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ABSTRACT
Google Android has become a popular mobile operating
system which is increasingly deployed by mobile device man-
ufactures for various platforms. Recent attacks show that
Android’s permission framework is vulnerable to application-
level privilege escalation attacks, i.e., an application may
indirectly gain privileges to perform unauthorized actions.
The existing proposals for security extensions to Android’s
middleware (e.g., Kirin, Saint, TaintDroid, or QUIRE) can-
not fully and adequately mitigate these attacks or detect
Trojans such as Soundcomber that exploit covert channels in
the Android system. In this paper we present the design and
implementation of XManDroid (eXtended Monitoring on
Android), a security framework that extends the monitoring
mechanism of Android to detect and prevent application-level
privilege escalation attacks at runtime based on a system-
centric system policy. Our implementation dynamically ana-
lyzes applications’ transitive permission usage while inducing
a minimal performance overhead unnoticeable for the user.
Depending on system policy our system representation al-
lows for an effective detection of (covert) channels established
through the Android system services and content providers
while simultaneously optimizing the rate of false positives.
We evaluate the effectiveness of XManDroid on our test suite
that simulates known application-level privilege escalation
attacks (including Soundcomber), and demonstrate success-
ful detection of attacks that use Android’s inter-component
communication (ICC) framework (standard for most attacks).
We also performed a usability test to evaluate the impact of
XManDroid on the user-experience with third party appli-
cations. Moreover, we analyze sources of false positives and
discuss how this rate can be further significantly reduced.

1. INTRODUCTION
Google Android [1] is a modern operating system for smart-

phones with rapidly expanding market share1 [18]. The pop-
ularity and open source character of Android facilitates its
deployment on other hardware platforms, e.g., netbooks [20]
and tablet PCs [3, 32].

The core security mechanisms of Android are application
sandboxing, application signing, and a permission framework

1Recently, the Android OS (36.0% market share) has over-
taken Symbian (27.4% market share) and Apple’s iPhone OS
(16.8% market share) and is now the most popular mobile
OS in the world.

to control access to (sensitive) resources. The standard
Android permission system limits access to sensitive data
(SMS, contacts, etc.), resources (battery or log files) and to
system interfaces (Internet connection, GPS, GSM). Once
granted (by the end-user) the assigned permissions cannot be
changed afterwards, and they are checked by the Android’s
reference monitor at runtime. This approach restricts the
potential damage imposed by compromised applications.

However, Android’s security framework exhibits serious
shortcomings: On the one hand, the burden of approving
application permissions is delegated to the end-user who in
general does not have the appropriate skills. Hence, malware
and Trojans can be installed on end-user devices as shown by
very recent Android Trojans: such as unauthorized sending of
text messages [25], malicious game updates [21], or location
tracking and leaking of sensitive data in the background of
running games [27].

On the other hand, Android’s security framework is vul-
nerable to privilege escalation attacks at the application-level
which are the main focus of this paper.

Application-level privilege escalation attacks.
The recent privilege escalation attacks [13, 8, 26, 37] show

that in contrast to the general belief the damage imposed by
Android malware is not limited to the application’s sandbox.
An unprivileged application under the adversary’s control can
perform operations indirectly by invoking other applications
possessing desired privileges. The attacks published so far
range from unauthorized phone calls [13] and text message
sending [8] to illegal downloads of malicious files [26] and
context-aware voice recording [37, 23].

Most privilege escalation attacks exploit vulnerable inter-
faces of privileged applications. This attack is often referred
to as confused deputy attack [24, 9]. However, in general, the
adversary can design his own malicious applications which
collaborate to mount a collusion attack [37]: Although each
application has a limited set of uncritical permissions, they
can collude to generate a joint set of permissions that enables
them to perform unauthorized malicious actions. Moreover,
recent privilege escalation attacks based on colluding applica-
tions (in particular, Soundcomber [23]) may exploit covert or
overt channels of the Android core system to avoid detection
from tools only inspecting direct application communication.

Note that the Android application distribution model al-
lows anyone who has registered as an Android developer
(and paid $25 fee) to publish applications on the Android
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market. This scheme allows adversaries to easily upload
malicious applications on the market store: For instance,
the recent Android DroidDream Trojan (containing a root
exploit) has been identified in over 50 official Android market
applications and has been downloaded more than 10,000
times before it has been detected [4]. In the light of recent
Android Trojans [31, 21, 27, 4] (that also enable the instal-
lation of additional applications), it seems that collusion
attacks will be increasingly deployed as soon as platforms en-
force malware mitigation techniques (e.g., [13, 14]) to detect
malware comprised in a single application.

Security extensions to Android.
Over the last years, several sophisticated security ex-

tensions to Android’s security framework have been pro-
posed [13, 14, 35, 38, 30, 11, 34, 36, 6, 9, 17]. However,
to the best of our knowledge, and as we will elaborate on
related work in Section 7, none of these solutions accurately
addresses application-level privilege escalation attacks. In
particular, tools such as Kirin [13, 14], Saint [35], and Taint-
Droid [11] that are the closest to our proposal fall short in
combating these attacks. However, a recent very interesting
work has been presented by Dietz et al. [9]: QUIRE is a
lightweight provenance system that prevents the so-called
confused deputy attack. Their approach is complementary to
ours, however, QUIRE does not address privilege escalation
that are based on maliciously colluding applications. Finally,
none of the existing solutions addresses the recent privilege
escalation attack that exploits covert channels of the Android
system [37, 23].

Our goal and contributions.
We address the problem of privilege escalation attacks at

the application-level in Android system. A very challeng-
ing issue is to effectively detect/prevent these attacks while
avoiding high false positive rate which heavily limits the
usability. Especially, some core Android components (e.g.,
content provider) provide various services to many other
applications and are often used for legitimate tasks that
should not be wrongly identified as attacks. In particular,
our contributions are the following:

• We present the design and implementation of XMan-
Droid (eXtended Monitoring on Android), a framework
which extends the Android’s reference monitor and
enables runtime monitoring of communication links be-
tween applications on Android and verifies them against
security rules defined in a system policy. In contrast
to tools like Kirin [13, 14] (which verifies permissions
requested by the applications at install-time), our solu-
tion is able to handle exceptional cases such as pending
intents2 and communication links among dynamically
created components (e.g., Broadcast Receivers).

