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Document-Level Stance Classification for Fake News Detection

Anonymous ACL submission

Abstract

Document-level stance classification is a
crucial first step of fake news detection.
In this problem setting, the system should
decide if a given document ”agrees”, ”dis-
agrees”, ”discusses” or is ”unrelated” to a
given text snippet that is to be validated.
The recently launched Fake News Chal-
lenge has stressed upon the task by at-
tempting to provide a large-scale dataset
for training and evaluating the correspond-
ing systems. The challenge attracted much
attention from the community: over 50
registered participants. In this paper, we
critically assess high performing models
on the task, the dataset itself, present a
model which achieves state-of-the-art re-
sults and evaluate the performance of suc-
cessful models on a second dataset.

1 Introduction

Stance detection can be generally defined as the
problem of determining the relative perspective of
a source text entity with respect to a target text en-
tity. The source text entity may ”agree” or ”dis-
agree” with the target text entity or do not express
a stance at all. Stance detection is helpful for a
variety of different tasks such as the analysis of
online debates (Walker et al., 2012; Sridhar et al.,
2014; Somasundaran and Wiebe, 2010) or deter-
mining the veracity of rumors on twitter (Lukasik
et al., 2016; Derczynski et al., 2017). Moreover,
stance detection is also considered as an impor-
tant first step in fake news detection, and it was
therefore chosen as the first task to be tackled in
the Fake News Challenge (FNC) (Pomerleau and
Rao, 2017). The FNC was launched in order to
foster the development of AI technology to help
solve the fake news problem (Pomerleau, 2017).

Figure 1: Sample Headline, and text snippets from
document bodies with respective stances.

The FNC has received much attention in the NLP
community and 50 teams from academia and in-
dustry have participated in the stage one of the
challenge (FNC-1). In the competition, the stance
of the body text of an news article had to be deter-
mined with respect to a headline. As shown in an
example in Figure 1, the body text may ”agree”
or ”disagree” with the headline, only ”discuss”
the topic of the headline, or be completely unre-
lated to it. Compared to other stance detection
problem settings, in which the stance of a tweet
with respect to a target entity (Mohammad et al.,
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2016), a premise with respect to a claim (Stab and
Gurevych, 2017), or a blog post with respect to
a target entity (Walker et al., 2012) needs to be
determined, the FNC-1 stance detection task is
more difficult, as the stance of the whole docu-
ment needs to be identified. The document may
contain opposing statements and only as a whole
lean towards a certain stance.

In this paper, we test and analyze numerous
models and features for the document-level stance
detection task. Based on these insights, we pro-
pose a new model which reaches a new state-of-
the-art. Moreover, we crucially assess high per-
forming models, the problem setting, the dataset
itself, and evaluate successful models on a second
dataset. Based on our analyses, we report the fol-
lowing findings.

We have found that even the best performing
systems on the FNC dataset, which reach about
0.82 on the FNC metric, achieve a relatively low
F1 macro score of about 0.6. On the basis of
our analysis we conclude that the FNC metric is
problematic, since it does not take the unbalanced
distribution for all classes of the FNC dataset
into account. We have analyzed why the systems
reach a relatively low F1 macro score and identi-
fied three main causes. 1. The dataset is unbal-
anced and there are only few instances for certain
classes. Experiments on a more balanced corpus
have shown that the models can distinguish be-
tween ”agree” and ”disagree” instances more suc-
cessfully. 2. The task is challenging and the hu-
man upper bound is relatively low with 0.754 F1
macro. 3. The best performing models are using
mostly similarity based features and are therefore
not able to resolve more difficult cases, such as
complex negation instances.

Our code including the new introduced models,
the implementation of the features and the corpora
is publicly available1.

2 Related Work

The stance detection problem is broadly defined
and it encompasses a number of problem settings,
in which the stance of a source text entity with re-
spect to a target text entity is determined.

Stance detection has been used in (Walker et al.,
2012; Sridhar et al., 2014; Somasundaran and
Wiebe, 2010), for the analysis of online debates,

1 https://github.com/... (We are going to publish the code
with the paper)

where the relative perspective of user posts with
respect to a certain topic is determined. In these
studies, structural and linguistic features, senti-
ment polarity features, and a lexicon with posi-
tive/negative arguing expressions, such as ”I am
convinced” or ”certainly not”, are used for the
classification.

Within the field of computational argumenta-
tion, Stab and Gurevych (2017) address the prob-
lem of identifying argumentative relations, such
as ”support” or ”attack”, between premises and
claims. They have identified unigrams, syntactic
features, discourse features, and shared nouns be-
tween premise and claim to be most valuable for
the task.

In SemEval-2016 Task 6a (Mohammad et al.,
2016), the stance of the author of a tweet with
respect to a target entity had to be classified as
”against”, ”neutral” or ”in favor”. Zarrella and
Marsh (2016) proposed the best system using
an LSTM (Hochreiter and Schmidhuber, 1997)
with word2vec embeddings (Mikolov et al., 2013).
However, no team was able to beat the SVM base-
line, using word/character n-grams as features.

