, 34], as described in Section 2.1.

2.3 Finding Content
There are two ways of finding content in a wiki: searching
and browsing. By searching, we mean querying the wiki for
information by entering a free form text string. Browsing
comprises the use of links on pages, as well as tags, cate-
gories, and other navigational facilities presented as hyper-
links.

As mentioned earlier, users might lose their trust in the
search engine capabilities when a search for a document that
is known to be in the wiki fails [1]. This stands in contrast
to searching the web, where the document base is vast and
search results should be as precise as possible. Thus, high
recall is important, but many standard search engines are
not able to find all relevant pages. Query terms do not al-
ways match the document terms, although they are seman-
tically related and thus relevant to the query. Technologies
to bridge the vocabulary gap have already been investigated
[13, 25, 34]. Thereby, queries are not only matched word
by word, but also by their semantic relatedness to docu-
ment terms. For example, a user is looking for a solution
to a problem, thus including “problem” as a keyword in the
query. However, the page with the solution may only contain
the synonym “issue”. Using standard, keyword-based infor-
mation retrieval, the page would not be found, but if the
high semantic relatedness between “problem” and “issue” is
taken into account, the appropriate page is retrieved. This
technology can be configured for use with the wiki docu-

ment collection, improving recall and hopefully the overall
search effectiveness.

Browsing content is already improved by the means Wikulu
will provide for organizing the wiki. Due to aiding the user
while adding and organizing content, the pages will have a
better structure because of the text segmentation, splitting
and merging support. In addition, there will be more ways to
navigate the wiki, possibly already created when the content
is added. Wikulu can add another way of navigation by
presenting links to related pages, without explicit user
interaction e. g. by pressing a button. These dynamic links
improve the browsing experience, and can additionally serve
as suggestions for further, static links to add to the page.

2.4 Authoring a Page (A Use Case)
We will now have a look at how Wikulu will improve the
process of adding a page to the wiki. The steps of adding
content to a traditional wiki, without the support given by
Wikulu, are the following:

1. Search for the content, check if it is in the wiki already
(optional).

2. If it is available, do not add anything, or merely add
some details to the content.

3. If there is no page with the content, either merge the
new content with an existing page where it fits (re-
trieved in step 1), or create a new page and place it
there.

4. Link the added content to other relevant pages in the
wiki (optional).

5. Add tags describing the content (optional).

The authoring steps described above are labor-intensive when
not supported by intelligent user interfaces. Those steps tar-
geted at organizing the wiki are actually optional and can
easily be skipped. Linking to related pages is often neglec-
ted, because it is tedious to identify possible link targets
and add the links using a text editor. However, as there is
no fixed navigation by which single pages can be reached,
and horizontal navigation by following links on a page is
used often [1], a high link density is essential for wikis. In
the Wikulu approach, we try to address both issues of re-
ducing duplicate content and linking newly added content
appropriately. Wikulu will also suggest tags to add further
navigational facilities.

Using the organization capabilities of Wikulu as presented in
Section 2.1 and 2.2, the process of adding content to a wiki
described above will be enhanced as follows, as the result of
applying the intelligent user interface.

1. Enter the content in an editor.

2. Look at suggestions, live-updated while editing.

(a) Check if highly similar pages already contain the
created content and stop if appropriate.

Wiki

Browser

User

API

Wiki

Browser

User

API

Wikulu

(a) Traditional Wiki vs. Wikulu Approach

Wiki

Proxy

Browser

Wikulu
Daemon

Data Store

NLP
Services

Injected JS

API/Plug-In

User

(b) Detailed Overview of Wikulu Components

Figure 2: Wikulu Architecture

(b) Check suggestions for adding content to one of
the highly similar pages.

(c) Check suggestions for links to relevant pages.

(d) Check suggested tags.

The user will only be concerned with important activities,
namely creating content for the wiki. Organizational con-
cerns will be alleviated by Wikulu’s suggestions (a), (b), (c),
and (d), significantly simplifying the task of organizing the
wiki.

Another detail that becomes apparent in this use case is that
adding and searching content are not separated as strictly in
Wikulu as in traditional wikis. The same technologies that
are used when “finding content” are also used for identifying
similar pages when “adding content”.