• Moreover, depending on the system policy, our system
representation allows for an effective detection/preven-
tion of (covert) channels that are established through
the Android system services and system content providers,
while simultaneously minimizing the rate of false posi-
tive policy decisions.

2Intents are messages used for inter-application communica-
tion on Android. A pending intent is an intent where the
intent contents do not originate from the sending application
(delegation).

• Our reference implementation of XManDroid is effi-
cient and requires only minimal performance overhead
not noticeable to the user. We performed authomated
testing of XManDroid on a NexusOne Dev Phone with
50 applications from the Android Market. Note that in
contrast to [12, 16] we perform our evaluation at run-
time, and hence, 50 applications are already sufficient
for our purposes. Our measurements show that XMan-
Droid requires on average a time overhead of 13.13 ms
for mediating an uncached communication request and
0.11 ms for an already cached request. In addition, we
conducted a usability test with 20 students to evaluate
the user experience (with false positive rate).

• To show the effectiveness of our framework, we imple-
mented and applied a malware test suite that simu-
lates the known application-level privilege escalation
attacks [13, 8, 26, 37]. In contrast to the existing
solutions, XManDroid detects all escalation attacks
which use Android’s inter-component communication
(ICC) framework for interaction, including attacks of
Soundcomber [37, 23] (as long as they use ICC) which
exploits covert channels in the Android system.

At this stage, we stress the following three aspects: First,
we do not consider privilege escalation attacks at the kernel-
level that exploit bugs in the system kernel to gain root access
to the system (see [26, 33]), or application-level privilege
escalation attacks which occur over the channels controlled
by the underlying kernel. Such attacks can be mitigated,
e.g., through the deployment of SELinux [28], which has
been shown to be feasible on Android [38]3. Second, as
for any monitoring system the effectiveness and accuracy of
XManDroid also depends on the underlying system policy.
To evaluate our framework we aimed at deploying more fine-
grained policy rules and policy matching partially inspired by
the related work. However, we do not claim completeness of
policy engineering which is not the scope of this paper. Third,
we do not address a problem of malware comprising of a single
application sandbox. This problem is orthogonal to privilege
escalation, as applications within a single sandbox have equal
privileges and cannot preform privilege escalation4.

We believe that XManDroid complements other existing
security extensions: It can be built on top of SELinux [38] to
cover privilege escalation attacks at the kernel-level ; it can
be combined with Kirin [13, 14] to mitigate malware (com-
prised within a single application); with TaintDroid [11] to
prevent leakage of privacy-sensitive data, and with Saint [35]
to allow more comprehensive permission definitions for appli-
cation interfaces. Furthermore, it can be complemented by
QUIRE [9] to enable RPC (Remote Procedure call) checking
among distributed devices.

Outline.
The remainder of this paper is organized as follows: After

we recall the Android architecture in Section 2), we introduce

3In the light of current reports, which show that Android’s
underlying Linux kernel suffers from various (precisely 88)
bugs [5], it seems to be strongly necessary to enable SELinux
on Android.
4Preventing combinations of security critical permissions
in a single sandbox is an install-time problem. Kirin [14]
could principally prevent these attacks, however, it should be
enhanced to evaluate permissions of a sandbox rather than
of a single application.
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Figure 1: Android architecture

the general problem of privilege escalation attacks, our ad-
versary model and assumptions in Section 3. In Section 4 we
present our design decisions and in particular describe how
XManDroid deals with covert channel attacks. In Section 5
we present the implementation of XManDroid and evalu-
ate its effectiveness and performance in Section 6. Finally,
we elaborate on related work in Section 7, and conclude in
Section 8.

2. ANDROID
In this section we briefly recall some basics of the Android

architecture and security mechanisms.

2.1 Android Architecture
Android is an open source software platform for mobile

devices. It includes a Linux kernel, a middleware framework,
and an application layer (see Figure 1). The Linux kernel
provides device drivers and low-level services to the rest of
the system. A middleware layer consists of native Android
libraries (written in C/C++), Android runtime module and
an application framework. The application framework con-
sists of system applications written in C/C++ or Java which
provide system services, e.g., Activity Manager manages the
life cycle of applications, Application Installer installs new
applications, while Package Manager maintains information
about all applications loaded in the system. Android Run-
time includes an optimized version of a Java Virtual Machine
called Dalvik Virtual Machine (DVM) and core Java libraries
Java libs. The DVM executes binaries of applications residing
in the application layer and system applications.

Android application layer includes core (i.e., installed by
default) applications such as Browser, the dialer Phone and
the contact provider Contacts. Android applications are writ-
ten in Java, but they can also incorporate C/C++ native
libraries through the Java Native Interface (JNI). Applica-
tions consist of separated modules, so-called components.
There are four basic types of components: Activities (A),
Services (S), Content Providers (C) and Broadcast Receivers
(B) (as shown in Figure 2). Activities are responsible for the
user interface, typically each screen shown to a user is repre-
sented by a single Activity component. Services implement
functionality of background processes which are invisible to
the user. Content Providers are special purpose components
which are used for sharing data among applications. Broad-
cast Receivers serve for receiving event notifications from the
system and from other applications.

App 2 App 3

S

Android App
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AS

Sandbox System Sandbox

Android Middleware

Activity 
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App 1
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Figure 2: Android security mechanisms: Applica-
tion sandboxes, ICC calls and permission assign-
ments

Components can communicate to each other and to com-
ponents of other applications through an inter-component
communication (ICC) mechanism provided by the middle-
ware. Applications initiate ICC links by sending a special
message called Intent. One can differ four types of ICC:
(i) starting activities, (ii) intent broadcasts, (iii) accessing
content provides, and (iv) binding components to services
Directed ICC calls may result in data flow in opposite direc-
tion. For instance, the ICC call querying a content provider
with a read query will return the requested data, or the ICC
call binding component to a service can result in establishing
bi-directional data interface.

2.2 Android Security Mechanisms
In the following we briefly describe the core security mech-

anisms of Android: (i) sandboxing, (ii) permission framework
and (iii) application signing. More detailed information can
be found in [13, 15, 40, 39].

Sandboxing.
Sandboxing is a mechanism to isolate applications from

each other and from system resources. Application isolation
is done by means of assigning a unique user identifier (UID) to
each application, while the underlying Linux kernel enforces
discretionary access control to resources (files and devices)
by user ownership. System resources are owned by either
system or root. Applications can only access own files or files
of others that are explicitly marked as world-wide readable.