Ferreira and Vlachos (2016) derived a dataset
from the digital journalism project Emergent,
which was also used for the construction of the
FNC dataset. They used logistic regression clas-
sifier with hand-engineered features for the detec-
tion of the stance of article headlines with respect
to a claim. Their system outperforms the textual
entailment platform Excitement (Magnini et al.,
2014), which was considered as a reasonable base-
line for the task.

The discussed studies have focused on different
stance detection problems, however, none have ad-
dressed the problem of detecting the stance of a
whole document w.r.t a statement, which is dis-
cussed in this paper. Even though there are a
number of publications concerned with the FNC-
1 (Riedel et al., 2017; Thorne et al., 2017; Bour-
gonje et al., 2017; Stanford, 2017), the authors
have mostly focused on model development with-
out analyzing the document-level stance detection
task or the FNC dataset at depth.

3 Stance detection corpora

In this study, we consider, the FNC dataset and
the Argument Reasoning Comprehension (ARC)
dataset (Habernal et al., 2017).
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Dataset topics documents instances agree disagree discuss unrelated

FNC Train 200 1683 49972 7.4% 1.7% 17.8% 73.1%
FNC Test 100 904 25413 7.5% 2.7% 17.6% 72.2%
ARC 188 4448 17792 8.9% 10.0% 6.1% 75.0%

Table 1: Corpus statistics & label distribution for the FNC and ARC datasets

3.1 FNC dataset
The FNC corpus was almost entirely derived from
the Emergent project (Silverman, 2017). The cor-
pus consists of 300 claims, for each of which 5
to 20 related articles have been collected, result-
ing in a corpus of 2,595 documents. Since each
claim discusses a different issue, the corpus can
be viewed as representing information about 300
topics. The journalists hand-annotated the stances
of the articles with respect to the claim as ”agree”,
”disagree” and ”discuss” and summarized each ar-
ticle into a headline.

The FNC organizers further modified the corpus
in order to adjust it to the FNC-1 problem setting.
For each claim, they matched every related article
with every related headline. If both headline and
body were agreeing with the claim, they were la-
beled as agreeing with each other. The agree label
was also given if both disagreed with the claim.
If the stance of the headline was opposite to the
stance of the body, the pair was labeled as dis-
agree. If either the headline or the body was la-
beled as discuss, the pair was labeled as discuss.

The dataset was split into 200 claims (topics)
with associated headlines and bodies as the train-
ing dataset and 100 claims (topics) with its head-
lines and bodies as the testing dataset. To generate
the unrelated class, headlines and bodies belong-
ing to different claims are randomly matched; the
data from the testing and the training set was kept
separate to avoid the same headlines or bodies ap-
pearing in both sets. Thus, there is no overlap be-
tween the topics in the two datasets. In order to
prevent teams from using any unfair means, by us-
ing the labels of the testing set from the Emergent
project (which is publicly available), the organiz-
ers additionally created 266 instances. The statis-
tics and the label distribution of the corpus are il-
lustrated in Table 1.

3.2 ARC dataset
In order to evaluate the best-performing system on
a second corpus, we select the dataset introduced
by Habernal et al. (2017).The corpus was built by

manually selecting 188 debates with popular ques-
tions from the user debate section of the New York
Times. For each debate they created two oppos-
ing claims about the discussed topic and collected
high-ranked comments. The corpus was annotated
by crowd workers, who had to choose for each
comment between the two opposing claims or se-
lect the no-stance option.

Example from the original ARC dataset:
Topic Do same-sex colleges play an im-

portant role in education, or are they
outdated?

Comment Only 40 women’s colleges are left
in the U.S. And, while there are a
variety of opinions on their value,
to the women who have attended ...
them, they have been ... tremen-
dously valuable. ...

Claim 1 Same-sex colleges are outdated
Claim 2 Same-sex colleges are still relevant
Label Same-sex colleges are still relevant

Generated instance:
Stance Headline Article body
agree Claim 1 Comment

Table 2: ARC dataset modification

In order to align the corpus to the FNC stance
detection problem, we modified the ARC dataset.
It was assumed that the comments are always re-
lated to the two opposing claims. One of the two
claims has been randomly selected as the headline
and the comment as the article body. In fact, typi-
cally, the comments express an opinion in several
sentences and can therefore be considered as doc-
uments. If the randomly chosen claim was also
selected by the workers, we consider the claim-
comment pair as agreeing with each other. If the
opposite claim was selected, we labeled the pair as
disagree. If none of the claims were selected and
the no-stance options was selected by the work-
ers, the comment was considered as discussing
the claim. An example of a generated instance is
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shown in Table 2.
In order to generate the unrelated instances,

we randomly match the comments with claims,
thereby avoiding that a comment being assigned
to a claim from the same topic. The statistics of
the resulting corpus are given in Table 1.

