
End-to-end Representation Learning for
Question Answering with Weak Supervision

Daniil Sorokin and Iryna Gurevych

Ubiquitous Knowledge Processing Lab (UKP-TUDA)
Department of Computer Science, Technische Universität Darmstadt

www.ukp.tu-darmstadt.de

Abstract. In this paper we present a factoid question answering system
for participation in Task 4 of the QALD-7 shared task. Our system is
an end-to-end neural architecture for learning a semantic representation
of the input question. It iteratively generates representations and uses a
convolutional neural network (CNN) model to score them at each step.
We take the semantic representation with the highest final score and
execute it against Wikidata to retrieve the answers. We show on the Task
4 data set that our system is able to successfully generalize to new data.

Keywords: Semantic web, Question-answering, Representation learning,
Convolutional neural networks, Semantic parsing, Weak supervision

1 Introduction

QALD is a series of international competitions on mapping natural language
questions to knowledge base queries [9]. The goal of the competitions is to provide
a benchmark for natural language based interfaces to knowledge bases.

In this paper, we present a system for Task 4 of the QALD-7 shared task,
“English question answering over Wikidata”. The task is formulated as follows:
given a natural language question, translate it into a structured query in SPARQL
that can be executed against Wikidata to obtain the answer to the question.
The provided training data set for Task 4 consists of 100 natural language
questions that require as an answer either a set of Wikidata items, a number or
a date. In our system, we implement a semantic parsing approach [3], that is, we
produce semantic representations for natural language questions that are then
deterministically converted into SPARQL queries and executed against Wikidata.

Multiple successful question answering systems were presented in the previous
QALD competitions (see for example the overview in [9]). Many systems (e.g. [2,
3, 5]) have constructed semantic representations for input questions and relied on
trained models with manually defined features to select the correct one. Recently,
end-to-end neural network approaches were introduced that can process simple
questions that only need a single semantic relation to be answered (e.g. [4]).

In our approach, we also rely on a neural network model to disambiguate
the question. Our main contribution is an end-to-end iterative generation of
multi-relational semantic representations that integrates a neural representation



2 Daniil Sorokin, Iryna Gurevych

scorer based on CNNs. The end-to-end neural architecture doesn’t need hand-
crafted features or heavy pre-processing that are required in other approaches. It
automatically learns a correspondence between structural and lexical features of
a semantic representation and a natural language question. Thus, our approach
can better generalize to new unseen questions than controlled language systems
or approaches based on manually defined features.

2 System architecture

2.1 Entity linking

We tokenize the input and add part-of-speech tags to it with the Stanford
CoreNLP toolkit [8]. Afterwards, we extract token fragments using a set of regular
expression rules that match all sequences of nouns with adjacent modifiers. We
look up the extracted fragments in Wikidata by comparing them to labels of the
Wikidata items. Following the approach in [1], we sort the retrieved list of items
by the combination of the Levenshtein distance between the fragment and the
item label and the integer part of the item ID. We select the top candidate for
each fragment as the final linking. For example, in the question “What was the
first Queen album?”, we recognize entities “Queen” and “album”.

2.2 Iterative representation generation

We develop a representation generation procedure that defines what kind of
representations can be constructed. Our semantic representations (see Figure 1)
consist of a question variable node (shaded circle), entities with a fixed Wikidata
ID (rectangles), constraints (rounded rectangles) and Wikidata relations (labeled
arrows). When we evaluate a semantic representation against Wikidata, we
retrieve all entities that can take the place of the question variable node, so that
all relations and constraints hold. That is, the question variable node denotes
the answer to the question.

We iteratively generate candidate semantic representations of the question
using a set of actions which can be applied at each step, starting with an empty
representation that contains only a question variable. We define three types of

q Queen q Queen

album
q q Queen first

Queen Queen
q Queen q q

album album

Iter. 1

influenced

has part

performer

Iter. 2

Iter. 2

influenced

performer

instance of

instance of
Iter. 3

date

performer

instance of

Fig. 1. Generating candidate representations for “What was the first Queen album?”



End-to-end Representation Learning for Question Answering 3

Action Conditions Action description

add relation len(E) > 0 Queries Wikidata for relations R
that exist for e, e ∈ E, and creates a
new representation for each r, r ∈ R

add temp
constraint

len(relations(s)) > 0 ∧
len(temp markers ∩Q) > 0

Creates a new representation with a
constraint that the answer is the last
or the first entity in a temporally
sorted list

add num
constraint

len(relations(s)) > 0 ∧
contains(Q,number)

Creates a new representation with
an added relation that has a numeric
argument

Table 1. The list of actions defined for the iterative representation generation process
(E–list of entities, Q–list of question tokens, s–current semantic representation)

actions for representation generation: add relation, add temp constraint,
add num constraint. The defined actions constrain the space of possible
semantic representations and make the search for the correct representation
tractable. Each action adds the new representations to the list of candidates.

For each action, we define conditions that must be satisfied in order for the
action to be applied at the current step (see Table 1). The conditions control the
flow of the representation generation procedure. For example, at the first iteration
in Figure 1 we apply the add relation action, since it is the only action that
can be performed on a empty representation. The result is one representation
for each relation that exists for the entity “Queen” (Figure 1 shows only three).
It is followed by another application of add relation since there is a second
entity in the question and finally add temp constraint can be applied at the
third iteration step because of a temporal marker “first” in the question. We
check that each candidate representation is valid and representations that don’t
produce answers are not further expanded.