Application Signing.
Android enforces application signing, however, not cen-

trally, i.e., developers themselves have to sign the application
code with the self-certified key. Thus, application signing
does not provide protection against malware, but helps to
establish trust relationships among applications originating
from the same developer. Applications signed with the same
key may request to share the same UID, i.e., they will be
placed into the same sandbox (e.g., App 2 and App 3 in
Figure 2).

Android Permission Framework.
The Android permission framework is provided by the
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middleware layer. It includes a reference monitor which en-
forces mandatory access control (MAC) on ICC calls (see
Figure 2)5. Security sensitive application programming inter-
faces (APIs), here referred to as interfaces, are protected by
permissions. These are security labels which can either be
required to enforce access control, or granted to allow access.

Granted permissions are assigned to application sandboxes
and inherited by all application components. Unlike this,
required permissions are assigned to application components.
Both, required and granted permissions are explicitly speci-
fied in an application’s Manifest file which is included into
application installation package. Granted permissions are
approved at installation time based on user confirmation.
Once granted, permissions cannot be modified.

Android core services are provided by a system applica-
tion called Android (see Figure 2). Access to Android com-
ponents is protected by standard permissions such as AC-
CESS FINE LOCATION (P1) and SEND SMS (P2) meaning
that applications have to possess these permissions to be
able to access the user’s location or to send text messages.
Additionally, application components may define and require
new types of permissions in order to limit access to own
interfaces (e.g., permission P3 in Figure 2).

At runtime the reference monitor checks permission as-
signments. For instance, in Figure 2, components of App 2
and App 3 are able to access a component of Android pro-
viding the functionality to access user location, because
their sandbox is assigned the appropriate permission AC-
CESS FINE LOCATION (P1). However, the reference mon-
itor denies access from components of these applications to
Android providing the functionality to send text messages,
because the corresponding permission SEND SMS (P2) is
not granted to the sandbox of Apps 2 and 3.

The list of standard Android permissions includes 110
items [22], and most of them are required by Android.6

3. PROBLEM DESCRIPTION
In this section, we will describe the general problem of

privilege escalation attacks, define our adversary model and
assumptions.

Application-level privilege escalation attacks.
The general idea of a privilege escalation attack at the

application-level can be illustrated in Figure 2: App 1 has
no permissions to access location information, because it is
not granted the corresponding permission P1. However, it
can access it transitively, e.g., through components of App 2
(two hops). Indeed, components of App 2 do not require
any permissions to be accessed, and components of App 2
can access location information, because their sandbox is
granted the permission P1. This transitive flow can be used
to escalate the privileges of App 1 with the goal to access
location information without possessing P1.

Privilege escalation attacks can be classified into two cat-
egories. First category includes confused deputy attacks,
where applications under control of the adversary (either
malicious or compromised) leverage unprotected interface
of a benign application (e.g., exploit Android browser to
download files [26], or misuse Android Scripting Environ-

5Particularly, the functionality of the reference monitor is
implemented within Activity Manager component.
6Although Android offers many different kinds of permissions,
only a few of them are actively used [2].

ment to send unauthorized text messages [8]). In a second
class of attacks, both applications are malicious, they collude
to get objectionable set of permissions. Further, collusion
attacks can be classified in those where applications com-
municate directly with each other, or indirectly, by using
another application or a component in between. In the latter
case, a mediating component can provide either covert (e.g.,
via power manager [37]) or overt (e.g., via a user contacts
database) channels to communicating applications.

Adversary Model.
The adversary’s goal is to escalate privileges and to get

unauthorized access to protected interfaces. The adversary
is able to exploit vulnerable interfaces of benign applications
and perform confused deputy attack. Moreover, several
malicious applications (two or more) can collaborate (collude)
in order to obtain a merged permission set. Hence, our
adversary model also includes malicious developers7.

Assumptions.
We assume that the highly-privileged Android application

(see Section 2) which is already provided in the default config-
uration of a clean device is not malicious. This is reasonable,
since in general one may have more trust in genuine vendors
(e.g., Google, Microsoft, and Apple) not to maliciously at-
tack end-users. However, the Android application may suffer
from design deficiencies that allow the adversary to establish
covert channels and launch privilege escalation attacks [37].

Further, we consider ICC channels as the only mechanism
available in Android to establish communication channels
among applications. However, as we elaborate in Section 4.4,
in some cases applications may communicate by other means
than ICC. For instance, applications can establish covert
channels which completely bypass Android’s middleware
layer, where our detection mechanism resides. An example
of these channels are file locks [29] (also exploited in [37]).
Moreover, currently we do not consider communication via
overt channels controlled by Linux, such as Internet sockets
or the file system. To consider these channels, kernel-level
extensions of XManDroid are required.

4. XManDroid
In this section, we present the design and architecture of

XManDroid (eXtended Monitoring on Android). XManDroid
performs runtime monitoring and analysis of communication
links across applications in order to prevent potentially mali-
cious ones based on the defined policy.

The idea is as follows: XManDroid maintains a system
state which contains the applications installed on the plat-
form and established communication links (control and data
flows) among them. XManDroid is invoked when the de-
fault Android reference monitor grants an ICC call, and
validates whether the requested ICC call can potentially be
exploited (in combination with other communication links
which have ever occurred in the system) for escalation attacks
(based on the underlying system policy). To minimize perfor-
mance overhead, XManDroid stores decisions that depend

7Note that the presence of several colluding malicious ap-
plications is a realistic assumption in the case of Android,
since Android’s code distribution policy does not hinder the
registration of malicious developers: Everyone can become
an authorized Android developer by simply paying a fee of
$25.
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on permanent conditions and thus never change over time.
Those decisions are applied next time when the same ICC is
requested.

A system policy consists of security rules that must be
satisfied in order to prevent privilege escalation attacks. In
Section 4.3 we will present policy rule examples.