4 Performance evaluation

4.1 Evaluation metric

The performance measurement for the FNC-1 was
defined hierarchically. Firstly, 0.25 points are
given if the article was correctly classified as ”re-
lated or ”unrelated” to the headline. If the article
is ”related” to the headline, 0.75 additional point
are assigned if the model correctly classified the
article-headline pair as ”agrees”, ”disagrees” or
”discuss”. Thus, the large number of unrelated in-
stances is balanced by the weights. Nevertheless,
the metric fails at taking into account the unbal-
anced distribution of the three related classes (Ta-
ble 1). Thus, models, which perform well on the
majority class and poorly on the minority classes
are favored. In fact, if one correctly classifies the
”related” and ”unrelated” instances, which is not
difficult as the best systems are reaching about
0.99 F1 score on the task, and then simply predicts
the ”discuss” class, which is the majority of the
three related classes, one reaches an FNC score of
0.833. Using this approach it would be sufficient
to win FNC-1. Therefore, for our experiments we
report F1 scores.

4.2 Human upper bound

4.2.1 FNC dataset

In order to be able to compare human and machine
performance, five subjects labeled 200 instances.
The overall inter-annotator agreement is relatively
high reaching 0.686 Fleiss’ κ (Fleiss, 1971). How-
ever, when evaluating the agreement only for the
three related classes, by simply dropping the unre-
lated instances, Fleiss’ κ dramatically reduces to
0.218. This indicates that differentiating between
the three related classes is difficult even for hu-
mans.

On the basis of the annotation, we have also
determined the most probable labels according to
MACE (Hovy et al., 2013), and compared them to
the ground truth from the Emergent project. The
agreement of the labels in this case is better, reach-
ing an overall Fleiss’ κ of 0.807 and 0.552 for the

agr dsg dsc unr F1m
FNC .588 .667 .765 .997 .754
ARC .710 .857 .571 .954 .773

Table 3: Human performance on the FNC and
ARC dataset, agr = agree, dsg = disagree, dsc =
discuss, unr = unrelated, F1m = F1 macro

three related classes. On the basis of the annota-
tion according to MACE, we have computed the
human upper bound which is reported in Table 3.
However, this only can be an approximate limit, as
our subjects are not expert annotators.

4.2.2 ARC corpus

Also for the ARC dataset, subjects hand-annotated
200 samples to determine an approximate human
upper bound. Even though the overall Fleiss’ κ
score of 0.614 is slightly lower compared to the
FNC corpus, the agreement for the related class
is higher with a Fleiss’ κ score of 0.383. Also
in this case, we determine the most probable la-
bels according to MACE and compare them with
the ground truth. The resulting overall Fleiss’ κ
score is 0.708, and for the three related classes it
is 0.481. The class-wise F1 scores and F1 macro
are displayed in Table 3.

5 Development of models and features

We propose models and features for the document-
level stance detection task, which are evaluated in
the subsequent section.

5.1 Features

To capture the characteristics of the headlines and
bodies, we developed features based on related
work on fake news detection, as well as stance de-
tection. Some of the features are taken from the
baseline implementation of the organizers of the
FNC-1. The features are split into several groups,
which are briefly explained below, with a detailed
description in the supplement material at A.1.

BoW/BoC features: We use bag-of-words
(BoW) 1- and 2-grams and add a negation tag to
words that appear after a special negation key-
word, based on a technique by Das and Chen
(2007). For the bag-of-characters (BoC) 3-grams
are used. For the BoW/BoC features, we create
TF vectors for headline and body and concatenate
them. The FNC-1 baseline feature co-occurrence
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counts occurrences of word n-grams, character n-
grams, and stop words of the headline.

Topic model features: We use non-negative
matrix factorization (NMF) (Lin, 2007), latent se-
mantic indexing (LSI) (Deerwester et al., 1990),
and latent Dirichlet allocation (LDA) (Blei et al.,
2003) to create topic models. For each topic model
a different feature is created. We extract 300 top-
ics, compute the similarity of the headline and
body to the found topics, and use the resulting vec-
tors as features by either concatenating or calculat-
ing the cosine similarity between them.

Lexicon-based features: These features are
based on the NRC Hashtag Sentiment and Sen-
timent140 lexicon (Kiritchenko et al., 2014; Mo-
hammad et al., 2013; Zhu et al., 2014), on the
MPQA lexicon (Wilson et al., 2005), MaxD-
iff Twitter lexicon (Rosenthal et al., 2015; Kir-
itchenko et al., 2014), and the EmoLex lexicon
(Mohammad and Turney, 2010, 2013). The lex-
icons hold values signaling the sentiment/polarity
for each word. For headline and body separately,
we implement eight different features proposed by
Mohammad et al. (2013). For the EmoLex lexi-
con, we count the emotions listed for each word
of the headline/body that is found in the lexion.
Lastly, the FNC-1 baseline features polarity words
and refuting words are added. The first one counts
refuting words (e.g. ”fake”, ”hoax”), divides the
counter by two, and takes the remainder as a fea-
ture signaling the polarity of headline or body. The
latter one sets a binary feature for each refuting
word (e.g. ”fraud”, ”deny”) appearing in the texts.

