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Abstract

This paper describes our submissions to
the GermEval 2017 Shared Task, which
focused on the analysis of customer feed-
back about the Deutsche Bahn AG. We
used sentence embeddings and an ensem-
ble of classifiers for two sub-tasks as well
as state-of-the-art sequence taggers for
two other sub-tasks. Relevant aspects
to reproduce our experiments are avail-
able from https://github.com/UKPLab/

germeval2017-sentiment-detection.

1 Introduction

For many companies, customer feedback is an im-
portant source for identifying problems affecting
their services. Although customer feedback may be
obtained by interviewing single customers or con-
ducting larger studies using questionnaires, those
are often cost-intensive. Instead, it is much cheaper
to crawl customer feedback from the web, for ex-
ample from social media platforms like Twitter,
Facebook, or even news pages. In contrast to inter-
views or questionnaires, crawled data is often noisy
and does not necessarily cover specific company-
related topics. Due to the vast amount of available
data on the web, it is crucial to analyze relevant
documents and extract the feedback automatically.

The GermEval 2017 Shared Task (Wojatzki et
al., 2017) focuses on the automated analysis of
customer feedback about the Deutsche Bahn AG
(DB) in four subtasks, namely (A) relevance clas-
sification of documents, (B) identification of the
document-level polarity, (C) identification of cer-
tain aspects in a single document as well as predict-
ing their category and polarity, and (D) extraction
of the exact phrase of a single aspect.

For example, the tweet

@RMVdialog hey, wann fährt denn nach
der Störung jetzt die nächste Bahn von

Glauberg nach Ffm?

has the following gold-standard annotations for
Tasks A-D, respectively:

(A) true
(B) neutral
(C) Sonstige Unregelmässigkeiten – negative
(D) Störung

We participated in all subtasks of the shared
task. For Tasks A, B, and C we trained models on
document-level representations using a classifier
ensemble. As Task D can be modeled as a sequence
tagging task, we used a state-of-the-art deep neural
network tagger with a conditional random field at
the output layer.

This work is structured as follows. Section 2
gives an overview of the data. Section 3 details the
two main modeling approaches we made use of.
Section 4 describes our experimental set-ups, and
presents and discusses our results for a selection of
well-performing models. We conclude in Section
5.

2 Data

The data provided for this shared task contains
≈ 22,000 German messages from various social
media and web sources and has been annotated
in a joint project between Technische Universität
Darmstadt and DB. In addition to the provided
data we used several external resources for training
word and sentence embeddings and computing task
specific features.

2.1 Task Specific Data
The shared task data contains annotations about the
relevance R of a message (Task A) and its senti-
ment polarity (B), either positive P, negative NG,
or neutral NT. Relevant messages contain further
annotations about their aspects, with the aspect
category and sentiment polarity (C) and its exact



R (A) P (B) NG (B) NT (B)

Total 83 6 26 68

Table 1: Class distributions for task A and B in %

Category #

Allgemein 13892
Zugfahrt 2421
Sonstige Unregelmässigkeiten 2112
Atmosphäre 1576
Sicherheit 962
Ticketkauf 741
Service und Kundenbetreuung 551
Connectivity 390
Informationen 388
Auslastung und Platzangebot 304
DB App und Website 252
Komfort und Ausstattung 166
Barrierefreiheit 89
Toiletten 54
Image 54
Gastronomisches Angebot 47
Reisen mit Kindern 46
Design 37
Gepäck 15
QR-Code 1
Total 24098

Table 2: The number of aspects per category.

phrase (target) identified by the character offsets
(D). Table 1 shows the distribution of classes in the
train and dev sets for tasks A and B.

For Tasks C and D, the data contains 24,098 as-
pects in total, which are classified into 20 different
categories. Table 2 shows the number of aspects for
each category. We observe that the data is highly
skewed here, with more than 57% of all aspects
being of category “Allgemein”. Table 3 shows the
distribution of positive, negative, and neutral as-
pects in the data.

Furthermore, not every aspect can be matched
to an exact phrase (target). In 44% of the cases, a
category and the polarity is assigned to a message
without having a target. For these cases, the target

P (C) NG (C) NT (C)
Total 10 42 48

Table 3: Polarity distribution of aspects in %

is annotated by NULL.

2.2 External Sources

We use several external data sources for training
various word and sentence embeddings, namely a
German Wikipedia corpus (Al-Rfou et al., 2013)
and a German Twitter corpus (Cieliebak et al.,
2017). The Wikipedia corpus is publicly avail-
able and contains already tokenized data. We use
a crawler published along with the Twitter corpus,
to obtain the actual texts of the tweets. This results
in a corpus containing 7464 tweets, which we then
tokenized using the Tweet Tokenizer from NLTK
(Bird et al., 2009).