4.1 Architecture
The architecture of XManDroid is shown in Figure 3. It

extends the application framework of Android and consists
of three modules: (i) Runtime Monitor, (ii) Application
Installer, and (iii) System Policy Installer.
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Figure 3: XManDroid architecture

Runtime Monitor.
The Runtime Monitor provides the core functionality of

XManDroid . It involves the components ReferenceMonitor,
DecisionMaker, SystemView, Permissions, SystemPolicy and
Decisions. ReferenceMonitor is the standard reference monitor
of Android, which performs permission checks specified by
the standard Android permission mechanism. DecisionMaker
is a component which is responsible for making a decision
if the requested ICC call imposes a threat (of the privilege
escalation attack). SystemView maintains the state of the
running system. Permissions is a standard component of
Android which maintains a permission database. SystemPol-
icy is a database of the system policy rules. Decisions is a
database which stores decisions made by DecisionMaker.

Application Installer.
Application Installer enhances standard Android applica-

tion installation procedure and is responsible for installation
and un-installation of applications. It involves standard An-
droid components PackageManager and Permissions and the
new component SystemView. As installing of a new applica-
tion changes the system state, PackageManager is extended
to communicate with SystemView component to reflect these
changes.

System Policy Installer.
System Policy Installer provides a mechanism to install

(or update) the system policy into the Android middleware
and involves the components PolicyInstaller, SystemPolicy,
Decisions and SystemView.

4.2 Components Interaction
Figure 3 illustrates the interaction between components

of XManDroid in three scenarios: ICC call handling (steps
1-11), application (un)installation (steps a-b) and policy
installation (steps I-III).

ICC call handling.
At runtime, when ReferenceMonitor intercepts ICC call

(step 1), it validates permission assignments. For that,
it obtains information about permissions from Permissions
database (step 2). In case it disallows the ICC call, process
is terminated. Otherwise, ReferenceMonitor invokes Decision-
Maker (step 3) to verify if this communication link complies
to security rules defined in a system policy. DecisionMaker
first requests a record corresponding to this particular ICC
call from Decisions component (step 4). If the corresponding
record is found, it means this ICC call has occurred before
and previously made decision can be applied. Otherwise,
DecisionMaker has to make a fresh decision. To make a deci-
sion, DecisionMaker requires inputs from Permissions (step 5),
SystemPolicy (step 6) and SystemView (step 7). The resulting
decision is stored in Decisions (step 8), and if it is positive, Sys-
temView is updated (step 9) reflecting that a communication
link exists among the components of applications of A and B.
Further, DecisionMaker informs ReferenceMonitor about the
decision it has made (step 10), and ReferenceMonitor either
allows (step 11) or denies the ICC call.

Note, the SystemView component maintains allowed com-
munication links which have been requested at runtime. Once
an ICC is allowed, SystemView stores the corresponding com-
munication link. SystemView state persist across reboot and
can be reset only upon update of SystemPolicy.

Application (Un-)Installation.
During the installation procedure, PackageManager ex-

tracts application permissions from the Manifest file and
stores them in Permissions (step a). This step is also typical
for the standard Android application installation process.
Additionally, PackageManager adds the new application in
SystemView (step b).

During application un-installation, PackageManager per-
forms the following: It revokes permission labels granted to
the un-installing application from the Permissions database
(step a) and removes this application from SystemView (step b).

Policy Installation.
During the policy installation process, PolicyInstaller writes

and updates the system policy rules to the SystemPolicy
database (step I). Next, it flushes all decisions previously
made by DecisionMaker, as those may not comply to the
new system policy (step II). Also, SystemView component is
reset into a clean state (step III), i.e., all previously allowed
communication links among applications are removed.

4.3 XManDroid Policy
Success in detection of malware by XManDroid depends

on policies defined in a system policy database. Inadequate
policy rules can result in both, overlooking malware and
affecting functionality of genuine applications.

Deriving appropriate policy rules is an important and non-
trivial task8. Promising work has been already done in this

8Defining a system policy for XManDroid requires expertize
in security and goes beyond the skills of average users. In
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(1) An application that is notified about incoming or outgoing calls and can record audio must not communicate to an application
with network access.

(2) An application that can obtain location information must not communicate to an application that has network access.
(3) An application that has read access to the user contact database must not communicate to an application that has network access.
(4) An application that has read access to user SMS database must not communicate to an application that has network access.
(5) An application that has no explicit network access must not be able to download archived files and install packages.
(6) An application that has no explicit permission to perform outgoing voice calls can perform such calls only upon user confirmation.
(7) An application that has no explicit permission to send text messages can send them only upon user confirmation.

Table 1: Sample policy rules to mitigate application-level privilege escalation attacks

area [13, 14]. Authors discuss realistic security requirements
for mobile phones [13] and provide a methodology for deriving
appropriate security policies for Android [14].

However, the discussion about security policies in [13, 14]
has been centered around Android permissions, while we
identified that policy rules considering only permissions is
too coarse grained for our system. For instance, consider
an example with the following permission-based rule: An
application must have an explicit permission to access the
Internet. This rule would restrict an application without
INTERNET permission to access applications with access to
the network. On one hand, such a rule would prevent a recent
confused deputy attack against Android browser [26] (where
a malicious application misuses the web-browser to download
a malicious content/file). On the other hand, it would also
affect functionality some of the benign applications, e.g.,
those apps that invoke the Android web-browser to open
web-links promoted via advertisements.

To make policies of XManDroid more fine grained, we
go beyond of permission-based approach and enable XMan-
Droid to inspect data transferred over ICC and make policy
decisions based on content of Intents (messages passed via
ICC calls). Moreover, XManDroid policies can request the
user confirmation in order to allow/deny the particular ICC
call. The downside of the data-dependent policy rules is
performance downgrade, as decisions taken on such rules can
not be cashed (due to possible change of transferred data).
Also, involving a user to confirm/deny ICC is not always a
good idea, as users may not understand underlying security
mechanisms and can make wrong decisions. However, as
we will show in examples below, in some particular cases
user confirmation is an excellent choice and does not require
expert knowledge from the user.

In the following, we describe some useful illustrative policy
rules for XManDroid (see Table 1) that are based on examples
of [13, 14] and extended to consider ICC inspection and user
confirmation. Our testing results show (see Section 6) that
these policy rules are effective in preventing known attacks.
Further, we consider policy engineering for XManDroid as
an open area for research and plan to investigate it deeply
in our further work.