Readability features: We measure the read-
ability of headline and body with SMOG grade ,
Flesch-Kincaid grade level, Flesch reading ease,
and Gunning fog index (Štajner et al., 2012),
Coleman-Liau index (Coleman and Liau, 1975),
automated readability index (Senter and Smith,
1967), LIX and RIX (Anderson, 1983), McAlpine
EFLAW Readability Score (McAlpine, 1997),
Strain Index (Solomon, 2006).

Lexical features: As lexical features we imple-
ment the type-token-ratio (TTR) and the measure
of textual lexical diversity (MTLD) (McCarthy,
2005) for the body, and only TTR for the head-
line. The FNC-1 baseline feature word overlap di-
vides the cardinality of the intersection of unique
words in headline and body by the cardinality of
the union of unique words in headline and body.

POS features: The POS features include coun-

ters for different POS-tags, and also the per-
centage of stop words and the number of verb
phrases, which showed good results in the work of
Horne and Adali (2017). For the word-similarity
feature, we calculated average word embeddings
(pre-trained word2vec model2) for all verbs (re-
trieved with Stanford Core NLP toolkit3) of head-
line/body separately. The cosine similarity be-
tween the averaged embeddings of headline and
body is taken as a feature, as well as the Hungar-
ian distance between verbs of headline and body
based on the paraphrase database4. The same
computation is repeated for the nouns.

Structural features: The structural features
contain the average word length of the headline
and body, and the number of paragraphs and aver-
age paragraph length of the body.

5.2 Models

5.2.1 Baseline models
The following two models reach highest perfor-
mance on the FNC dataset and therefore serve as
a baseline for our experiments.

Talos Intelligence model (TalosComb) Baird
et al. (2017) reached state-of-the-art results
on the FNC dataset according to the FNC-
metric. They use 50/50 weighted average of a
deep convolutional neural network (TalosCNN)
and gradient-boosted decision trees model
(TalosTree). TalosCNN is based on pre-trained
word2vec embeddings2 which are passed through
several convolutional layers followed by three
fully-connected layers and a final output layer
with four neurons for classification. TalosTree is
based on word count features, TF-IDF features,
singular-value decomposition features, pre-trained
word2vec embeddings2 and sentiment features.

UCL-model (uclMLP) Riedel et al. (2017) im-
plemented a multi-layer perceptron (MLP) with
one hidden layer which also reaches high perfor-
mance on the FNC dataset. As features they use
BoW unigrams by creating a vocabulary of the
5,000 most important words from the development
set and defining TF vectors of headline and body
with this vocabulary. Also, they define another
BoW unigram feature, but add the tokens of the
test set and use TF-IDF instead of TF in order to
find the most important words. The resulting TF

2https://code.google.com/archive/p/word2vec/
3https://stanfordnlp.github.io/CoreNLP/
4http://www.cis.upenn.edu/ ccb/ppdb/
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feature vectors of headline and body are concate-
nated and a single-value entry is added represent-
ing the cosine similarity of the two TF-IDF vec-
tors.

5.2.2 Implemented models

Feature based MLP (featMLP): We constructed
a MLP using as an initial configuration the hy-
perparameters suggested by Davis and Proctor
(2017). Based on this initial configuration, we per-
formed a random search on the development set in
order to further optimize the hyperparameters with
regard to the developed features. The identified
hyperparameters are as follows: Optimizer: Adam
(Kingma and Ba, 2014), learning rate: .001, batch
size: 188, 7 hidden layers: 362, 942, 1071, 870,
318, 912, 246 units per layer, dropout: none, bias
initialization: .001, weight initialization: method
proposed by He et al. (2015).

Stacked LSTM model (stackLSTM): We im-
plemented a stacked LSTM with Keras (Chollet
et al., 2015). For this model, we use 100-d GloVe
word embeddings5 (Pennington et al., 2014), con-
catenate the LSTM’s output with the final features
determined in section 6.1, and add three dense lay-
ers with 600 neurons each before computing the
class probabilities.

Avg. Pooled CNN (avgCNN): This CNN ar-
chitecture consists of average-pooled layers after
a 1-D convolution with filter sizes of 3, 5, and 7.
It is optimized with batch-normalization using an
Adam Optimizer with a learning rate of 0.0001.

Weighted MLP (weightMLP): This is a
hierarchical-weighted densely connected custom
architecture. The average sentence embedding of
the headline is used to weight the sentences from
the document bodies. The weighted body embed-
dings are concatenated with the headline embed-
ding and feed into a densely connected hidden-
layer of size 2000. The network is optimized us-
ing batch-normalization, and, since the classes are
imbalanced, we use weighted-categorical cross-
entropy as a loss function to optimize the parame-
ters of the model.

