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Abstract

Context-aware user interfaces facilitate the user interac-
tion by suggesting or prefilling data derived from the user’s
current context. This raises the problem of mapping context
information to input elements in the user interface. We ad-
dress this problem for web applications by (i) automatically
extracting a textual representation of their input elements,
and by (ii) mapping context information to them using these
textual representations. In this paper, we present an ap-
proach for the representation extraction task that outper-
forms existing ones, and we explore the potential of similar-
ity measures for the context mapping task.

1 Motivation

The increasing complexity of options available in today’s
applications mostly leads to a decreased usability of the user
interface (UI). To counter this effect, we need Uls that sup-
port the user in performing her tasks by facilitating the in-
teraction as much as possible in a proactive way. Thereby,
the interaction —and thus the required support— strongly de-
pends on the user’s current context [13]. Context informa-
tion ranges from physical information like the user’s current
location to more complex virtual objects like an entry in the
user’s calendar.

Uls that aim at facilitating the interaction between user
and application by taking the user’s current context into
account are called context-aware Uls. A main feature of
context-aware Uls is to provide context-based suggestions
for required input to reduce interaction costs. An exam-
ple of such a Ul is shown in Figure 1. The importance of
such suggestions, especially for mobile usage, is stressed
by Rukzio [20]. He found that users are four times faster
on a smart phone when they just have to correct prefilled
form entries compared to entering the information from
scratch. The multitude of open source and commercial ap-
plications available for automatically filling in form entries

(e.g. iOpus Internet Macros', iNetForm Filler?) also shows
the demand for this kind of interaction support.

The remainder of this paper is organized as follows: In
Section 2, we introduce the context-aware Ul system AU-
GUR that integrates the techniques presented in this paper,
and we point out the two main challenges in using context
information for facilitating the interaction, i.e. (i) finding
a representation for the input elements and thus for the re-
quired input, and (ii) mapping context information to input
elements. In Section 3, we give an overview of related work.
Then, we describe our approaches for dealing with the rep-
resentation (Section 4) and the mapping task (Section 5). In
Section 6, we compare various similarity measures that can
be applied for the mapping task. We conclude the paper in
Section 7 with a summary and some ideas for future work.

2 Context-aware web application support

Our context-aware Ul system called AUGUR [8] focuses
on supporting the usage of web applications as most current
applications are complemented or even replaced by a web
version. Thereby, AUGUR provides support for any form-
based web application, even for yet unknown ones. It is
built as an overlay to existing web applications. This ap-
proach allows to provide support even across application
boundaries. For example, when searching for a rental car,
the same information (pick-up location, pick-up date, pick-
up time, etc.) is often needed on various sites. AUGUR has
an integrated context server that manages all kinds of con-
text information, e.g. data gathered from the user’s calendar
or from a previously filled form. AUGUR uses the context
information together with information about the user’s in-
teraction history to suggest or prefill data that is requested
by the web application. In case that the system’s sugges-
tions are not entirely correct, the data that is finally entered
by the user provides some additional information about the

Uhttp://www.iopus.com/
Zhttp://www.inetformfiller.com/
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Figure 1. Example of a context-aware Ul
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Figure 2. Example form

correct mapping. Thus, we store these mappings for future
interactions, and use them to improve the quality of subse-
quently provided suggestions.

AUGUR’s suggestions are not limited to one input el-
ement, but can combine suggestions for several input ele-
ments if they belong to the same data object. For example,
AUGUR can consider the user’s calendar to make sugges-
tions, consisting of arrival station, date and time (see Fig-
ure 1). If the user chooses one of the combined suggestions,
AUGUR fills all corresponding fields and highlights them to
make the user aware of the system’s actions.

Providing this context-aware support for arbitrary web
applications raises the question: Which context object is
relevant for the interaction with the application and how can
it be mapped to the available input elements? Thus, we have
to face two main challenges:

1. Representing input elements: How can we obtain a
meaningful representation of the available input ele-
ments of the web application? Thereby, representation
refers to a set of attributes that describe the input ele-
ment, e.g. its label.

2. Mapping context to input elements: Which object in
the user’s current context matches the required input of
a web application best and which part of this context
object corresponds to which input element? We call
this process “Context Mapping”.