Rules (1)-(5) in Table 1 define a fine-grained transitive ac-
cess to the Internet interface. For instance, rules (2)-(4) con-
cern on some privacy aspects of the user and target security
objectives similar to TaintDroid [11]. These rules generally
allow applications to transitively access the network, unless
they have access to user private data, such as user contacts
and SMS databases or user location. Rule (1) targets an
eavesdropping malware similar to Soundcomber [37]. Rule (5)
restricts applications without Internet access to download

our view, the system policy should be written by Android
developers and included into the default platform configura-
tion. Further it can be updated by security patches when
necessary.

archived and application package files. Rule (6) restricts
applications without CALL PHONE permission to perform
outgoing phone calls without user confirmation. Rule (7)
prevents applications without SEND SMS permission to send
text messages without user confirmation.

Rules (5)-(6) are data dependent. For rule (5), ICC calls
will be denied if Intent messages include, e.g., “.zip”, “.rar”
or “.apk” sub-strings. For rule (6), ICC calls will be allowed
if Intent messages include a specific parameter that enforces
user confirmation for a voice call to proceed (particularly,
android.intent.action.DIAL string). Note, in this case user
confirmation is requested not by XManDroid , but by security
mechanisms of Android. Unfortunately, Android does not
provide a possibility to request user confirmation for outgoing
text messages. Thus, for rule (7), XManDroid requests such
a confirmation itself. It is reasonable to assume that an
ordinary user is able to take a correct decision in this case,
as the user is aware of messages he is going to send.

4.4 System Representation
In this section we describe our representation of applica-

tions and ICCs, and discuss particularities of the representa-
tion of the Android system components.

4.4.1 Third Party Applications
We use a graph representation of the system, where vertices

in the graph represent application sandboxes for 3rd party
applications and undirected unweighted edges show granted
ICCs (cf. Figure 4). The graph representation allows us
to apply algorithms from graph theory in order to analyze
transitive communication links among applications and to
define powerful policies based on properties of applications
and Intents (cf. Section 4.3).

C 

D 

A B 

Sandbox 

Established ICC 

F 

E 

Figure 4: System representation of 3rd party apps

Generally, a graph based representation allows different
levels of system abstraction, e.g., vertices can be seen as
(i) application sandboxes (level of user identifiers (UIDs)),
(ii) applications (level of application packages), or (iii) ap-
plication components (level of application interfaces). As
our framework has no means to track data flows within a
single application (e.g., tainting data [11]), and since mul-
tiple applications, residing in a single sandbox (by sharing
the same UID), can establish channels which are invisible
to XManDroid (e.g., via shared memory), we decided to
represent 3rd party applications on the level of sandboxes.
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Undirected representation of graph edges simplifies the
system, however, at the cost of coarse granularity. Currently,
we do not consider ICC direction, because many directed ICC
calls result in establishing bidirectional communication links.
However, directed representation would increase precision of
analysis9. We are planning to consider directed edges in our
future work.

Considering weighted edges would also improve the system,
as more advanced graph algorithms can be applied that take
into account the trust or risk level one assigns to certain ICCs.
For instance, one could assign more trust to applications
properly secured with Saint [35] policies. We leave this issue
open for the future work.

4.4.2 Android System Representation
Android provides a number of system applications (e.g.,

phone or browser), system services (e.g., power manager or
audio manager), and system content providers (e.g., contacts,
system settings, or SMS database), which provide functional-
ity to the user and other applications. By design these system
applications provide overt channels between applications, but
can also be misused as covert channels [37]. For instance,
applications can insert data into and read data from system
content providers such as the contacts database (Figure 5(a)),
use broadcasts as covert channel or to directly transmit data
as Intent (Figure 5(b)), or perform synchronized write-read
operations on the settings of a system service such as the
audio manager to establish a covert channel (Figure 5(c)).
Some of these ICC based covert channels have been demon-
strated in [37]. Thus, in order to enforce policies on both,
overt and covert channels through those system applications,
one has to assume that system applications provide transi-
tive closure to other nodes connected to a system component
node in the graph, e.g., application sandboxes A to F in
Figure 5, for which the explicit channel between A and D is
not visible, but A might communicate with all nodes that
are connected to the Android system.

All system services and service providers share a common
UID. If represented this way in our graph, those providers
and services would form a monolithic core vertex to which
all installed applications are connected and thus cause tran-
sitive closure for the policy enforcement. Thus, UID level
of representation is too coarse grained for representation
of system applications. However, the design of the system
core applications (particularly, content and service providers)
does not follow design principles established for third party
applications and cannot be split up into component level.

B 

C 

D 

E 

F 

Sandbox 

ICC 

Colluding Apps 

A 
System Service/ 
Content Provider 

System Service/ 
Content Provider 

System Service/ 
Content Provider 

System Service/ 
Content Provider 

Virtual Node 

Figure 6: Virtual Nodes for System Services and
System Content Providers

To resolve this issue, XManDroid features two impor-

9As our test results show, it is particularly necessary to dis-
tinguish read/write access to Content and Service providers
(cf. Section 6)

tant design extensions: (i) extraction of the system content
providers and services from the monolithic core in the system
graph as virtual nodes (cf. Figure 6) and (ii) fine-grained
policy-based filtering of data in those providers and services
(cf. Section 5). Virtual nodes are denoted as such, because
they have a UID that is not actually present in the system,
but solely defined by XManDroid as an internal identifier
for the particular provider and service, used during policy
enforcement. Moreover, our framework provides insight into
the data flows inside those content providers/services. Thus,
we are able to enforce policy based filtering of the read/write
operations on data and values of these components, which
constitute overt and potential covert channels. XManDroid
filters the data instead of denying access to the content
provider/service, because such a denial provides information
to applications and thus can be used as a covert channel.

With this improved Android system representation, we mit-
igate transitive closure and optimize policy enforcement on
overt/covert channels through Android’s system components.

4.5 Enhanced Decision Storage
In the following, we describe an enhanced decision stor-

age for XManDroid decisions which leverages the default
Android permission system. A positive decision to allow
a particular ICC call can be interpreted as a permission
granted to a caller to access a callee. We call such a per-
mission “auto permission” (AP). APs can be stored in the
standard Android permission database and checked by the
Android ReferenceMonitor. Thus, once an AP is granted, no
invocation of XManDroid is required anymore to proceed
the ICC call.

APs share many characteristics of default Android permis-
sion labels, but differ in the following points: (i) AP labels
are automatically assigned by the PackageManager to each
application component at install time (in contrast, standard
Android permissions are assigned by developers); (ii) APs
are granted at runtime by the DecisionMaker rather than by
the user; (iii) AP labels are locally generated and unique
for each platform instead of being globally well-known like
INTERNET or ACCESS FINE LOCATION; (iv) APs are
stateful, they reflect a policy decision, i.e., allowed or denied.