Figure 3: Wikulu Keyphrase Highlighting

3. ARCHITECTURE
As described in the previous sections, the architecture to
enable an intelligent user interface in Wikulu has to meet
the following requirements:

1. Present suggestions regarding the link structure, tags,
page segments, and possible points of content inser-
tion. These suggestions are either a response to a user
request or are displayed upon loading an ordinary page
in a proactive manner.

2. Allow the user to easily accept suggestions. The sys-
tem needs to be able to perform actions on behalf of
the user.

To satisfy these two requirements, it is necessary to inte-
grate our services into the original wiki interface displayed
in the browser. A possible solution would be to integrate the
Wikulu system directly into a specific wiki platform. How-
ever, there are a lot of wiki platforms in use. MediaWiki5,
Confluence6, and Twiki7, in addition to a lot of other ones
are used in corporate environments. When trying to support
multiple of these platforms, the effort of integrating Wikulu
into each wiki platform is prohibitive and a generic approach
is needed. Another reason for de-coupling intelligent NLP
techniques from the actual wiki platform is that we focus on
providing suggestions to the user, without being targeted at

5http://www.mediawiki.org/
6http://www.atlassian.com/software/confluence/
7http://twiki.org/

any specific wiki platform, and thus there is no need to tie
to any specific one. Adaptation to specific wiki platforms
is still necessary, but our architecture tries to minimize the
coupling points, reducing the effort of integrating Wikulu
into a new platform.

To achieve a tight integration with the user interface but still
maintain independence of the underlying wiki platform, we
use a proxy architecture (see Figure 2) inspired by AUGUR
[15], a research project on proactive user interfaces. The
basic idea is to pass requests to the wiki through a proxy
server, which intercepts the returned HTML representing
the requested wiki page. The HTML is modified by adding
JavaScript code, which in turn can be used to add addi-
tional elements to the HTML on the fly using jQuery8. Such
elements include buttons invoking NLP techniques, provid-
ing an interface to web services with the NLP functionality
(see e. g. Figure 3, where Wikulu adds a panel to invoke the
functionality on top of the standard Wikipedia interface), or
even search results delivered by an IR engine. In addition
to buttons where the user has to explicitly activate a certain
service, the proxy architecture can also be used to immedi-
ately populate the current page with relevant information,
e.g. important keyphrases or links to related pages.

3.1 Wikulu Components
Figure 2 gives an overview of the Wikulu architecture. In
this section, we provide a detailed description of all archi-
tecture components.

8http://www.jquery.com/

User The user employs the standard browser interface of
the wiki platform. Wikulu adds or changes some in-
terface elements to allow the user to call our services
or see the results. Results are shown either upon a
direct user request, e. g. when initiating a search, or
automatically as soon as the page is loaded. This is
implemented in JavaScript, which is used to modify
the HTML and to call the methods provided by the
Wikulu Daemon, which serves as a middle tier.

Proxy The proxy is a Java Servlet that intercepts the in-
teraction between a user’s browser and the wiki. Its
task is to add additional JavaScript and CSS referen-
ces to the original HTML page rendered by the wiki.
The references are used to load custom code into the
browser, enabling us to augment the user interface in
an easy and extensible way.

Wikulu Daemon The Wikulu Daemon is realized as a Java
Servlet. It acts as a management instance, delegating
calls to NLP Services and sending the results back to
the user interface, e. g. to display possible topic bound-
aries in the browser, or modifying the wiki according
to the results, e. g. if the user confirms a page split.

The Wikulu Daemon can operate with different levels
of access to the wiki:

1. The first and most simple method to get data
for NLP processing is to extract the textual con-
tent from an HTML page. To do this, no addi-
tional means are necessary other than accessing
information that is available in the browser. This
method is used e. g. for keyphrase extraction.