For example, consider the web application for renting a

car in Figure 2: At first, we have to determine a representa-
tion for the relevant input elements, i.e. “Pick-up”, “Pick-up
date” etc. Next, we have to identify the most relevant object
in the user’s current context, e.g. a calendar entry object
that contains information about a planned trip, and finally
we have to map the values of the context object (e.g. the
date, time and location) to the input elements.

The two main approaches for dealing with the represen-
tation and mapping tasks are (i) explicitly modeling all nec-
essary information, or (ii) applying machine learning tech-
niques. Modeling requires that the application developer or
the user herself specifies a representation for every input el-
ement, or states the relationship to the available context in-
formation. However, this is not always feasible, considering
the variety of different web applications and the enormous
additional effort. In contrast, the machine learning approach
attempts to learn these representations and mappings by an-
alyzing multiple web forms. However, this requires initial
training that is not possible if we want to support arbitrary
domains. To counter these drawbacks, we introduce in this
paper a heuristic-based approach for gathering a represen-
tation of the available input elements that is independent of
the domain. Furthermore, we explore the potential of simi-
larity measures for the task of mapping context representa-
tions to input elements. We analyze which matching tech-
niques (e.g. substring matching [10, 15, 24] or concept vec-
tor based measures [6, 7]) and which domain-independent
knowledge sources (e.g. WordNet [5] or Wikipedia) are best
suited for this task. This approach is thereby not limited to
web applications and can be applied for any other UI repre-
sentation containing input elements.

3 Related work

As stated in the previous section, the two main steps of
mapping context information to input elements are: (i) ex-
tracting a representation of the input elements, and (ii) map-
ping context information to these input elements. In this
section, we review the state-of-the-art for these two tasks.

Representing input elements We focus on determining
labels® for the input elements as we consider a label to be
the most meaningful representation*. However, in contrast
to other representations like the input element’s name at-
tribute, it cannot be easily extracted from the HTML repre-
sentation.

Some approaches for extracting the label rely on a high-
level description of the UI that is extracted from the HTML
representation. Kaljuvee et al. [12] apply string matching

3Label denotes the text that accompanies an input element. For exam-
ple, the label “Pick-up date” refers to the three input elements in Figure 2
where a date can be entered.

4This assumption is confirmed in Section 6.



to find the best match for the input element’s name attribute
from the text elements surrounding the input element. He
et al. [9] define heuristics to determine the best label. How-
ever, these approaches have the drawback that they only
consider a simplified textual representation of the website
and not its actual visual layout. Raghavan and Garcia-
Molina [18] address this problem by rendering a pruned
version of the HTML representation with a custom layout
engine for gaining the visual layout. However, this does
not cope with the growing complexity and dynamic layout
of today’s web applications, e.g. by using Ajax. Zhang
et al. [27] tackle this by using the HTML DOM API of a
browser. They introduce a grammar (called 2P grammar)
that describes the visual patterns in terms of directions (left,
above, etc.). This grammar is used to gain a parse tree for
the UL Their best effort parser combines multiple possible
parse trees to get the best representation of the web page.
In Section 4, we compare their results with our presented
approach.

Another system working on the actual visual representa-
tion is CoScripter [14], a popular Firefox plugin for record-
ing intelligent macros, which also uses heuristics to assign a
label to each input element. As CoScripter is publicly avail-
able, we also use it as a baseline system for our evaluation.

Mapping textual representations The task of mapping
context information to input elements is strongly related
to ontology mapping [11] and database schema matching
[19], where concepts have to be mapped to ontology en-
tries or column names, respectively. However, in these
areas most approaches benefit from additonal information
like constraints or instances that are more distinctive than
the input element’s label alone. Such information is usu-
ally not available for context-aware Uls. Bell and Sethi [2]
rely only on the textual information for mapping records
in a medical patient database. They apply synonyms, hy-
pernyms/hyponyms, the equality of strings, common sub-
strings, and soundex’ similarity. However, their approach
relies on user-crafted knowledge sources instead of generic
ones.

Closely related to context mapping is also the research
on the deep web® as it is concerned with mapping textual
representations of several web forms. For example, Wu et
al. [25] use cosine similarity for determining the similarity
of label and name attributes. However, all approaches from
the area of the deep web rely on a large corpus of web forms
that is not available for context-aware Uls.