Note that our current prototype does not include auto
permissions. We are currently working on its implementation.

5. IMPLEMENTATION
In this section we present the implementation of our archi-

tecture and its main components, as presented in Section 4.1.
In particular, we explain how we implemented the system
graph (Section 5.1), how we store the policy decisions (Sec-
tion 5.2), and our implementation of the system policies
(Sections 5.3). We elaborate in more detail on the policy
checking mechanism (Section 5.4) and how we realized the
“virtual nodes”and their particularities for policy enforcement
(Section 5.5). We will use the scenario depicted in Figure 7
as running example in order to explain our implementation.
Our implementation is based on the Android 2.2.1 sources
(denoted Froyo)10.

5.1 System Graph Implementation
We implemented the system graph by means of the open-

source JGraphT 11 library, version 0.7.3. Each vertex repre-

10http://source.android.com
11http://www.jgrapht.org/
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Figure 5: Communication channels via the Android system applications: (a) Overt channel through system
content provider; (b) (Covert) channel via broadcasts; (c) Covert channel via system services
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Figure 7: Example of a system graph

sents a UID in the system and contains the information for
this UID which is retrievable from the Android PackageMan-
ager service, e.g., the package name or granted permissions.
In case of shared UIDs, the information from all applica-
tions with the shared UID are merged in the corresponding
vertex. Moreover, each vertex is tagged as trusted system
component of Android or as untrusted, third party appli-
cation. SystemView is persistent across reboots, by saving
it upon shutdown and loading it upon system boot. If no
saved SystemView can be found or during the very first boot
of a system with XManDroid , an initial graph has to be
build. We use the PackageManager to discover the system
components and installed applications during this building
process.

We further modified the PackageManager such that it uses
an interface of the SystemView component to update the
system graph upon installation or de-installation of an ap-
plication package. The installation adds a new vertex for
the new application UID into the graph. In case of shared
UIDs, the information is again merged. Application un-
installation causes the removal of the corresponding vertex.
Un-installation in case of shared UID is slightly more com-
plex, since only the information added by the de-installed
application has to be removed. We implemented this by
removing the corresponding vertex and reconstructing it
afterwards with the updated application information.

A simplified example for a such graph representation is
illustrated in Figure 7. The example involves six vertices,
A to F, each representing a different UID in the system.
Vertex F has a special role, since it represents a system
service (LOCATION MANAGER) of the core application
Android, which provides the APIs for location services, such
as retrieving the fine grained GPS coordinates of the platform.
Thus this node is essentially virtual. The applications are
interconnected by a number of already established ICCs.
Further, black vertices represent applications that form (in

this constellation) a violation of the system policy (cf. Section
4.3), while white vertices represent non-violating applications.
We will refer to this example in the subsequent Sections 5.3
and 5.4.

Figure 7 also shows the information stored in the vertices
of our example. We only use a simplified example, e.g., the
location system service holds and requires a higher number
of permissions on a real-world system. Vertices A and F
represent only one single application package, while vertex B
represents two. B holds the permission to access the location
service API in vertex F to retrieve the fine grained location
data, while the application in vertex A has been granted the
Internet permission.

5.2 Storing Decisions
The decisions made by DecisionMaker are stored in the com-

ponent Decisions, which is implemented as a Java HashMap.
It stores a Boolean for the decision result of each checked
ICC, i.e. granted or denied. The index of the HashMap is the
unordered tuple {uid caller, uid callee} for each inserted de-
cision. Based on the Decisions component, the DecisionMaker
is able to efficiently look up previously made decisions and
grant/deny an ICC that has occurred before. DecisionMaker
is persistent across system reboots.

Moreover, granted and thus established ICC are reflected
as edges in the system graph. Possible Intent information for
the ICC are stored at the corresponding edge and updated
in case of new Intents for this ICC pair.

The insertion or deletion of a vertex may affect previously
made policy decisions. For instance, a removed vertex im-
plicitly deletes paths in the system graph that contain the
deleted vertex. Thus, previously denied ICCs might now be
granted under the same system policy that was used during
the first decision. Hence, the PackageManager triggers upon
(un-)installation of a package a reset of the SystemView in
order to enforce a re-evaluation of the previously made policy
decisions. Reset in our implementation means the removal
of the edges in the graph and the emptying of Decisions. For
instance, if vertex B in Figure 7 were un-installed, the policy
violating path from A to F would be resolved.

An alternative approach, which we call AutoPermissions,
is explained in 4.5. To implement such a system, certain
implementation challenges must be solved: (i) the Reference-
Monitor must be adapted to allow two permission labels per
component, namely the default label defined by the devel-
oper plus the AP assigned by the PackageManager; (ii) to
distinguish the case that an AP has been denied and that this
ICC has never occurred before, the AP has to be “stateful”
in a sense that the AP label indicates the policy decision, i.e.
allowed or denied; (iii) AP labels have to be clearly distin-
guishable from all newly defined permissions by applications.
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<?xml version=”1.0” encoding=”utf−8”?>
<SystemPolicy>
<PolicyRule name=”Policy Rule 2” group=”0” proceed=”0”>

<Vertex>
<Property type=”RequestedPermissions” value=”android.

permission.ACCESS (FINE|COARSE) LOCATION”/>
<Property type=”RequestedPermissions” value=”android.

permission.ACCESS INTERNET” negated=”true”/>
</Vertex>
<Vertex>
<Property type=”RequestedPermissions” value=”android.

permission.ACCESS INTERNET”/>
<Property type=”RequestedPermissions” value=”android.

permission.ACCESS (FINE|COARSE) LOCATION”
negated=”true”/>

</Vertex>
<Vertex>
<Property type=”PackageName” value=”android”/>

</Vertex>
</PolicyRule>

</SystemPolicy>

Figure 8: Example system policy with policy rule 2
(cf. Table 1)

5.3 Policy Implementation
The system policy is implemented in XML (the corre-

sponding XML schema is presented in Appendix A), which
is loaded upon system boot or after an update of the policy,
respectively. SystemPolicy in our implementation is installed
or updated via PolicyInstaller component, which is imple-
mented as a service running in the middleware as part of the
ActivityManager and provides an authenticated channel in
order to externally update the policy.