Additionally, we are using the classifiers Naive
Bayes (NaiveB), Gradient Boost (GradBoost), Lo-
gistic Regression (LogReg), and SVM from the
sklearn library (Pedregosa et al., 2011).

5http://nlp.stanford.edu/data/glove.twitter.27B.zip

agr dsg dsc unr F1m
Baselines:
major. vote 0.0 0.0 0.0 .835 .209
FNC-1 .241 .047 .738 .970 .499
Only:
BoW/BoC .772 .601 .874 .991 .796
Topic .637 .571 .838 .983 .757
POS 0.0 0.0 .731 .964 .425
All w/o:
BoW/BoC .665 .530 .841 .982 .754
Topic .714 .598 .863 .989 .791
POS .722 .616 .876 .995 .802
All feat. † .713 .573 .870 .993 .787
All feat. .675 .455 .835 .989 .738

Table 4: Results of the feature ablation test on
the development set with 10-fold cross-validation.
Baseline FNC-1 is calculated with gradient boost-
ing classifier and all FNC-1 baseline features. †
states that only the preselected features are used
(see Table 6 in A.1). (agr = agree, dsg = disagree,
dsc = discuss, unr = unrelated, F1m = F1 macro).

6 Experiments

In this section, we perform experiments with the
implemented models and features in order to iden-
tify the best performing configuration.

6.1 Feature selection

Preliminary experiments have shown that the MLP
model outperforms all the other models. We there-
fore use the MLP for the feature ablation test in or-
der to find the best feature set for our experiments.
All tests are performed on the development set
with 10-fold cross-validation. We grouped the fea-
tures according to the feature type in eight differ-
ent groups. Features that have much lower scores
than others in their group are taken out and listed
individually. On the basis of preliminary tests, we
decided that features more than 15% below the
FNC-1 baseline should be omitted. We have found
that they mostly just predict the majority class and
thus lower the score. We mark all features that are
used for the following feature ablation test with †
in Table 6 of A.1.
The results of the ablation test (see Table 4) reveal
that the BoW/BoC features have the biggest im-
pact, and the performance can be further improved
by the topic features. Adding the POS features
lowers the score. Hence, the final feature set will
consist of the BoW/BoC and topic model features.
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6.2 Model experiments

In Table 5 our implemented models are compared
with sklearn classifier, which are using the best
feature set described above, and various baselines.
Here we only report F1 scores on the testing set
(FNC metric scores can be found in the appendix
A.4). It has been observed that the performance of
the systems decreases from about 0.8 on the devel-
opment set, to 0.6 F1 Macro on the test set. The
drop of performance is most likely because of the
100 new topics represented in the testing set. As
can be observed, the TalosComb model is in this
case not superior and is slightly outperformed by
the uclMLP. The analyses of the confusion matrix
has shown that the model mostly predicts for the
majority classes, which is also the reason why the
performance on the ”disagree” class is low. The
same problem could be observed for the sklearn
classifiers which are therefore not competitive in
terms of F1 macro. From our models, stackLSTM
performs best, outperforming the strongest base-
line model uclMLP by more than two percentage
points. Nevertheless, stackLSTM is not signifi-
cantly better than the featMLP. The advantage of
the two models is that they better perform on the
”disagree” class. An ensemble of the featMLP,
TalosComb, and uclMLP could not further signif-
icantly improve performance.

As it can be noticed in the table, all models have
difficulties predicting the ”disagree” class, which
is probably because of the few number of instances
for this class. To address this issue, we have ap-
plied different under-sampling and over-sampling
techniques. However, this did not help to improve
performance.

6.3 Experiments on the ARC dataset

In order to analyze how far the developed models
are able to generalize to a similar problem settings,
we investigate the performance of the models on
the ARC corpus. For experiments on the ARC we
have chosen only our featMLP and the two base-
line models uclMLP and TalosComb. The results,
listed in Table 5, show that the performance of all
models decreases. Nevertheless, they are still bet-
ter able to distinguish between ”agree” and ”dis-
agree” instances compared to the FNC-1 corpus.
We assume this is because the corpus is more bal-
anced. However, here, the classification of the dis-
cuss instances is more difficult. This is because,
even though the user comments are related to the

Model Experiments:
agr dsg dsc unr F1m

Baselines:
major. vote 0.0 0.0 0.0 .839 .210
TalosTM .520 .003 .762 .994 .570
TalosCNN .258 .092 0.0 .882 308
TalosComb .539 .035 .760 .994 .582
uclMLP .479 .114 .747 .989 .583
Class.:
NaiveB .180 .024 .350 .576 .283
GradBoost .365 .027 .750 .983 .531
LogReg .449 .003 .773 .979 .551
SVM .497 .022 .738 .984 .561
Proposed:
avgCNN .202 .144 .325 .747 .355
weightMLP .460 .002 .673 .963 .525
featMLP .530 .151 .766 .982 .607
stackLSTM .501 .180 .757 .995 .609
upp. bound .588 .667 .765 .997 .754