Other approaches for automatically filling in forms (e.g.
[23]) either require apriori tagging of websites, or a man-
ually crafted list which labels or names of input elements

5Soundex represents a string as a sequence of sounds.
%Deep web refers to all information in the web that cannot be accessed
via conventional search engines following hyperlinks.

match which concepts. Thus, these approaches can only be
applied to a specific domain (they focus on address infor-
mation) or need explicit advice by the user.

Furthermore, in contrast to our approach none of the pre-
sented approaches deals with dynamic context information
like calendar entries. They all rely either on predefined in-
formation or explicit user input.

4 Representing input elements

The first step of mapping context information to input
elements is to obtain a representation of the available input
elements. Some information can be directly extracted from
the HTML representation. The most descriptive representa-
tion is the human readable label that is located somewhere
around the input element (e.g. “Pick-up date” in Figure
2). However, the correct label mostly has to be inferred
from the visual representation. Moreover, the label is of-
ten not sufficient for a meaningful representation, as more
than one element can be associated with the same label (e.g.
“Pick-up date” in Figure 2 is the label of three distinct in-
put elements). For that purpose, we collect some further
information for describing the input element (if available),
i.e. the name attribute of the input element - that can give
us its technical label, though this is often not human read-
able (e.g. “fcy” for the departure city)-, the correspond-
ing tooltip (“alt” attribute), the data that is prefilled to give
the user a hint (e.g. “Pick-up” in Figure 2 is prefilled with
“Pick-up location”), and the values in dropdown menus, ra-
dio buttons, or grouped checkboxes. All this additional in-
formation can be directly gathered from the HTML repre-
sentation of the page. The HTML syntax also defines a tag
LABEL for marking a label that is associated to an input el-
ement; however, it is scarcely used in practice (only about
20% of the input elements we used for the evaluation in
Section 6 had an associated label attribute). Thus, we focus
on how we can determine the label for an input element.

As most web forms are similar in their layout, we as-
sumed that we can easily define some common heuristics
that are applicable to a wide range of web applications. Our
approach called LabelFinder thereby focuses on the actual
visual layout. In contrast to existing approaches, it also con-
siders the exact visual position of texts to make it indepen-
dent of the underlying HTML structure.

For identifying the best label for each input element, we
at first determine all available input elements and all poten-
tial label candidates, i.e. all text elements on the website.
Every input element is represented by its coordinates, its
size, its type and its HTML LABEL attribute, if available. A
label candidate is also described by its coordinates and its
size. Further, its representation contains its textual content
and its type as described in the following. The text elements
are often embedded into larger divisions, thus the exact po-



sition of the texts themselves cannot be directly determined.
For coping with this problem, we temporarily insert a SPAN
tag around them, and determine its position. The type of the
corresponding label candidate is referred to as inner label
candidate. However, as labels sometimes refer to various
input elements and are thus not placed directly above all of
them (see e.g. “Pick-up date” in Figure 2), we also keep
the position information for the surrounding HTML tag that
usually spans a greater section (outer label candidate).

From the analysis of various forms, we found that most
labels are positioned on top or to the left of the correspond-
ing input element. Checkboxes and radio buttons often do
not have an explicit label. Especially ungrouped check-
boxes are hardly ever explicitly labeled. For that reason,
we also determine the labels of single checkboxes and radio
buttons that are usually located on their top or to their right.
Thus, grouped checkboxes and radio buttons have two pos-
sible labels: the group label or the element label in the
beginning.

In the following, we list the heuristics which we apply to
determine the best label candidate for an input element:

1. If the element has a corresponding LABEL element, we
take it as label.

2. We ignore (i) all label candidates that are not located
directly above or on the corresponding side (depending
on its type) of the input element, i.e. all candidates that
do not have a minimal predefined overlap in the corre-
sponding dimension, (ii) all label candidates that have
another label candidate between them and the input el-
ement, and (iii) outer label candidates, if an inner la-
bel candidate is available. For every remaining label
candidate we compute the minimal Euclidean distance
d between the input element and the label candidate.
We take the square root of the distance for the horizon-
tal dimension, as the horizontal distance grows much
faster than the vertical distance (e.g. if another input
element is arranged between the element and the label
candidate). Finally, we take the label candidate with
the smallest d.

3. For grouped checkboxes and radio buttons: If the
group label’s distance d is smaller than n pixels (we
empirically determined n = 15 to yield good results),
we take it as the best label. Otherwise, we assign the
label of the currently checked element to the group, or
of the first element if no element is checked.