Appendix A presents the XML schema of our system
policy. The system policy consists of a number of policy
rules. Each rule describes a path in the system graph by
defining the vertices and edges that constitute this path.
The vertex or edge definition is based on the information the
PackageManager can provide for an UID or the information
an Intent can contain, respectively. To ease the definition
of more complex and powerful rules, the definitions can
be described as regular expressions, also allowing to define
negated properties, i.e., properties that a matching vertex
must not have. Further, each rule is marked with an attribute
that determines how to proceed in the policy checking (cf.
5.4). Based on optional vertices, policy rules are flexible
regarding their path length. A rule is matched if all non-
optional and any number of the optional vertices and all edge
definitions of the rule could be assigned to distinct vertices
along a path in the system graph.

To allow the definition of (fine-grained) exceptions from
generic policy rules, the rules are checked in a top-down
manner. If policy is matched and it would grant the ICC,
all policy rules with the identical group ID as the matched
rule are skipped. This enables the definition of more generic
rules at the bottom inside a group of policy rules and more
specific rules at the top, respectively.

Example.
Figure 8 shows the XML implementation of the policy rule

2 in Table 1, which prevents the leakage of the location data
via the Internet by means of transition of permissions over
two nodes, i.e., two colluding applications. The rule consists
of three vertex descriptions. A vertex in the system graph
that matches the top-most of these three description must

contain the permission to access the location service, but
must not contain the Internet permission. Vertex A in Figure
7, for instance, matches this description. Similarly, vertex B
matches the second description. The third description applies
to vertex F of the Figure 8, since it contains the package
name “android”. Consequently, the path A-B-F matches the
policy rule 2 and the value zero of the proceed attribute of
the rule indicates that the ICC between A and B has to be
denied.

5.4 Policy Checking

5.4.1 Direct ICC
In the Android sources, the function checkComponentPer-

mission of the ReferenceMonitor in the ActivityManager is
responsible for verifying that the ICC caller has been granted
the permission required by the callee (component) to estab-
lish the ICC (Cf. Figure 9(a)). If not, the ICC is denied. In
our implementation we modified the ReferenceMonitor to redi-
rect the control flow from this function to our DecisionMaker
whenever an ICC occurs that would start an Activity , bind to
a Service, connect to a Content Provider , or send a broadcast
message to Broadcast Receiver (cf. Figure 9(b)). In partic-
ular, we wrapped the checkComponentPermission function
with a new function, which first calls the default checkCom-
ponentPermission function and in case that it would allow
the ICC, we verify in the DecisionMaker that the ICC is not
violating the policy. In case the DecisionMaker detects a
policy match, it overrules the ReferenceMonitor decision with
the decision defined in the matched policy rule.

To enable the DecisionMaker to make the policy check, the
wrapper function provides the UIDs of the caller and callee
of the respective ICC as well as the Intent initiating the ICC
to the DecisionMaker.

5.4.2 Broadcast filtering
In case of broadcast Intents one has to consider a possi-

ble one-to-many relationship between the sender and the
receivers. To address this problem, we followed an imple-
mentation approach as presented in [35, Section 6]. Each
sender-receiver pair is checked for a policy violation and the
broadcast receiver list is adapted accordingly before sending
the broadcast message.

5.4.3 Pending Intents
Pending intents allow an application A to delegate an

Intent to another application B, where B inputs the Intent
data. In this case the pending intent requires an ICC from
A to B for the delegation and from A to the designated
receiver. This can be easily misused for privilege escalation
attacks. However, our framework can prevent this, since it
monitors all ICCs and can apply the system policy on both
ICCs accordingly.

5.4.4 Policy Check Algorithm
The policy check algorithm implemented in DecisionMaker

determines if the edge for the new ICC would complete a
path in SystemView, which matches a policy rule.

The algorithm is presented in Algorithm 1. It uses back-
tracking12 to explore in a depth-first search fashion all paths,

12Backtracking algorithms incrementally build candidates to
the solution for the targeted problem and abandon partial
candidates, when they detect that this candidate does lead
to a valid solution.
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Figure 9: checkPermission process in (a) default Android and (b) with XManDroid extension

which only consists of vertices that match a different vertex
description in the same policy rule until it finds a path that
matches exactly the policy rule. The backtracking and depth-
first search functionalities are implemented in the function
FindPath, presented in Algorithm 2. For brevity, we omit the
explicit checking for Intent definitions along the traversed
edges in the graph.

Algorithm 1: Graph based algorithm for finding policy
rule matching paths

input : Vertex v1 , Vertex v2 , Set PolicyRule
output : Boolean policyRuleMatch

1 if AreSystemPackages ( v1 , v2) == true then return false;

2 pat ← PatternMatch (v1 , PolicyRule);
3 if ( pat == null) then return false;
4 PolicyRule ← PolicyRule \ pat ;
5 pat ← PatternMatch (v2 , PolicyRule);
6 if ( pat == null) then return false;
7 PolicyRule ← PolicyRule \ pat ;
8 if PolicyRule == ∅ or OnlyOptionalLeft (PolicyRule) ==

true then return true;
9 else return FindPath ( v1 , v2 , PolicyRule);

Example.
We explain the Algorithms 1 and 2 based on the example

Figure 7. A number of ICCs have already been established,
however the ICC between two application components in
vertex A and in vertex B has yet to be established. The
Android ReferenceMonitor allowed this ICC and our Decision-
Maker evaluates if the ICC would lead to a policy violation
by checking if the policy rule in 8 matches a path in the
system graph. If a matching path can be found, it returns
true, otherwise false.