ARC dataset and cross-domain experiments:
agr dsg dsc unr F1m

ARC-ARC
major. vote 0.0 0.0 0.0 .857 .214
TalosComb .576 .584 .183 .944 .576
uclMLP .517 .503 .121 .932 .519
featMLP .526 .506 .144 .934 .526
upp. bound .710 .857 .571 .954 .773
ARC-FNC
major. vote 0.0 0.0 0.0 .857 .214
TalosComb .376 .279 .113 .977 .376
uclMLP .288 .234 .109 .728 .288
featMLP .322 .111 .033 .939 .351
upp. bound .710 .857 .571 .954 .773
FNC-ARC
major. vote 0.0 0.0 0.0 .839 .210
TalosComb .348 0.0 .188 .928 .366
uclMLP .352 .258 .063 .898 .352
featMLP .321 .159 .171 .906 .389
upp. bound .588 .667 .765 .997 .754

Table 5: Model experiments, ARC dataset and
cross-domain experiments reported in F1 (ARC-
ARC: train and predict on ARC, ARC-FNC: train
on ARC predict for FNC, FNC-ARC: train on
FNC predict for ARC, agr = agree, dsg = disagree,
dsc = discuss, unr = unrelated, F1m = F1 macro,
upp. bound = human upper bound)

claim, they often do not explicitly refer to it. On
this corpus, the TalosComb outperforms the other
models on all classes. We assume, the difference



8

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

NAACL-HLT 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

of the news domain genre of the FNC dataset with
respect to the user debate forum genre from the
ARC is one factor for the different performance.

The cross corpus experiments show that the per-
formance of the models is substantially better than
the majority vote baseline. It can be therefore con-
cluded that the two problem settings are related
and exhibit a common structure. The results sug-
gest that TalosComb is best able to learn from the
ARC corpus as it is also superior in the ARC-FCN
setting. The featMLP, on the other hand, yields
best results when trained on the FNC corpus as the
ARC-FCN setting suggests.

6.4 Error analysis

In the error analysis, which was performed for the
top performing models, we have made the follow-
ing observations. If there is lexical overlap be-
tween headline and body, the models classify the
instance as one of the related classes, even in cases
in which the headline and body are unrelated (Ap-
pendix A.3 Example 1). If the body and the head-
line are ”related” but do not contain the same to-
kens but synonyms, the model often classifies the
case as ”unrelated” (Appendix A.3 Example 2).
If keywords like ”reports”, ”said”, ”allegedly” are
detected, the systems classify the case as ”discuss”
(Appendix A.3 Example 3). The ”disagree” class
is difficult to determine as only few lexical indica-
tors such as ”false”, ”hoax”, ”fake” are available
as features. The disagreement is often expressed
in complex terms which demands more sophisti-
cated techniques (Appendix A.3 Example 4).

7 Discussion of the results

The experiments show that even the best perform-
ing models on the FNC-1 dataset reach a relatively
low F1 macro score of about 0.6, even though
scoring high on the FNC metric. From our per-
spective, the FNC metric is problematic, since it
does not take the unbalanced class distribution for
the three related classes into account. On the ba-
sis of our experiments we conclude that the low
performance is caused by the following problems.

1. The class distribution is unbalanced and there
are in particular very few instances for the ”dis-
agree” class. The problem is substantial as over-
sampling and under-sampling experiments did not
help to increase performance. However, the exper-
iments on the ARC dataset suggest that the differ-
entiation of the ”agree” and ”disagree” instances

can be learned with reasonable performance if the
dataset is balanced.

2. The human upper bound is relatively low,
reaching only 0.754 F1 macro. The differentiation
between ”agree”, ”disagree” and ”discuss” classes
is very challenging even for humans, as we reach
only 0.218 Fleiss’ κ inter-annotator agreement on
these three classes.

3.The error analysis from Section 6.4 shows
that the models exploit the similarity between the
headline and the article body in terms of lexical
overlap. Furthermore, lexical cue words, such as
”reports”, ”said”, ”false”, ”hoax” are important
for classification. The systems fail when seman-
tic relations between words need to be taken into
account, complex negation instances are encoun-
tered, or the understanding of propositional con-
tent in general is required.

8 Conclusion

In our experiments, we have tested numerous
models and features for the FNC document-level
stance detection task. Moreover, we crucially as-
sessed the successful models, the problem setting,
the dataset itself, and evaluated the performance
of the models on a second dataset. Based on these
insights, we have developed a new model which
reaches a new state-of-the-art. Nevertheless, we
have also found that even the best performing
models reach relatively low F1 macro scores of
about 0.6. We further analyzed why the systems
reach low performances and have identified three
main causes. 1. The dataset is unbalanced and
there are only few instances for certain classes.
2. The task is challenging and the human upper
bound is relatively low with 0.754 F1 macro. 3.
The best performing models use mostly similarity
based features and are therefore unable to resolve
difficult instances.