2. More elaborate algorithms need a refined way of
accessing the wiki data. Information retrieval me-
thods need an index that has to be created in
advance, and pages need to be processed before-
hand as a batch process. To get a list of all pages,
crawling the wiki or screen scraping the list of all
pages is a lot of effort, especially as we aim to
support different wiki platforms with a minimal
effort. A simpler way of reading arbitrary data
from a wiki is using an API, if one is available
(e. g. for MediaWiki), or by writing a plug-in, ex-
posing the internal API where needed (e. g. for
TWiki), constituting the second level of access.

3. The third and most important access level is writ-
ing data back to the wiki, which is needed for the
user to accept Wikulu’s suggestions. This level of
access is needed e. g. to confirm suggested links or
topic boundaries.

The different levels of access are especially important
when the need of using Wikulu with hosted wiki plat-
forms like SocialText9 arises, where access to internal
wiki data might not be as simple as with wikis running
on a server in the corporate environment itself.

The current API to access an underlying wiki plat-
form is de-coupled from the actual wiki platform and
consists of three principal methods:

9http://www.socialtext.com/

get content Retrieve the content of a single wiki page.

write content Write content to a single wiki page.

list pages Retrieve a list of all pages in the wiki.

NLP Services The NLP Services offer the functionality of
the NLP algorithms as web services. The Wikulu Dae-
mon queries these web services, e. g. for keyphrases or
topic boundaries. The NLP Services have different re-
quirements regarding their data. Some services, like
keyphrase extraction, do not need anything except the
page from which to extract the keyphrases, and oth-
ers, like search services, need a highly optimized data
structure to operate efficiently. This data needs to be
extracted from the wiki off-line, before the actual user
interaction, and is stored in the Data Store.

The NLP Services themselves are based on UIMA10,
the Unstructured Information Management Architec-
ture [8], and the text processing pipelines are con-
structed based on the Darmstadt Knowledge Process-
ing Repository (DKPro)11 components [26]. This ap-
proach allows us to quickly switch between different
algorithms to fulfill NLP tasks. This is very important
because we need to support a wide range of NLP tasks,
and it simplifies testing algorithms for their suitability
in the special wiki environment.

Data Store The data store contains all data structures
needed for the NLP algorithms, like a search index
for information retrieval or pages pre-processed by a
part-of-speech tagger.

So far, the Wikulu architecture described above has been
successfully implemented for MediaWiki and TWiki. One
challenge when using a proxy architecture is the effort of
keeping the data in sync between the wiki and the data
store, e. g. when updating the search engine’s index. This
is easier to achieve with a system that is directly integrated
into the wiki platform, as this allows to act on different
events, e. g. page saves, which in turn can be used to update
any dependent store. Currently, we have to rely on batch
updates of the data store instead. We could also execute an
update upon any change using Wikulu, but the wiki can still
be used without a proxy and so possible changes could go
unnoticed. Nevertheless, if a real need for perfectly synchro-
nized data arises, a plug-in for a particular wiki platform can
be created that takes care of this specific task. The effort
of creating an additional abstraction layer for the underly-
ing wiki platforms is in our opinion outweighed by the clean
separation between the Wikulu components and the wiki
platform, which allows us to re-use Wikulu user interface
elements across different wiki platforms. If we had tightly
integrated Wikulu into a single wiki platform, we might not
have had to resort to JavaScript/AJAX manipulation of the
HTML content, but render it directly within the wiki plat-
form. However, in order to provide an interactive interface,
e. g. to provide live-updates, using JavaScript is probably
necessary anyway.

10http://incubator.apache.org/uima/
11http://www.ukp.tu-darmstadt.de/software/dkpro/

3.2 Implementation Examples
The proposed architecture is able to support a wide range
of NLP techniques, see Section 2. To provide proof-of-
concept examples of these techniques, we have implemented
keyphrase extraction, text segmentation, and search algo-
rithms, and will now describe how they are used in Wikulu.
The search is part of the support for authoring pages, as
described in the use case in Section 2.4.