We perform a beam search to further reduce the space of considered representa-
tions for each question: after each iteration, we score the candidate representations
with the neural scorer and select the top 10 for the next step. At the end, we
select the representation with the highest score as the final output.

The neural scorer uses a CNN-based model to encode both the question and
a candidate representation into a fixed-size semantic vector (see Figure 2). We
compare the question vector with the vectors of the candidate representations
using the cosine measure to produce scores. We choose CNNs as a basis for our
model, since they have proven to be successful for question answering [2, 4].

To encode a question, we use character trigrams as suggested in [6]. Each
token is represented as a binary vector where we set the positions that correspond
to the trigrams in the token to 1. The token vectors are then processed by the
CNN layer. The result of the CNN layer is processed by a max pooling layer



4 Daniil Sorokin, Iryna Gurevych

〈s〉

x1

x2

...

xn

〈e〉

Trigram encoding 4K

Trigram encoding 4K

Trigram encoding 4K

Trigram encoding 4K

Trigram encoding 4K

...

CNN 1K

CNN 1K

CNN 1K

CNN 1K

CNN 1K

...

MaxPool 1K 300
Dropout
0.25

Semantic vector

CNN: filter = 3, step = 1

Fig. 2. The architecture of the CNN-based encoder (number represent dimensionality)

and then transformed by a fully connected layer with the tanh non-linearity to
produce a semantic vector that encodes the question.

To encode a candidate representation, we first break it into individual relations.
We tokenize the relation labels and use them as input to the same CNN-based
encoder to produce a semantic vector for each relation.1 To get a single vector
for the whole representation, we apply another max pooling operation on the set
of the relation vectors. The final semantic vector for a candidate representation
encodes the most prominent features of the relations that it contains.

We use weak supervision in the form of question-answer pairs as suggested
in [3] to train the neural network model. Weak supervision can provide more
training data than available in the form of manually annotated semantic represen-
tations. We take the WebQuestions data set [3] which contains 3778 questions and
manually retrieved answers. To get pairs of questions and semantic representa-
tions for model training, we run our representation generation procedure on each
question. Instead of scoring the representations, we evaluate each representation
against Wikidata and compare the extracted answers to the answers in the data
set. The representations that result in at least a partially complete answer are
stored as positive training instances. We use up to 20 incorrect representations
to compute the loss (the Kullback-Leibler divergence) at each iteration during
training. The neural network model is trained with the Adam optimizer [7].

3 Preliminary evaluation and Conclusions

In Table 2, we report preliminary evaluation results on the training data set
for Task 4 of the QALD-7 Shared Task using the metrics from [9]. The “Upper
bound” shows the results with an oracle neural scorer that always chooses the
correct representation. Our model was not trained on this data set and, therefore,
the reported results represent an expected generalization error of our system.

In this paper, we have presented an end-to-end system that produces semantic
representations for natural language questions and evaluates them on Wikidata.

1 All weights of the neural network model are shared in both cases, thus the vector
encodings for questions and semantic representations are learned jointly.



End-to-end Representation Learning for Question Answering 5

Processed Right Partially
right

Avg.
Precision

Avg.
Recall

F1 Global
F1

Our system 80 25 36 0.3507 0.4318 0.3640 0.2912
Upper bound 80 47 30 0.7602 0.8980 0.7266 0.5812

Table 2. Evaluation results on the QALD-7 Task 4 training (100 questions)

Our system produces Wikidata items as answers and can successfully process
more than 50% of the questions in the QALD-7 Task 4 data set.

4 Acknowledgments

This work has been supported by the German Research Foundation as part of the
QA-EduInf project (grant GU 798/18-1 and grant RI 803/12-1). We gratefully
acknowledge the support of NVIDIA Corporation with the donation of the Tesla
K40 GPU used for this research.

References

1. Ahmad Aghaebrahimian and Filip Jurč́ıček. Open-domain Factoid Question Answer-
ing via Knowledge Graph Search. In Proceedings of 2016 NAACL Human-Computer
Question Answering Workshop, pages 22–28, 2016.

2. Junwei Bao, Nan Duan, Zhao Yan, Ming Zhou, and Tiejun Zhao. Constraint-Based
Question Answering with Knowledge Graph. In Proceedings of COLING, pages
2503–2514, 2016.

3. Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic Parsing on
Freebase from Question-Answer Pairs. In Proceedings of EMNLP, pages 1533–1544,
2013.

4. Li Dong, Furu Wei, Ming Zhou, and Ke Xu. Question Answering over Freebase
with Multi-Column Convolutional Neural Networks. In Proceedings of ACL, pages
260–269, 2015.

5. Sherzod Hakimov, Christina Unger, Sebastian Walter, and Philipp Cimiano. Applying
Semantic Parsing to Question Answering over Linked Data: Addressing the Lexical
Gap. In Proceedings of NLDB, pages 103–109, 2015.

6. Po-sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck.
Learning Deep Structured Semantic Models for Web Search using Clickthrough Data.
In Proceedings of CIKM, pages 2333–2338, 2013.

7. Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
arXiv preprint, 2014.

8. Christopher D. Manning, John Bauer, Jenny Finkel, Steven J. Bethard, Mihai
Surdeanu, and David McClosky. The Stanford CoreNLP Natural Language Processing
Toolkit. In Proceedings of ACL, pages 55–60, 2014.

9. Christina Unger, Corina Forascu, Vanessa Lopez, Axel-Cyrille Ngonga Ngomo, Elena
Cabrio, Philipp Cimiano, and Sebastian Walter. Question answering over linked
data (QALD-5). In CEUR Workshop Proceedings, volume 1391, 2015.