Based on these findings, we conclude that in or-
der to improve the performance of machine learn-
ing methods on the document-level stance detec-
tion task, a better balanced corpus with a higher
inter annotator agreement is required. Moreover,
similarity based approaches appear to reach their
limit on the task. Thus, more sophisticated ma-
chine learning techniques are needed, which are
better able to deal with complex negation in-
stances, have a deeper semantic understanding,
and are able to determine the stance on the basis
of propositional content.
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A Supplemental Material

A.1 Features: Detailed description
BoW/BoC features We use bag-of-words (BoW)

1- and 2-grams with 5,000 tokens vocabulary
for the headline as well as the body. For
the BoW feature, based on a technqiue by
Das and Chen (2007), we add a negation tag
” NEG” as prefix to every word between spe-
cial negation keywords (e.g. ”not”, ”never”,
”no”) until the next punctuation mark ap-
pears. For the bag-of-characters (BoC) 3-
grams are chosen with 5,000 tokens vocab-
ulary, too. For the BoW/BoC feature we
use the TF to extract the vocabulary and
to build the feature vectors of headline and
body. The resulting TF vectors of headline
and body get concatenated afterwards. Fea-
ture co-occurrence (FNC-1 baseline feature)
counts how many times word 1-/2-/4-grams,
character 2-/4-/8-/16-grams, and stop words
of the headline appear in the first 100, first
255 characters of the body, and how often
they appear in the body overall.

Topic models We use non-negative matrix factor-
ization (NMF) (Lin, 2007), latent semantic
indexing (LSI) (Deerwester et al., 1990), and
latent Dirichlet allocation (LDA) (Blei et al.,
2003) to create topic models out of which we
create independent features. For each topic
model, we extract 300 topics out of the head-
line and body texts. Afterwards, we compute
the similarity of headlines and bodies to the
found topics separately and either concate-
nate the feature vectors (NMF, LSI) or cal-
culate the cosine distance between them as a
single valued feature (NMF, LDA).

Lexicon-based features These features are based
on the NRC Hashtag Sentiment and Senti-
ment140 lexicon (Kiritchenko et al., 2014;
Mohammad et al., 2013; Zhu et al., 2014), as
well as for the MPQA lexicon (Wilson et al.,
2005) and MaxDiff Twitter lexicon (Rosen-
thal et al., 2015; Kiritchenko et al., 2014).
All named lexicons hold values that signal

the sentiment/polarity for each word. The
features are computed separately for head-
line and body, and constructed as proposed
by Mohammad et al. (2013): First, we count
how many words with positive, negative, and
without polarity are found in the text. Two
features sum up the positive and negative po-
larity values of the words in the texts and
another two features are set by finding the
word with the maximum positive and nega-
tive polarity value in the text. Finally, the
last word in the text with negative or pos-
itive polarity is taken as a feature. Since
the MaxDiff Twitter lexicon also contains 2-
grams, we decide to take them into account
as well, whereas for the other lexicons only
1-grams incorporated. Additionally, we base
features on the EmoLex lexicon (Mohammad
and Turney, 2010, 2013). For all its words, it
holds up to eight emotions (anger, fear, antic-
ipation, trust, surprise, sadness, joy, disgust),
based on the context they frequently appear
in. For headline and body respectively, the
emotions for all words are counted as a fea-
ture vector. The resulting vectors for head-
line and body are then concatenated. Lastly,
the baseline features polarity words and re-
futing words are added. The first one counts
refuting words (e.g. ”fake”, ”hoax”), divides
the sum by two, and takes the remainder as
a feature signaling the polarity of headline or
body. The latter one sets a binary feature for
each refuting word (e.g. ”fraud”, ”deny”) ap-
pearing in the headline or body.

Readability features We measure the readability
of headline and body with SMOG grade (only
body), Flesch-Kincaid grade level, Flesch
reading ease, and Gunning fog index (Štajner
et al., 2012), Coleman-Liau index (Coleman
and Liau, 1975), automated readability in-
dex (Senter and Smith, 1967), LIX and RIX
(Anderson, 1983), McAlpine EFLAW Read-
ability Score (McAlpine, 1997), Strain Index
(Solomon, 2006). The SMOG grade is only
valid if a text has at least 30 sentences, and
thus is only implemented for the bodies.

Lexical features As lexical features we imple-
ment the type-token-ratio (TTR) and the
measure of textual lexical diversity (MTLD)
(McCarthy, 2005) for the body, and only
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type-token-ratio for the headline, since
MTLD needs at least 50 tokens to be valid.
Also, the baseline feature word overlap be-
longs to this group. It divides the cardinality
of the intersection of unique words in head-
line and body by the cardinality of the union
of unique words in headline and body.