(a) Wiki Page without Sections

(b) Wikulu Segmentation Suggestions

(c) Confirmed Section Boundary

Figure 4: Adding Sections to a Wiki Page

Text Segmentation. Text segmentation algorithms will
serve two main purposes in Wikulu. One is to provide a
page segmentation as pre-processing for content insertion or
for splitting a wiki page. The second one is to help the user
by suggesting possible places for section headings in the cur-
rent page. The user initiates the suggestions by clicking a
button that has been created using the injected JavaScript.
The button click calls a JavaScript function that is mapped
to a Java call on the Wikulu Daemon. The Wikulu Daemon
invokes the web service running a text segmentation algo-
rithm. The resulting offsets of the text segmentation are
translated to the HTML content and Wikulu shows the pos-
sible locations for section headings using a horizontal yellow
bar, which includes a link to confirm the suggested location.
Technically, this is a <div> element that is added to the
HTML content using jQuery. Clicking on the confirmation
link updates the original wiki page by changing the wiki syn-
tax of the page and storing it, again by invoking a method
on the Wikulu Daemon using a JavaScript call. The Wikulu
Daemon communicates with the wiki using the wiki API or
a custom plug-in.

The steps of segmenting a Wiki page are shown in Fig-
ures 4(a), 4(b), and 4(c). Figure 4(a) shows a long page
without any sections that needs additional structuring. By
pressing the “Suggest Sections” button, a user can request
suggestions for a possible page segmentation, as shown in
Figure 4(b). To confirm a suggestion, the user can enter an
appropriate title and then click the “confirm” button. The
title is then written back to the wiki, as shown in Figure 4(c).
To enhance this process of section splitting, we are going to
allow the proposed location of the section boundaries to be
adjusted.

Wikulu currently uses the TextTiling [16] algorithm for text
segmentation. Roughly, it works as follows:

1. The document is tokenized (i. e. split into single words)
and subdivided into token sequences of a fixed size.

2. A score between each token sequence (or group of to-
ken sequences) is computed by taking into account two
features:

• The number of words they share. The more words
are shared between groups of token sequences, the
higher the score.

• The ratio of new words introduced in two adja-
cent token sequences. The more new words are
introduced in the two sequences, the higher the
score.

3. Boundaries between token sequences are identified by
looking for significant lows in the scores computed in
the second step.

Keyphrase Extraction. Keyphrases help users to quickly
comprehend the content of a page [3]. In the current imple-
mentation, the keyphrase extraction is invoked by pressing
the “Highlight Keyphrases” button. The click on the button
invokes a Java method on the Wikulu Daemon, which in
turn calls a Web Service running the keyphrase extraction.

The Web Service obtains the plain text version of the wiki
page as input, and returns the extracted keyphrases as the
result. The keyphrases are highlighted in the current wiki
page (see Figure 3).

Wikulu currently uses a variant of the TextRank algorithm
[23] to extract keyphrases. It works as follows:

• The document is split into single sentences and tok-
enized.

• The base form for each token is determined (e. g.“walk-
ing” is reduced to “walk”).

• Keyphrase candidates are all adjective/noun phrases
corresponding to specific patterns (e. g. “new car”, “na-
tural language processing”).

• A co-occurrence graph of the keyphrase candidates is
built. Two candidates are connected in the graph if
they appear together in a certain context window.

• PageRank [27] is used to rank the graph nodes repre-
senting the keyphrases.

• The candidates that are ranked highest are presented
as keyphrases.

Adding Content. A user authoring content can be sup-
ported in multiple ways, as described in Section 2.4. An
early implementation of this support displays pages related
to the text currently entered while adding a new page, as
shown in Figure 5. The related pages are not discriminated
into potential duplicates or link targets in the current im-
plementation, and are retrieved by standard vector-based
information retrieval. In the example shown in Figure 5, a
user has typed the text “The founder of the mathematica”,
and Wikulu has found a page related to the query already
present in the wiki, namely a page about the Wolfram|Alpha
search engine. The two pages are related because the com-
pany developing both projects is the same — Wolfram Re-
search — and the article about Wolfram|Alpha mentions
Mathematica.