We also made use of an English Twitter senti-
ment corpus of around 40K tweets (Rosenthal et
al., 2017), each annotated with positive, negative,
or neutral stance, just as the German data. Our
hope was that this would provide a strong addi-
tional signal from which our learners could induce
the sentiment of a tweet, be it English or German.
To make use of this additional data, we projected
our word and sentence embeddings (see below) in
a bilingual German-English embedding space so
that they are comparable.1 We used CCA (Faruqui
and Dyer, 2014) for this, which requires indepen-
dently constructed language specific embeddings
and word translation pairs (such as (Katze,cat)) to
allow projecting vectors into a joint space. The
word translation pairs were induced from the Eu-
roparl corpus (Koehn, 2005).

3 Methods

In what follows, we describe, on a general level,
our approaches to Tasks A and B (Section 3.1) and
Task D (Section 3.2), respectively. For Task C, we
mixed between the approaches outlined in Sections
3.1 and 3.2 in our experiments. We relegate the
corresponding model description to Section 4.

3.1 Sentence Embeddings and Classifier
Ensemble

We used a unified and minimally expensive (in
terms of feature engineering) approach to tackle
Tasks A and B, which both concern the classifica-
tion of documents into categories. We tokenized

1Besides using the English Twitter sentiment corpus for
computing word embeddings, we had hoped that the anno-
tated English data would improve our classification results in
German, but initial experiments in which we (naively) merged
both annotated datasets led to performance deteriorations, so
we abandoned the idea.



each document and converted it to an embedding
via the tools Sent2Vec (Pagliardini et al., 2017) and
SIF (Arora et al., 2017). Both of these tools aspire
to improve upon the simple average word embed-
ding baseline for sentence embeddings, but are con-
ceptually simple. We trained Sent2Vec on the union
of German Wikipedia data as well as a Twitter cor-
pus and the task specific data of the Shared Task.
For SIF, we first created word embeddings with the
standard skip-gram model of Word2Vec (Mikolov
et al., 2013), and then generated sentence embed-
dings from these via specific SIF parametrizations
outlined below. We train Word2Vec on the same
data sources as Sent2Vec.

After converting documents to embeddings of
particular sizes d, we train a classifier that maps
representations in Rd to one of N classes, where
N = 2 for Task A and N = 3 for Task B. We use the
stacked learner from Eger et al. (2017) as a clas-
sifier. This is an ensemble based system that uses
several base classifiers from scikit-learn and a mul-
tilayer perceptron as a meta-classifier to combine
the predictions of the base classifiers.

3.2 (MTL) Sequence Tagging

Task D is naturally modeled as sequence tag-
ging task, that is, it can be framed as the prob-
lem of tagging each element in a sequence of to-
kens x1, . . . ,xT with a label y1, . . . ,yT . We used
the most recent state-of-the-art sequence tagging
frameworks (Lample et al., 2016; Ma and Hovy,
2016), which consist of a neural network (bidirec-
tional) LSTM tagger that uses word and character
level information as well as a CRF layer on top
that accounts for dependencies between succes-
sive output predictions. Moreover, since multi-task
learning (MTL) settings in which several tasks are
learned jointly have been reported to sometimes
outperform single-task learning (STL) scenarios,
we directly allow for inclusion of several tasks dur-
ing training and prediction time. Our approach
builds here upon the architecture of Søgaard and
Goldberg (2016) in which different tasks feed from
particular levels of hidden layers in a deep LSTM
tagger. Our employed framework (Kahse, 2017)
extends Søgaard and Goldberg (2016) in that we
include both character and word-level information
as well as implement CRF layers for each task,
as mentioned already. Note that we could in prin-
ciple train all four Shared Task tasks in a single
architecture, possibly with Tasks A and B feeding

from lower layers of the deep LSTM, because the
tasks satisfy some of the requirements that have
often been attributed to successful MTL, such as
relatedness of tasks and natural task hierarchy.

To illustrate, for Task D, the goal is to extract
the relevant phrase to be classified in Task C. We
frame this as a token-level BIO tagging problem
in which each token is labeled with one of three
classes from {I,O,B}. That is,

Notrufsystem : 250 Funklöcher bei . . .
B I I I O . . .

retrieves the target phrase Notrufsystem : 250
Funklöcher from the document.