For evaluating the heuristics, we use the IWRandom
dataset [1] provided by Zhang et al. [27]. The dataset con-
tains 33 forms randomly sampled from the Web, mainly
gathered from the website invisible-web.net. We
assigned a label to each of the contained input elements.
Two forms were dropped as they were difficult to annotate
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Figure 3. Overall performance of label recog-
nition approaches

even for a human.” We compare our results with the results
reported for the 2P Grammar by Zhang [27] and with the la-
beling component used in CoScripter [14]. Figure 3 shows
the micro-average results in terms of precision, recall and
the resulting F;-measure. Our LabelFinder reaches a preci-
sion of .88 and perfect recall, resulting in an F;-measure of
.93. It thus clearly outperforms the label recognition of the
2P Grammar (.84) and of CoScripter (.69).8 On the dataset
that we used for the evaluation of the context mapping task
in Section 6, LabelFinder yields a precision of .95 and per-
fect recall resulting in an F;-measure of .97.

S Mapping textual representations

Having determined a representation of the available in-
put elements of a web application, we try to find relevant
context objects and assign their content to the correspond-
ing input elements. For example, if the user wants to rent
a car, the interaction with the application can be supported
by considering a context object that represents a trip. The
travel object can be provided by the user’s calendar, or de-
rived from a previously filled web form. This context infor-
mation can now be used to support the user in entering the
travel information on another website. However, the com-
ponents of the context objects and the input elements are not
explicitly associated with a concept that expresses a seman-
tic category like LOCATION. Concepts are represented by
textual clues (e.g. “Pick-up location”) with corresponding
values (e.g. “New York Airport (JFK)”). For an input ele-
ment on a website, the textual clues consist of values for the
following attributes as described in Section 4: label, name,
tooltip, prefilled data and values. The textual clues of a con-
text object comprise a name and arbitrary other attributes
(e.g. the subject of a calendar entry).

7Zhang et al. also used only 30 of the forms for their evaluation.
8The macro-average results are consistent with these findings.



The same concept may be represented by different tex-
tual clues (e.g. LOCATION as “Pick-up location” or “Rental
station). Thus, there is a need for a mapping process that
bridges this vocabulary gap by finding a mapping between
the concept representations from the context and from the
web application. Relying only on the representations ex-
tracted as in Section 4 makes the AUGUR system indepen-
dent of training data or apriori tagging of input elements.

We formalize the process of mapping concept represen-
tations as follows: A concept representation is a tuple (c, v),
where c is a set of textual clues and v is the value of the
concept. Thereby, all textual clues are separated into a set
of tokens. A single textual clue is referred to as ¢* where
x denotes the attribute. For example, ({c!***! = (Pick-
up, location)}, (New, York, Airport, (JFK)) is a possible
representation of the concept LOCATION. Every object S
in the context is represented by a set of source concepts
S = $1,...,8p, where each s; is a (¢, v) tuple. In the tar-
get web application 7', each input field corresponds to an
element ¢; from the set of target concepts T = t1,...,tm,
where we only know the textual clues, but not their values.

Now, the task is to find the best matching source S from
the context for a given web application 7" and then to assign
the source concepts s; = (cs,vs) to the corresponding tar-
get concepts t; = (cy,v,). If we find a mapping between
their textual clues ¢, and ¢; as described in Section 5.2, we
can use the value v, as a suggestion for the unknown value
v¢. Each mapping is associated with a similarity score be-
tween 0 and 1, whereby 0 means no similarity, and 1 means
perfect similarity. For determining the best matching source
object, we compute the average similarity for all concepts
of a source object and choose the one with the highest score.

Mapping concept representations relies on measuring the
similarity between textual clues representing input elements
and context objects. Thus, in the following, we present sev-
eral similarity measures that can be used for that purpose.

5.1 Similarity measures

For determining the similarity between the values of tex-
tual clues ¢? and ¢} given some attributes  and y, we com-
pute the maximum similarity among all pairs of tokens of
the two strings:

sim(c?,c!) = max
y
Vaec? becy

SiTnfoken(ayb) (])
For example, if the textual clues for the label attribute are
“Pick-up location” and “Rental station”, the overall similar-
ity is the maximum similarity of the pairs (Pick-up, Rental),
(Pick-up, station), (location, Rental), and (location, station).

