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Introduction 
Knowledge Graphs (KGs) are stores of facts represented as triples (ℎ, 𝑟, 𝑡) of head and tail entities as well as a 

relation that holds between them. Although KGs with high coverage already exist, KGs are still far from complete.  

Several approaches for automatic KG completion have been proposed recently (e.g. (Bordes et al., 2013), (Wang et 

al., 2014)). In general, most approaches rely on the structure of the KG (represented by the included triples) and use 

variations of the translation model TransE proposed by (Bordes et al., 2013).  Given a triple (ℎ, 𝑟, 𝑡), TransE models 

the head, the tail and the relation as vectors (embeddings) in a continuous space. Thereby, the relation vector 𝐫 is 

considered as a translation from the head vector 𝐡 to the tail vector 𝐭. For a gold triple, TransE assumes that 𝐡 + 𝐫 ≈
 𝐭. Accordingly, for each triple an energy score is defined as 𝑑(𝐡 + 𝐫, 𝐭) where 𝑑 is a dissimilarity measure. To learn 

the representations of KG entities and relations, margin-based ranking criterion over the training set is minimized. 

Most recently, (Xie et. al., 2016) proposed an approach called IKRL that extends TransE based on external 

information obtained from images about KG entities. To the best of our knowledge this is the first and the only work 

which considers multimodal data for the KG completion task.  IKRL builds upon TransE and defines the energy of a 

triple based on the structure of the KG (as in TransE), entity image information, as well as a combination thereof. 

The model is trained using the same loss function as in TransE. The authors experimentally demonstrated that 

combining image and structure information not only outperforms KG completion methods that leverage structure 

information only, but also results in a better incorporation of structure information for creating KG representations. 

In this work, we propose an approach for KG completion that extends the approach of (Xie et. al., 2016). Our 

approach leverages multimodal information on KG entities including 1) visual features which are obtained using 

state-of-the-art convolutional neural network models for image classification and 2) textual representations which are 

learned using word embedding techniques. Moreover, we propose an additional energy function that combines 

multimodal features. Finally, we use a neural network architecture in order to learn the corresponding KG 

representations. We experimentally demonstrate the effectiveness of our approach and compare its performance to 

other baseline models.  

Approach 
We denote with 𝒢 = (𝐸, 𝑅, 𝑇) the knowledge graph, where 𝐸  is the set of entities, 𝑅  is the set of relations and 

𝑇 = {(ℎ, 𝑟, 𝑡)|ℎ, 𝑡 ∈  𝐸 ∧ 𝑟 ∈ 𝑅} the set of KG triples. For each head and tail entity ℎ, 𝑟 ∈  𝐸, we define three kinds 

of representations (embeddings), structure-based 𝐡𝒔, 𝐭𝐬 ∈ ℝ𝑁
 , text-based 𝐡𝐰, 𝐭𝐰 ∈ ℝ𝑀 and image-based 𝐡𝐢, 𝐭𝐢 ∈ ℝ𝑃. 

Furthermore, we represent each relation 𝑟 ∈ 𝑅 as a vector 𝑟𝑠 ∈ ℝ𝑁
. We propose a model that leverages the presented 

kinds of representations by defining a set of energy functions based on the idea of the translation model (Bordes et 

al., 2013). Figure 1 shows the overall architecture of the proposed model. 

Structure-based Energy 𝑬𝒔: 𝐸𝑠 calculates the energy of a given triple (ℎ, 𝑟, 𝑡) based on the structural information 

only as in (Bordes et al., 2013). We use the cosine similarity as a scoring function:  𝐸𝑠  =  𝑐𝑜𝑠(𝐡𝐬 + 𝐫𝐬, 𝐭𝐬). 
Multimodal Energies 𝑬𝒎𝟏, 𝑬𝒎𝟐: we create multimodal representations of the head 𝐡𝐦and the tail 𝐭𝐦entities by 

concatenating the corresponding textual and visual representations: 𝐡𝐦 = 𝐡𝐰 ⊕ 𝐡𝐢  and 𝐭𝐦 = 𝐭𝐰 ⊕ 𝐭i  where ⊕ is 

the concatenation operator. Next, we define  𝐸𝑚1 = 𝑐𝑜𝑠(𝑝𝑟𝑜𝑗(𝐡𝐦) + 𝐫𝐬, 𝑝𝑟𝑜𝑗(𝐭𝐦)) , where 𝑝𝑟𝑜𝑗  is a projecting 

function that maps the multimodal representation of the entities into the relation space. We model 𝑝𝑟𝑜𝑗 using a dense 

neural network layer. 𝐸𝑚2 is similar to 𝐸𝑚1, however, instead of using the sum, it concatenates the head and relation 

representations. This type of combination can be seen as a compensation for possible information loss caused by the 

sum: 𝐸𝑚2 =  cos (𝐡𝐦 ⊕ 𝐡𝐬 ⊕ 𝐫𝐬, 𝐭𝐦). 