4 Experiments

Baseline: The organizers of the shared task pro-
vided baselines, consisting of an SVM with uni-
gram word features for Tasks A, B, and C and a
CRF for Task D.2

4.1 Tasks A and B

Approach: We train models with document-
level features using the stacked learner. We fo-
cus on the comparison of different word and sen-
tence embeddings, and additional polarity features
computed using a lexical resource described in
Waltinger (2010) for Task B. For document em-
beddings, we evaluate average word vectors, be-
sides the approaches mentioned above. Further-
more, we ran experiments with combinations of
different word and sentence embeddings. For these,
we compute average word vectors for a single doc-
ument and concatenate it with the respective sen-
tence embedding.

Hyperparameters: We compare Word2Vec
and 100 dimensional Komninos word embeddings
(Komninos and Manandhar, 2016), and 500 di-
mensional Sent2Vec and SIF sentence embed-
dings as described before.3 Word2vec skip-gram
embeddings are computed for dimensions d =
50,100,500. In addition, we compare two SIF
embeddings computed with different input word
embeddings. One was computed from the Ger-
man data directly and another one by projecting the

2An updated data set was released on August, 10th. For
our submissions, we retrained all models on the new data.

3For computing the SIF embeddings, we use the word
weighting parameter a = 0.01 and, we subtract the first r = 2
principal components. See the original paper for details.



Micro F1

Baseline 0.882

W2V (d = 50) 0.883
W2V (d = 500) 0.897
S2V 0.885
S2V + W2V (d = 50) 0.891
S2V + K + W2V(d = 50) 0.890
SIF (DE) 0.895
SIF (DE-EN) 0.892

Table 4: Task A results

Micro F1

Baseline 0.709

W2V (d = 50) 0.736
W2V (d = 500) 0.753
S2V 0.748
S2V + W2V (d = 50) 0.744
S2V + K + W2V(d = 50) 0.749
SIF (DE) 0.759
SIF (DE-EN) 0.765

Table 5: Task B results

German data into a shared embedding space with
English embeddings as described before.

Results: The results of the models better than
the baseline are reported in Tables 4 and 5. As can
be seen, all models only slightly outperform the
baseline in Task A. For Task B, all models trained
on the stacked learner beat the baseline substan-
tially even when using only plain averaged word
embeddings. We furthermore trained models on ad-
ditional polarity features for Task B as mentioned
before. For this, we look up all positive, negative,
and neutral words in a document and compute a
three-dimensional polarity vector by using the total
count of found words. These are concatenated to
the respective document representation. Adding
the polarity features improved the results for all
models except for those using SIF embeddings (Ta-
ble 6).

Discussion: Unexpectedly, the model using the
averaged Word2Vec embedding performs best for
Task A, even though the other embeddings cre-
ated by Sent2Vec or SIF have the same dimension
(500). A reason for this may be chance or the Twit-
ter data. As the experiments of Pagliardini et al.
(2017) confirm, averaged Word2Vec embeddings
perform rather well for a similarity task on Twitter

Micro F1

Baseline 0.709

W2V (d = 50) 0.748
W2V (d = 500) 0.756
S2V 0.748
S2V + W2V (d = 50) 0.755
S2V + K + W2V(d = 50) 0.751
SIF (DE) 0.748
SIF (DE-EN) 0.757

Table 6: Task B results with polarity features

Macro F1

Baseline 0.478

MTLAdam (d = 50) 0.438
STLAdam (d = 50) 0.458

STLAdam (d = 100) 0.488
STLAdam (d = 100) + POS-Tags 0.494
STLAdaDelta (d = 100) 0.543
STLAdaDelta (d = 100) + POS-Tags 0.554

Table 7: Task D results

data. However, we observe that particularly SIF
outperforms average word embeddings for Task B.
We also observe that the joint EN-DE embeddings
improve results for Task B (+0.6% and +0.9%, re-
spectively) but lead to a drop in performance for
Task A (-0.3%). This is in line with the common
observation that the bilingual signal may provide
an additional source of both useful and noisy, ir-
relevant, or even hurtful information (Faruqui and
Dyer, 2014; Eger et al., 2016).

4.2 Task D

Approach: We tackle this task with our se-
quence tagging framework and evaluate on the dev
set using the macro F1 score.

Hyperparameters: We use Word2Vec embed-
dings of d = 50,100 trained on German Wikipedia,
Twitter, and the shared task data. We also incor-
porate 20 dimensional skip-gram embeddings for
POS-tags, trained on the data of the shared task
and concatenate them with the corresponding word
vectors. The German STTS POS-Tags were com-
puted with the Marmot POS-Tagger (Müller et al.,
2013). We furthermore compute 30 dimensional
character embeddings on the shared task data (i.e.,
not pre-trained), using an LSTM with 50 hidden



units. Dropout is set to 0.2 for the BLSTM and
the batch size is set to 50 for all experiments. All
models were trained with 100 hidden units.