POS features The POS features amongst others
include counters for nouns, personal pro-
nouns, verbs and verbs in past tense, adverbs,
nouns and proper nouns, cardinal numbers,
punctuations, the ratio of quoted words, and
also the frequency of the three least common
words in the text. The headline feature also
contains a value for the percentage of stop
words and the number of verb phrases, which
showed good results in the work of Horne and
Adali (2017). For the word-similarity feature,
[which are mainly based on Ferreira and Vla-
chos (2016) we calculated average word em-
beddings (pre-trained word2vec model6) for
all verbs (retrieved with Stanford Core NLP
toolkit7) of headline/body separately. The co-
sine similarity between the averaged embed-
dings of headline and body is taken as a fea-
ture, as well as the hungarian distance be-
tween verbs of headline and body based on
the parapharse database8. The same compu-
tation is done for all nouns of headline and
body. Additionally the average sentiment of
the headline and the average sentiment of the
body is used as a feature. A count of negating
words of the headline and the body is added
to the feature vector as well as the distance
from the negated word to the root of the sen-
tence. The number of average words per sen-
tence of headline and body is another feature.
The aforementioned features are improved by
only selecting a predefined number of sen-
tences of body and headline. Therefore the
sentences are ordered by TF-IDF score.

Structural features The structural features con-
tain the average word length of the headline
and body, and the number of paragraphs and
average paragraph length of the body.

6https://code.google.com/archive/p/word2vec/
7https://stanfordnlp.github.io/CoreNLP/
8http://www.cis.upenn.edu/ ccb/ppdb/

A.2 Features tested separately

Features FNC F1 macro
Baselines

Majority vote .3877 .2877
FNC-1 features .7929 .4990

Topic models
LSI 300 † .8834 .7502
NMF 300 † .8563 .7016
NMF 300 cos-sim. † .8210 .4361
LDA 300 cos-sim. † .7419 .4081

BoW/BoC features
BoW 1-/2-grams 5,000 † .9015 .7782
BoC 3-grams 5,000 † .9034 .7729
Co-occurrence † .7729 .4701

POS features
Wordsim † .7708 .4233
NRC Hashtag POS .5342 .3427

Lexicon-based features
EmoLex 1-grams .4816 .3490
Sentiment140 1-grams .4471 .2913
NRC Hashtag 1-grams .4319 .2718
MPQA 1-grams .3932 .2226
Polarity features .3877 .2088
MaxDiff 1-/2-grams .3877 .2088
Refuting features .3877 .2088

Readability features
Readability features .4430 .2842

Structural features
Structural features .3959 .2197

Lexical features
Lexical features .6918 .3854

Table 6: Features tested with the tuned multi-layer
perceptron. Some of the features of the differ-
ent groups are listed separately in order to show
their high variances in score. Before the feature
ablation test is done, some of the low-scoring fea-
tures shown separately are removed. Only features
marked with † are considered.

A.3 Misclassified examples identified the
error analysis

Example 1.
(stance ”unrelated”, system predicts ”agree”)
Headline: CNN: Doctor Took Mid-Surgery Selfie
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with Unconscious Joan Rivers

Body: ”A TEENAGER woke up during brain
surgery to ask doctors how it was going. Iga Ja-
sica, 19, was having an op to remove a tumour at
when the anaesthetic wore off and she struck up a
conversation with the medics still working on her.”

Example 2.
(stance ”agree”, system predicts ”unrelated”)
Headline: Three Boobs Are Most Likely Two
Boobs and a Lie

Body: The woman who claimed she had a third
breast has been proved a hoax.

Example 3.
(stance ”disagree”, system predicts ”discuss”)
Headline: Woman pays 20,000 for third breast to
make herself LESS attractive to men

Body: The woman who reported that she added a
third breast was most likely lying.

Example 4.
(stance ”disagree”, system predicts ”agree”)
Headline: Disgusting! Joan Rivers Doc Gwen
Korovins Sick Selfie EXPOSED Last Photo Of
Comic Icon, When She Was Under Anesthesia

Body: If the bizarre story about Joan Rivers’ doc-
tor pausing to take a ”selfie” in the operating room
minutes before the 81-year-old comedienne went
into cardiac arrest on August 29 sounded out-
landish, that’s because it was.

A.4 FNC score for the models experiments

Models FNC F1 macro
Baselines:
major. vote .394 .210
maj. v. dsc .833 .444
TalosTM .830 .570
TalosCNN .502 308
TalosComb .820 .582
uclMLP .817 .583
Class.:
NaiveB .471 .283
GradBoost .811 .531
LogReg .815 .551
SVM .819 .561
Proposed:
avrgCNN .472 .355
weightMLP .745 .525
featMLP .827 .607
LSTM .821 .609
upp. bound .859 .754

Table 7: FNC-scores and F1 macro scores for the
analyzed models