4. RELATED WORK
Augmenting wikis with NLP techniques has not attracted
a lot of research attention yet. A notable exception is the
work by Witte and Gitzinger [32]. They propose a multi-
tier architecture to connect wikis to services providing NLP
functionality, which are based on the General Architecture
for Text Engineering (GATE)12 [6]. Among the services
provided are automatic summarization, question answering,
and index generation. Although the authors hint at using
advanced user interface features to present the NLP services
to the user, the system makes use of a separate application
to apply the services to the wiki content. The application
reads the content of the wiki page, applies NLP algorithms
to it, and writes the modified page back to the wiki. The
system accesses the underlying wiki using the Java Wiki Bot

12http://gate.ac.uk/

Figure 5: Wikulu Showing Related Pages While
Adding Content

Framework13, generally treating the NLP services as a sepa-
rate user of the wiki. In contrast to their approach, Wikulu
integrates new interface elements into the wiki’s user inter-
face, supports a wider range of interaction types, and focuses
on improving the organization of a wiki.

Other non-NLP approaches to organize wikis rely on Se-
mantic Web [30] technologies to uncover the semantics of a
page, creating so-called semantic wikis. The focus here is
on semantically annotating the content in the wiki, which in
turn allows structured search. Semantic wikis like Semantic
MediaWiki [18], Ikewiki [29], or SweetWiki [2] allow rela-
tions between different pages or between pages and content
snippets to be classified as a certain type, e.g. allowing users
to annotate the population figure of a city as such, rendering
it machine-readable. Ikewiki also allows pages to represent
concepts, the basic unit of an ontology. Machine-readable
concepts and relations form the basis for the Semantic Web,
and so the underlying technologies for these types of wikis
are the Semantic Web ones like OWL/RDF and SPARQL.
SweetWiki addresses the organizational problems in wikis
by giving the users the possibility to tag pages, showing re-
lated pages for entered tags in real-time. NLP techniques
like ontology learning and population [5] might be used to
(semi-)automatically add semantic annotations to wikis, and
the Wikulu architecture could be used to support this. How-
ever, the required NLP algorithms are not mature enough
to be applied on a large scale [11]. Semantic wikis allow a
fine grained manual annotation of semantic knowledge, thus
organizing the semantic content of the wiki itself. Our goal,
in contrast, is to aid users with their everyday tasks based
on wikis, using NLP methods to improve the organization
of the wiki.

A lot of work in the wiki community is done in the context of
Wikipedia. There is a Firefox plug-in for Wikipedia called
“Smarter Wikipedia”14 that displays related articles as part
of the current page. The plug-in is popular, with 60,000
downloads as of the time of writing, and it shows that peo-

13http://jwbf.sourceforge.net/
14http://wikiatic.com/

ple accept suggestions and find it useful when trying to find
information. However, it is tailored to Wikipedia and can-
not be used with other wiki platforms. Another system for
Wikipedia is“Can we link it”15, which suggests possible links
for Wikipedia articles, and thus helps with authoring new
or improving existing content. Our approach goes beyond
the “Smarter Wikipedia” plug-in as well as “Can we link it”,
as it can be applied to arbitrary wiki platforms and content,
and will support a much wider array of tasks.

There has been a lot of additional research on wikis and
Wikipedia in the field of NLP, but mostly this work focuses
on using Wikipedia as a collaboratively created semantic
resource to improve NLP algorithms [21, 33]. In contrast,
we focus on using NLP for improving wikis. These two ap-
proaches are not mutually exclusive, though. NLP can help
to improve the wiki, which can then in turn be mined to
enhance NLP algorithms, resulting in a mutual benefit (as
depicted in Figure 1).

In a broader context, our work is about the content quality
in wikis. Related work from the area of quality assessment
in wikis has been done by Stvilia et al. [31]. They use infor-
mation quality metrics to discriminate high quality articles
from low quality ones in Wikipedia. The metrics are based
on different features, like readability, currency and complete-
ness — which also takes into account the link structure of
the article. Some of the features are specific to encyclope-
dias, but most of them can also be applied to generic wikis.
Quality assessment tries to determine the quality of wiki
pages, which helps users decide which entries to trust and
which ones need improvement. It does not actively support
the user in improving articles of poor quality, though.