We use two classes of similarity measures for simyopen:
(1) string-based similarity measures, and (ii) semantic simi-
larity measures.

String-based measures determine the similarity between
two strings by comparing their characters. We use two base-
line string measures: The exact string match measure (ab-
breviated as exact) returns 1 if the strings are exactly equal,
and 0 otherwise. The bounded substring match measure (b-
substr) returns 1 if the strings have a shared substring of
at least 3 characters that is a prefix or a suffix of the other
string (this matches strings like “arrival” and “arrive”).

We also consider three more sophisticated measures that
return a value in the interval [0, 1]: (i) the measure by Jaro
[10] (abbreviated as jaro) that takes typical spelling devia-
tions into account, (ii) an adaptation of the jaro measure by
Winkler [24] (jaro-w) which increases similarity scores in
the case of shared prefixes, and (iii) the measure by Monge
and Elkan [15] (monge-elkan) that uses an affine gap model
penalizing many small gaps in the string match more than a

large gap.

Semantic measures As string-based measures are not
likely to bridge the vocabulary gap between source strings
and target strings, we also use semantic similarity measures
relying on knowledge bases such as WordNet [5] (abbrevi-
ated as wn), Wikipedia® (wp), and Wiktionary'® (wkt). A
typical source of alternative wordings for the same concept
is the use of synonyms (e.g. “city” and “town”) or other
terms closely related by a lexical semantic relation such as
hypernymy/hyponymy or holonymy/meronymy (e.g. “city”
and “New York™). Thus, we created a semantic similarity
measure relation that returns 1, if the target string is a di-
rect synonym, hypernym, hyponym, holonym or meronym
of the source string, and 0 otherwise. The relation measure
is very similar to the multitude of semantic similarity mea-
sures defined on WordNet (see [3] for an overview). How-
ever, these measures rely on special properties of WordNet,
while the proposed measure can also be used with other
knowledge bases like Wiktionary.'!

Recent research on semantic similarity measures [6, 7]
indicates that concept vector based measures are superior to
these measures with respect to their performance and com-
putational efficiency. For that reason, we also use a concept
vector based measure c-vector [17], where the meaning of a
string w is represented as a high dimensional concept vector
d(w) = (dy, . ..,dx). Each vector clement d; represents a
document in the knowledge base, and the value of d; is the
string’s tf.idf score [21] in the document. Semantic related-
ness of two strings can then be computed as the cosine of
their corresponding concept vectors.

When using semantic measures, we have to lemmatize
inflectional forms of textual clues, as semantic knowledge

Shttp://www.wikipedia.org

Onhttp://www.wiktionary.org

We do not use the relation measure with Wikipedia, as it does not
contain explicitly labeled lexical semantic relations.



bases usually contain only lemmas.
5.2 Determining the best mapping

For determining the best mapping between source and
target concepts, we rank the available textual clues (e.g. la-
bel, name, tooltip, etc.) according to their descriptiveness
(we consider “departure city” to be more descriptive than
“fcy”) and their occurrence probability (e.g. there is always
a name, but the tooltip might be missing). We then take
the top-ranked attributes mq and ms of the textual clues
(i.e. name for context objects and an empirically deter-
mined attribute for input elements - see Section 6) and map
all source concepts ¢, and target concepts c; that have a sim-
ilarity value sim(cl"*, ¢j*?) above a predefined threshold 6.
If two source concepts are mapped to the same target con-
cept, the source concept with the higher similarity value is
taken. However, this can also lead to tied cases if they have
the same similarity values, e.g. if the two source representa-
tions “Pick-up date” and “Drop-off date” are both mapped
to a target element “date”. As we assume that each con-
cept is only represented once in a context object or in a web
application, we try to solve these tied mappings. For that
purpose, we introduce a heuristic called solveTies. It re-
laxes Equation 1 by taking the average similarity instead of
the maximum similarity among all pairs of tokens of the two
strings. We then compute the similarity of all tied mappings
and select the one with the highest score.

However, the initially chosen attributes may not suffice
for finding an unambiguous mapping. Therefore, we define
the heuristic remap that — step by step — takes more textual
clues according to their ranking (less descriptive, lower oc-
currence probability) into account (e.g. values or prefilled)
if no mapping is found. Thereby, already mapped elements
are not taken into account.