Results: Since the evaluation tool provided by
the task organizers always requires a category for
computing the scores on Task D, we evaluated our
systems using the macro F1 score on the BIO tags.
For comparison with the baseline, we compute the
score by converting the predictions into BIO format.
Table 7 contains our results for Task D.

We trained different set-ups with STL and MTL
models. First of all, we evaluated STL against
MTL by training two models on 50 dimensional
Word2Vec embeddings. For the MTL set-up, we
defined the BIO tagging (D) as the main task and
added tasks A, B, and C as auxiliary tasks. For
document-level annotations (Task A and B) each
token of the document is tagged with the respective
class of the document. As the results show, the
MTL set-up did not improve the macro F1 score
in this setting. Thus, we tried to improve the pre-
dictions of the STL model in our follow-up exper-
iments. The best results were achieved by using
100 dimensional Word2Vec embeddings with addi-
tional POS-Tag embeddings. Furthermore, using
AdaDelta as an optimizer yielded better results than
using Adam.

Further results, using the organizers’ evaluation
tool, can be found below.

4.3 Task C

Approach: There are several difficulties for this
task. First, documents may contain several aspects
of different categories, making this at least a multi-
class classification problem for document-level ap-
proaches. Furthermore, in some cases one docu-
ment contains several aspects of the same category.
On a document-level, one either has to give up on
predicting multiple aspects of one class, or add
classes for each possible combination of categories,
leading to a huge number of classes which do not
scale well to new data. Second, there exist aspects
with NULL targets which are not assigned to any
tokens in the text, but still belong to a category and
have a polarity. They cannot be expressed properly
on a token-level, as they were not annotated with
this intention. One solution may be assigning all
tokens of a document to a NULL target category,
but this leads to overlapping categories on a token-
level, adding more difficulty to the task itself.

To obtain aspect category and polarity predic-

Token BIO-Tag cat pol n-cat n-pol

Notrufsystem B Allgemein positive none none

: I Sicherheit negative Allgemein neutral

... ... ... ... ... ...

bei O none none Allgemein neutral

Category : Sicherheit
Polarity : negative

Target : NULL  
Category : Allgemein

Polarity : neutral  

majority vote majority vote

Figure 1: Combination of predictions from several
independent sequence tagging models (Task C).

tions, we evaluate various combinations of the
stacked learner and the sequence tagger. We re-
port the results for three approaches. (1) We
use independent STL sequence taggers to predict
BIO labeling as well as category and polarity of
each token in a document (INDEP). (2) We pre-
dict BIO labeling first, and feed each identified
entity to our described ensemble model to pre-
dict category and polarity of the identified tar-
gets (PIPE). (3) We use the Sequence Tagger for
BIO tagging and category prediction (label set
is {B, I,O}×{Allgemein,Sicherheit, . . .}) and the
stacked learner for polarity prediction (JOINT).
INDEP: We train a separate model for five sub-

tasks, namely the prediction of BIO labeling, cate-
gory (cat), polarity (pol), NULL category (n-cat),
and NULL polarity (n-pol). If the BIO model pre-
dicts B or I for a given token, we look up the cat and
pol prediction and obtain the final prediction via
a majority vote over the span of BI tokens. Since
O tokens are mapped to the none class, we only
predict category and polarity if both are present.
As the n-cat and n-pol predictions do not depend
on the BIO prediction, we perform a majority vote
over the whole document. Figure 1 shows an ex-
ample of how we combine the predictions for the
individual subtasks from different STL models.
PIPE: We train models with the stacked learner

for aspect categories and their polarity. As the BIO
predictions do not include NULL targets, we train
a separate model on the binary task whether or not
a document contains a NULL target. Instead, one
could also add another class for documents without
any aspects, however we decided not to increase
the difficulty for Task C as it already contains 20
classes. If a document is predicted to contain a
NULL target, it is added as input for category and
polarity prediction. Figure 2 shows the interaction
of all models and how the predictions are forwarded



Token BIO-Tag

Notrufsystem B

... ...

bei O

Category : Sicherheit
Polarity : negative

Polarity prediction

Category prediction 

Target : NULL  
Category : Allgemein

Polarity : neutral  

Stacked Learner

STL / MTL

Notrufsystem : 250 Funklöcher 

tokenized document

NULL target prediction

Stacked Learner

if true

Figure 2: Prediction of category and polarity using
a pipeline of stacked learner models (Task C).