5. SUMMARY AND FUTURE WORK
In this paper, we analyzed different types of user interac-
tion regarding the applicability of NLP techniques to sup-
port them. We found that the major interaction types are
adding, organizing and finding content, and that we can
provide benefits to the user for every type of interaction by
using NLP techniques. Adding and organizing content can
be simplified by providing suggestions based on NLP tech-
niques, and finding content is supported by the improved
organization in the wiki as well as an improved search using
NLP techniques. We proposed an architecture for creating
an intelligent user interface for wikis, which allows such NLP
techniques to be integrated into existing wiki platforms. We
implemented proof-of-concept examples demonstrating the
architecture.

We will extend the Wikulu architecture by implementing
NLP services needed for additional capabilities, e. g. sug-
gesting links and tags, or detecting duplicates. The user
interface enhancements will be further evaluated regarding
their usability.

6. ACKNOWLEDGMENTS
The project has been supported by the Klaus Tschira Foun-
dation under grant No. 00.133.2008. This work has been
supported by the Volkswagen Foundation as part of the
Lichtenberg-Professorship Program under grant No. I/82806.

15http://can-we-link-it.nickj.org/

7. REFERENCES
[1] M. Buffa. Intranet Wikis. Proceedings of the

IntraWebs Workshop 2006 at the 15th International
World Wide Web Conference, 2006.

[2] M. Buffa and F. Gandon. SweetWiki: Semantic Web
Enabled Technologies in Wiki. Human Factors, pages
69–78, 2006.

[3] E. H. Chi, M. Gumbrecht, and L. Hong. Visual
Foraging of Highlighted Text: An Eye-Tracking Study.
In Human-Computer Interaction. HCI Intelligent
Multimodal Interaction Environments, volume 4552 of
Lecture Notes in Computer Science, pages 589–598.
Springer, 2007.

[4] F. Y. Y. Choi, P. Wiemer-Hastings, and J. Moore.
Latent Semantic Analysis for Text Segmentation. In
Proceedings of the 2001 Conference on Empirical
Methods in Natural Language Processing, pages
109–117, 2001.

[5] P. Cimiano. Ontology Learning and Population from
Text: Algorithms, Evaluation and Applications.
Springer-Verlag, New York, NY, USA, 2006.

[6] H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and
Applications. In Proceedings of the 40th Anniversary
Meeting of the Association for Computational
Linguistics, pages 168–175, July 2002.

[7] S. Feldman and C. Sherman. The High Cost of Not
Finding Information. An IDC White Paper, 2001.

[8] D. Ferrucci and A. Lally. UIMA: An Architectural
Approach to Unstructured Information Processing in
the Corporate Research Environment. Natural
Language Engineering, 10(3-4):327–348, 2004.

[9] E. Frank, G. W. Paynter, I. Witten, C. Gutwin, and
C. G. Nevill-Manning. Domain-Specific Keyphrase
Extraction. In Proceedings of the 16th International
Joint Conference on Aritificial Intelligence, pages
668–673, San Mateo, CA, 1999. Morgan Kaufmann.

[10] J. Gemmell, A. Shepitsen, B. Mobasher, and
R. Burke. Personalizing Navigation in Folksonomies
Using Hierarchical Tag Clustering. Data Warehousing
and Knowledge Discovery, 5182:196–205, 2008.

[11] L. Getoor and C. P. Diehl. Link Mining: A Survey.
SIGKDD Explorations, 7:3–12, 2005.

[12] S. A. Golder and B. A. Huberman. Usage Patterns of
Collaborative Tagging Systems. Journal of
Information Science, 32(2):198–208, 2006.

[13] I. Gurevych, C. Müller, and T. Zesch. What to be? -
Electronic Career Guidance Based on Semantic
Relatedness. In Proceedings of the 45th Annual
Meeting of the Association for Computational
Linguistics, pages 1032–1039, Prague, Czech Republic,
Jun 2007. ACL.

[14] I. Gurevych and T. Zesch. Selbstorganisierende Wikis.
In Proceedings of KnowTech, pages 317–324,
Frankfurt, Germany, Oct 2008. BITKOM.

[15] M. Hartmann, D. Schreiber, and M. Mühlhäuser.
Tailoring the Interface to Individual Users. In 5th
International workshop on Ubiquitous User Modeling
at IUI’08, New York, NY, USA, 2008. ACM.