Structure-Multimodal Energies 𝑬𝒔𝒎 and 𝑬𝒎𝒔: To ensure that the structural and multimodal representations are 

learned in the same space, we follow the proposal of (Xie et al., 2016) and define the two energy functions: 𝐸𝑠𝑚 =
𝑐𝑜𝑠(𝐡𝐬 + 𝐫𝐬, 𝑝𝑟𝑜𝑗(𝐭𝐦)) and 𝐸𝑠𝑚 =  𝑐𝑜𝑠(𝑝𝑟𝑜𝑗(𝐡𝐦) + 𝐫𝐬, 𝐭𝐬). 

Finally, the overall energy function is defined as:  𝐸(ℎ, 𝑟, 𝑡) =  𝐸𝑠 + 𝐸𝑚1 + 𝐸𝑚2 + 𝐸𝑠𝑚 + 𝐸𝑚𝑠 

Training Objective: We define our objective as the hinge loss between the energies of positive and negative triples. 

For this purpose, we create a set of negative triples 𝑇′ by corrupting the head or tail entities of the triples in 𝑇 and 

ensuring that the new triples are not contained in the KG: 𝑇′ = {(ℎ′, 𝑟, 𝑡) ∪ (ℎ, 𝑟, 𝑡′)|ℎ′, 𝑡′ ∈ 𝐸 ∧ (ℎ′, 𝑟, 𝑡) ∉ 𝑇 ∧
(ℎ, 𝑟, 𝑡′) ∉ 𝑇}. The corresponding objective function is then given as: 

ℒ =  ∑ ∑ max(𝛾 + 𝐸(ℎ′, 𝑟′, 𝑡′) − 𝐸(ℎ, 𝑟, 𝑡), 0)

(ℎ′ ,𝑟′,𝑡′)∈𝑇′(ℎ,𝑟,𝑡)∈𝑇

  

𝛾  is a margin parameter which controls the amount of energy difference between the positive and the negative 

triples.  



 

 

 

 

 

 

 

 

Experiments 
We used the WN9-IMG dataset (Xie et al., 2016) which contains triples that link a subset of WordNet synsets 

(entities) according to 9 different relations. For each entity, a maximum of 10 images is collected from ImageNet.  

- Structural representation: we trained the TransE (Bordes et al., 2013) system on the WN9-IMG dataset to create 

the structural representation of the relations and the entities. We used 100 embedding dimensions and set all other 

hyperparameters to the values that were recommended by (Bordes et al., 2013). 

- Visual representation: for each image of a given KG entity, we extracted visual features using the pre-trained 

VGG-m-128 CNN model (Chatfield et al. 2014). The image embeddings consist of the 128-dimensional activation of 

the last layer (before the softmax). Subsequently, we take the average of the embeddings of the images 

corresponding to each entity and apply L2-normalization to create the final visual representation. 

- Textual representation: we used the AutoExtend (Rothe et al., 2015) framework to construct word embeddings for 

each synset based on the GloVe embeddings (Jeffrey et al., 2014) of the synset lemmas. We also apply L2-

normalizatoin on the generated synset embeddings.  

Finally, we trained the model using Adam optimizer. We set the learning rate to 0.001 and the margin 𝛾 = 2.  

Results 
A standard procedure to evaluate KG completion approaches is 

the link prediction task. Given a pair of a head/tail and a relation, 

the goal is to predict the missing tail/head. For each test triple, 

we replaced the head/tail by all entities in the KG, calculated the 

corresponding scores and ordered the results in the descending 

order of scores (energies). In a similar manner to (Bordes et al., 

2013), we calculated two measures: 1) the mean rank (MR) of the correctly predicted entities and 2) the proportion 

of correct entities in the top 10 ranked ones (Hits@10). We also distinguished between two evaluation settings 

“Raw” and “Filter”. In contrast to the “Raw” setting, in the “Filter” setting correct triples included in the training, 

validation and test sets are removed before the ranking. We compared our approach to transE (Bordes et al., 2013) 

and IKRL (Xie et. al., 2016). The results in Table 1 show that, in general, multimodal information leads to a 

significant improvement, especially, in terms of the mean rank. Our model outperforms TransE in terms of the mean 

rank and the hits@10 for both the raw and the filter settings. Although our model fails to beat IKRL in terms of 

hits@10, it significantly outperforms it in terms of the mean rank. According to (Xie et al., 2016), the mean rank 

metric is more sensitive to incorrect predictions and depends in the first place on the quality of the generated KG 

representations. A better mean rank indicates the ability of the system to deal with missing structural information in 

the KG. Accordingly, we conclude the superiority of our approach in creating more stable KG representations than 

the other compared approaches.  
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Method Mean Rank Hits@10 (%) 

 Raw Filter Raw Filter 

TransE  160 152 78.77 91.21 

IKRL  28 21 80.9 93.8 

Our 19 12 79.80 91.55 

Tabel 1: Evaluation results 

Figure 1: Overall architecture of the proposed model 

 