6 Evaluation

For evaluating similarity measures for context mapping,
we need a dataset containing possible context objects for a
number of web applications and their mappings. As such
data is hard to obtain, and we also want to be independent
of how the context information is actually represented, we
decided to use the representations used in the web forms as
possible context representation. This means that we take
the representation given by a source web form as a potential
context object and try to map it to a target web form from
the same domain. We repeat this process for every possi-
ble combination of web forms from the same domain (i.e.
n(n — 1) context mapping cases, given n web forms).

Evaluation dataset We took 45 randomly picked web
forms from 4 domains: cars (consisting of 7 web forms),

flights (12), hotels (9), and address (17). Most web forms
for the cars, flights, and hotels domains were taken from
the TEL-8 dataset of the UIUC dataset [1]. We annotated
each web form with the different concepts that exist in the
corresponding domains. We automatically determined all
textual clues including the label (using our LabelFinder as
described above), but we manually corrected the label if
necessary to avoid error propagation. However, as the La-
belFinder reaches a precision of 95% for the data used, we
assume that the influence of the incorrect labels would be
minimal.

Experimental setup For our experiments, we imple-
mented the exact and b-substr measures, and used the Sec-
ondString library [4] for the jaro, jaro-w and monge-elkan
measures.

The semantic similarity measures rely on the following
lexical semantic knowledge bases: (i) WordNet 3.0 together
with the freely available JWNL WordNet API'?, (ii) the En-
glish Wikipedia dump from February 6th, 2007 together
with the JWPL Wikipedia API [26], and (iii) the English
Wiktionary dump from Oct 16th, 2007 with the JWKTL
Wiktionary API [26].!* For normalizing inflectional forms
of textual clues, we used lemmatization as provided by the
TreeTagger [22]. For stemming, we used the Porter Stem-
mer [16].

We decided to optimize our system for desktop settings.
Thus, we aim at high precision as wrong suggestions are
considered more disturbing in a desktop setting than e.g. in
amobile setting, where interaction costs are higher and even
partially correct suggestions are normally considered bene-
ficial. Thus, we use a rather conservative similarity thresh-
old @ for the context mapping. We empirically determined
the optimal value of the threshold on a dataset that is not
used in the experiments. We used a threshold of 0.1 for the
c-vector measures and a threshold of 0.85 for the jaro, jaro-
w, and monge-elkan measures. All other measures return
either O or 1, thus no threshold is needed.

System configuration For finding the best system con-
figuration, we have to determine the influence on the sys-
tem performance of (i) lemmatization or stemming, (ii) the
best attribute m that is used for initial mapping, and (iii) the
heuristics introduced in Section 5.2.

As was to be expected, lemmatization always improved
the performance of the semantic similarity measures that
rely on knowledge bases containing only lemmas. There
was no significant influence of lemmatization or stemming
on the performance of string-based similarity measures.

Zhttp://jwordnet .sourceforge.net/

BJWPL is available from our website http://www.ukp.
tu-darmstadt.de/software/JWPL. JWKTL will be publicly
released in Summer 2008.



Heuristic
Domain - solveTies remap + solveTies
Cars 34 49 (+15) .61 (+27)
Flights A48 53 ( +5) .63 (+15)
Hotels 70 73 ( +3) 81 (+11)
Address | .64 .75 (+11) 79 (+15)

Table 1. Average F; scores over all mea-
sures without using heuristics (-), using sol-
veTies heuristic alone, and in combination
with remap

We then tested which of the attributes described in Sec-
tion 4 is best suited for the initial context mapping. We
excluded the rooltip, prefilled, and values attributes, as they
are not present for most input elements.'* We compared
the performance for the remaining label and name attributes
and found that label clearly outperforms name across all
measures and domains in terms of Fj values.

We then assessed the influence of the heuristics. Ta-
ble 1 gives an overview of the micro-average F}-measure
scores on the four domains (averaged over all measures).
The solveTies heuristic leads to significant performance im-
provements for most measures in all domains, and never
decreases performance. Additionally, applying the remap
heuristic in combination with solveTies increases the F}-
measure in all cases over using solveTies alone. The amount
of the average performance increase is thereby domain-
dependent and ranges from .11 in the hotels domain, to .27
in the cars domain.