[16] M. A. Hearst. TextTiling: Segmenting Text Into
Multi-Paragraph Subtopic Passages. Computational

Linguistics, 23(1):33–64, 1997.

[17] D. Jurafsky and J. H. Martin. Speech and Language
Processing: An Introduction to Natural Language
Processing, Computational Linguistics and Speech
Recognition. Prentice Hall, second edition, February
2008.

[18] M. Krötzsch, D. Vrandecic, M. Völkel, H. Haller, and
R. Studer. Semantic Wikipedia. Journal of Web
Semantics, 5:251–261, Sep 2007.

[19] B. Leuf and W. Cunningham. The Wiki Way:
Collaboration and Sharing on the Internet.
Addison-Wesley Professional, April 2001.

[20] A. Majchrzak, C. Wagner, and D. Yates. Corporate
Wiki Users: Results of a Survey. In WikiSym ’06:
Proceedings of the 2006 International Symposium on
Wikis, pages 99–104, New York, NY, USA, 2006.
ACM.

[21] O. Medelyan, C. Legg, D. Milne, and I. H. Witten.
Mining Meaning from Wikipedia. Working Paper,
arXiv:0809.4530v2, 2008.

[22] R. Mihalcea and A. Csomai. Wikify! Linking
Documents to Encyclopedic Knowledge. In Proceedings
of the 16th ACM Conference on Information and
Knowledge Management, pages 233–242, 2007.

[23] R. Mihalcea and P. Tarau. TextRank: Bringing Order
into Texts. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
pages 404–411, Barcelona, Spain, July 2004.

[24] D. Milne and I. H. Witten. Learning to Link with
Wikipedia. In Proceedings of the 17th ACM
Conference on Information and Knowledge Mining,
pages 509–518, New York, NY, USA, 2008. ACM.

[25] C. Müller, I. Gurevych, and M. Mühlhäuser. Closing
the Vocabulary Gap for Computing Text Similarity
and Information Retrieval. International Journal of
Semantic Computing, 2(2):(253–272), 2008.

[26] C. Müller, T. Zesch, M.-C. Müller, D. Bernhard,
K. Ignatova, I. Gurevych, and M. Mühlhäuser.
Flexible UIMA Components for Information Retrieval
Research. In Proceedings of the LREC 2008 Workshop
’Towards Enhanced Interoperability for Large HLT
Systems: UIMA for NLP’, pages 24–27, May 2008.

[27] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank Citation Ranking: Bringing Order to the
Web. Technical Report 1999-66, Stanford InfoLab,
November 1999.

[28] L. Qu, C. Müller, and I. Gurevych. Using Tag
Semantic Network for Keyphrase Extraction in Blogs.
In ACM 17th Conference on Information and
Knowledge Management, pages 1381 – 1382, New
York, NY, USA, Oct 2008. ACM.

[29] S. Schaffert. IkeWiki: A Semantic Wiki for
Collaborative Knowledge Management. In WETICE
’06: Proceedings of the 15th IEEE International
Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, pages 388–396, 2006.

[30] N. Shadbolt, T. Berners-Lee, and W. Hall. The
Semantic Web Revisited. IEEE Intelligent Systems,
21(3):96–101, 2006.

[31] B. Stvilia, M. B. Twidale, L. C. Smith, and L. Gasser.
Assessing Information Quality of a Community-Based
Encyclopedia. In Proceedings of the 2005 International

Conference on Information Quality, 2005.

[32] R. Witte and T. Gitzinger. Connecting Wikis and
Natural Language Processing Systems. In WikiSym
’07: Proceedings of the 2007 International Symposium
on Wikis, pages 165–176, 2007.

[33] T. Zesch, C. Müller, and I. Gurevych. Extracting
Lexical Semantic Knowledge from Wikipedia and
Wiktionary. In Proceedings of the Conference on
Language Resources and Evaluation, May 2008.

[34] T. Zesch, C. Müller, and I. Gurevych. Using
Wiktionary for Computing Semantic Relatedness. In
Proceedings of AAAI, pages 861–867, 2008.