Token BIO-Tag cat

Notrufsystem B Allgemein

... ... ...

Funklöcher I Sicherheit

bei O none

Category : Sicherheit
Polarity : negative

Polarity prediction

Target : NULL  
Category : Allgemein

Polarity : neutral  

Stacked Learner

STL / MTL

Notrufsystem : 250 Funklöcher 

tokenized document

NULL target prediction

Stacked Learner

if true

Category prediction

Stacked Learner

majority vote

Figure 3: Computing predictions for using STL
and SL predictions (Task C).

to the next model for prediction.
JOINT: Here, we use the BIO and category pre-

dictions of the sequence tagger, while using the
stacked learner for polarity prediction. For NULL
targets, we train a separate model for category pre-
diction on the stacked learner similar to the PIPE
approach. The model is illustrated in Figure 3.

Results: We train the stacked learner using
500 dimensional Word2Vec embeddings, which
showed a good performance for tasks A and B. We
do not use Sent2Vec or SIF, since many targets for
category and polarity prediction consist of only one
word. For targets of longer sequences, we average
the word vectors over all tokens.

We used the same hyper-parameters as in Tasks

A, B, and D. Table 8 shows the results for our three
final systems (INDEP, PIPE, and JOINT) evalu-
ated with the tool provided by the organizers. It
calculates the micro F1 scores of only the cate-
gories (C-1) and the categories along with their
sentiment (C-2) for Task C, and for Task D the
micro F1 scores based on exact (D-1) and over-
lapping (D-2) matching of the offsets. We obtain
BIO predictions for Task D using the best model,
namely STLAdaDelta (d = 100 + POS-Tags), and
trained the additional models for the INDEP and
JOINT approaches with the same parameters.

As can be seen, INDEP consistently outperforms
the baseline except for C-1. Further, PIPE outper-
forms INDEP except for D-1, where it performs
even worse than the baseline. The JOINT ap-
proach lies between INDEP and PIPE on average.

Strangely, the organizers’ evaluation tool in-
cludes the category prediction from Task C for
calculating the scores of Task D. The reason for
this may be a different point of view for Tasks C
and D. If one first identifies the targets and predicts
the category and sentiment accordingly, the score
for Task D should not be affected by the results for
Task C. However, if one first predicts all categories
and their sentiment in a document and identifies
the targets afterwards, it is important to map the
targets to their appropriate categories. Then the cor-
rect mapping of category and target may be seen as
an additional task which has to be considered for
calculating the score for Task D. So even if INDEP,
PIPE and JOINT have the same BIO output for
Task D, their scores differ due to different predic-
tions of category and sentiment. For example, if
the sequence tagging model for categories predicts
none for a given chunk, the JOINT and INDEP
model discard it for the final results, leading to a
different score with the provided evaluation tool.
While we tried to model the tasks as they were in-
troduced, our approach to first identify the targets
and then to predict category and sentiment seems
more intuitive. This way, we do not have the prob-
lem of dealing with multiple assignments of one
category for a document, as the task is solved on a
token-level with a distinct label.

Discussion: All three approaches fail to predict
any of the categories Design, Image, and QR-Code.
In addition, the JOINT model did not predict any
of the categories Gastronomisches Angebot, Toilet-
ten, Reisen mit Kindern, and Gepäck. The INDEP
model predicted the least number of different cate-



C-1 C-2 D-1 D-2

Baseline 0.477 0.334 0.244 0.329

INDEP 0.429 0.377 0.253 0.364
PIPE 0.476 0.381 0.233 0.386
JOINT 0.443 0.367 0.250 0.377

Table 8: Task C and D results calculated with the
provided evaluation tool

gories, adding Informationen, Barrierefreiheit, and
Auslastung und Platzangebot to those mentioned
before. This is unsurprising given that some cate-
gories occur very infrequently in the data (cf. Table
2) and the general skewness of the data distribution.

5 Conclusion

We presented our submissions to the GermEval
2017 Shared Task, which focused on the analysis
of customer feedback about the Deutsche Bahn
AG. We used neural sentence embeddings and an
ensemble of classifiers for two sub-tasks as well as
state-of-the-art sequence taggers for two other sub-
tasks. We substantially outperformed the baseline
particularly for Task B, the detection of sentiment
in customer feedback, as well as for Task D, the
extraction of phrases which carry category and po-
larity of a meaningful aspect in customer feedback.
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