Thus, we found that the optimal system configuration
for our evaluation is: using lemmatized textual clues from
the label attribute for initial mapping and then applying the
remap and solveTies heuristics in combination.

Results and discussion Table 2 shows the results of the
best system configuration (as obtained in the previous sec-
tion) in terms of precision, recall, and F}-measure. There is
no measure that performs best in all settings. However, the
best Fj scores in all domains are yielded by string-based
rather than semantic measures. The results range from an
Fi-measure of .71 in the cars domain to .97 in the hotels
domain. The comparably low scores of the relation-wkt
measure are due to the still low recall of the Wiktionary
resource.

When looking at single mappings, we observe that se-
mantic measures find a lot of mappings that the string-
based measures cannot find, e.g. “destination” is correctly
mapped to “drop-off airport or city” or “leave from” to “de-
parture airport”. However, semantic measures do not find
mappings that are easily identified by string-based mea-

14In the evaluation dataset, tooltip attributes can be found for 1% of all
input elements, prefilled for 12%, and values for 44%.

sures, e.g. mapping “e-mail” to “email” or “pick up” to
“pick-up”, as such spelling variants are usually not reflected
in the semantic knowledge bases.

Furthermore, we used a conservative threshold 6 that
puts semantic measures at a disadvantage as they are known
to have a lower precision than string-based measures, but
are supposed to improve recall. The semantic measures also
cannot show their full potential, as the high scores of the
simple exact measure show that the vocabulary mismatch
inside a single domain is relatively low. We expect the se-
mantic measures to yield better results, when trying to map
context objects across domain boundaries.

To sum it up, string-based measures reach a high per-
formance in the context mapping task that is sufficient for
applying it in a context-aware Ul like AUGUR. Moreover,
we assume that the performance can still be increased when
combining them with semantic measures in a cascaded ap-
proach.

7 Conclusion

In this paper, we presented a new approach for mapping
context information to web applications to facilitate the in-
teraction with them. We address the two main challenges
that arise from context mapping: (i) finding a representa-
tion for the input elements, and (ii) mapping the context
information to them. For the first challenge, we introduced
a simple heuristic based approach for determining the best
label for an input element that clearly outperforms exist-
ing approaches. For the second challenge, we explored the
potential of semantic similarity measures, and found that
string-based measures outperform the semantic measures.
The overall performance (.71 — .97 Fj-measure) allows our
AUGUR system to correctly suggest data for most input el-
ements without the need for any training or manual tagging
of web applications.

In this pilot study, we tested each domain separately.
Thus, we only had to deal with a small vocabulary mis-
match, preventing the semantic measures from showing
their full potential. In future work, we are going to evalu-
ate the semantic similarity measures across various domains
that are all related to the same context information (e.g. the
cars, flights and hotels domain). Furthermore, we plan to
evaluate a cascaded approach that combines the advantages
of several measures, i.e. at first finding a mapping with
string-based measures and then with semantic measures.

In our evaluation, we focused on high precision values
and thus favored desktop applications. However, for mobile
scenarios it is often of advantage to have a high recall as
the interaction costs for changing or deleting an item are
lower than for inserting it from scratch. For that purpose,
we aim to adapt our mapping strategies to the devices used,
i.e. whether high precision or high recall is needed.



Domain Cars Flights Hotels Address

P R B P R F P R R P R B

exact 97 56 71|97 67 79 99 83 91].99 .79 .88

b-substr 1.00 39 57|94 67 .78 |100 95 97| 98 .8 I1

string-based  jaro J8 57 65| 8 73 80| 97 8 91| .92 .82 .86
jaro-w g8 57 65|87 72 79 9% 85 90| .92 81 .86

monge-elkan | .85 56 .67 | 93 72 .81 | 94 83 88| 93 .82 .87

relation-wn 94 53 68 |.78 31 44100 88 93| .92 .67 .78

relation-wkt | 1.00 .10 .18 [ 33 .03 .05 | 96 .10 .18 | .78 .12 21

semantic c-vector-wn 86 55 67| .8 47 62| 94 73 82| .97 .81 .88
c-vector-wkt | .86 .54 .66 | .80 47 59| 94 74 83| 95 .80 .86

c-vector-wp 68 56 61|72 50 59| 82 74 78| .78 .74 .6

Table 2. Micro-average precision, recall and F;-measure using the best system configuration
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