The algorithm takes both vertices between which the ICC
shall be established as inputs, here A and B, as well as
the policy rule to check for, consisting of a set of vertex
descriptions. Here we denote the three vertex description
from Figure 8 top-down as {P.1, P.2, P.3}, where P.1 is the
vertex with Internet access but no location data access, P.2
the vertex with location data access but no Internet access,

Algorithm 2: FindPath function for finding paths that
match the policy rule P

input : Vertex root , Vertex otherRoot , Set PolicyRule
output : Boolean pathFound

1 if IsSystemPackage ( root) then return false;

2 Neighbors{} ← GetNeighborSet (root);

3 foreach n in Neighbors do
4 pat ← PatternMatch (n, PolicyRule);
5 if pat 6= null then
6 PolicyRule ← PolicyRule \ pat ;
7 if PolicyRule == ∅ or OnlyOptionalLeft

(PolicyRule) == true then return true;
8 if FindPath ( n, otherRoot, PolicyRule) == true

then return true;
9 PolicyRule ← PolicyRule ∪ pat ;

10 end
11 end

12 if otherRoot 6= null then return FindPath ( otherRoot, null,
PolicyRule);

13 else return false

and P.3 is the location manager system service.
The algorithm first checks if both vertices are trusted

system packages (line 1) and if so returns false. Since we
trust system packages, an ICC in between them can by
definition not be malicious. In our example, both A and B
are not trusted. Afterwards, the algorithm checks, if the
both vertices match a vertex description in the policy rule
(lines 2-7), since both must be on the matching path, and
if one does not, false is returned. To keep track of which
vertex descriptions are missing to complete the path, already
matched descriptions are removed from the policy rule set13

(lines 4 and 7). A matches P.1, while B matches P.2. If the
set would consist of only two descriptions or only optional
vertices remain in the set, the algorithm would return true
(line 8), since the new ICC constitutes the complete path. If
the set contains more than two non-optional descriptions, the
algorithm tries to complete the path among the neighbors of
v1 and v2, i.e., A and B, by means of the FindPath function.

13Of course the algorithm operates on a copy of the rule, such
the policy matching does not modify the system policy
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In our example, the algorithm calls FindPath(A, B, {P.3}).
The neighbors of A are explored first. However, if A would
be a trusted system package, its neighbors do not have to
be explored (line 1), since trusted system packages can only
be end-vertices of a policy violating path (unless checked
transitively, cf. Section 5.5). Each neighbor of A is checked
for a match with a remaining vertex description of the policy
rule (lines 3-4) and if a neighbor matches, the matched
description is removed from the set (line 6). In our example,
no neighbor matches and the function tries to complete
the path among the neighbors of B (line 12) by calling
FindPath(B, null, {P.3}). The null parameter indicates
that the search is already among the neighbors of the vertex
otherRoot and hence has to be aborted in line 12. In our
example, the neighbor F of B matches P.3 and the path is
completed, thus true is returned by the algorithm. Since the
policy rule in Figure 8 is marked with proceed=”0”, the ICC
between A and B is denied by the DecisionMaker. However,
if the policy rule would be more complex and consist of more
than three vertices, FindPath would try to complete the path
by means of a depth-first search (line 8) and backtracking
(line 9).

Complexity of the algorithm.
If we assume a full meshed graph with |V | vertices and a

SystemPolicy with |S| policies, where |P | is the cardinality of
each policy, the complexity of the algorithm is O(|P |2 ∗ |S| ∗
|V |).

The functions IsSystemComponent and AreSystemCompo-
nent run in O(1). PatternMatch requires O(|P |). Removal of
an element from set S runs in O(|S|). Set union runs in O(1).
Lines 1-8 of Algorithm 1 run, thus, in O(4∗|P |). The function
GetNeighborSet runs in O(1). The for-each loop in FindPath
executes O(|V −1|) times. The loop body requires (excluding
the recursion) O(2∗|P |+1). We require O(|P |) recursive calls
to FindPath. Hence, lines 9-11 of Algorithm 1 have a com-
plexity of O(|P | ∗ (1 + |V − 1| ∗ (2 ∗ |P |+ 1))) = O(|P |2 ∗ |V |).
We have to execute Algorithm 1 once for each policy in
SystemPolicy, hence O(|SP |).

5.5 Virtual Nodes and Data Filtering in Sys-
tem Components

In this section we briefly explain how we implemented the
virtual nodes introduced in Section 4.4.2 and how we filter
retrievable data from this nodes in order to mitigate overt
and covert channels.

5.5.1 System Content Providers
To extract the system content providers from the mono-

lithic Android (cf. 4.4.2) as virtual nodes we extended the
ActivityManager of Android. During boot-up and normal
operation of the system, the ActivityManager detects and
registers all installed services and content providers in the
system. We extended this process such that the ActivityMan-
ager inserts a virtual node for each system content provider
it finds via an interfaces of SystemView.

Content providers are essentially databases used to store
and exchange information between applications. The inner
workings of content providers are abstracted through a well
defined, unified interface. For example, all system content
providers, such as the contacts database or system settings,
are SQL database backed and provide an interface to insert or
update content (write) and to (bulk-)query the data (read).

Figure 10(a) illustrates how we modified these interfaces

in order to filter data upon reading in order to prevent po-
tential policy violating, overt channels. Each data row in
the database is tagged with the UIDs of the writers. Upon
writing data, these tags are updated. We keep all writer
UIDs in the tag, since simply storing the last writer is not
sufficient to prevent colluding applications from using this
channel, because writing does not necessarily overwrite ex-
isting data but can also append new data to existing ones.
Upon reading, our extension to the reading interface verifies
for each read row if the corresponding reader-writer pairs
constitute a policy violation that would deny the ICC. If so,
the corresponding row is filtered from the response to the
reader before return.

To minimize the performance overhead, especially during
bulk queries, DecisionMaker uses again the cache in Decisions.
Moreover, the read interface extensions create a local cache
for each read query in which the UIDs of writers are stored
that have to be removed from the response, thus minimizing
the necessary remote calls to DecisionMaker and speeding up
the filtering. After each response the corresponding cache is
deleted.

Since granted reading of a value forms a channel between
the reader and the writer, this has to be reflected in Sys-
temView by adding an edge between the reader’s and the
non-filtered writers’ vertices.

5.5.2 System Services
System services implement certain phone functionality,

e.g., the audio manager to control the volume or the location
manager to retrieve the (fine-grained) location of the phone.
Those services provide, similar to the content provider, an in-
terfaced to read and to write values, for instance the concrete
level of the volume.

Although Android’s Service Manager maintains a list of
the registered services, this list does not provide information
(without intruding modifications) if a service is a system or
third party service. Thus, we currently build our graph with
pre-installed virtual nodes for system services.

Figure 10(b) illustrates how we enforce policy checks on
the interfaces of system services. Similarly to system content
providers we tag each value of the service with the UID of
the writer. However, in case of services only the last writer,
since no appending to values is possible but only overwriting
of existing values. Since the services are not backed by a
database, we maintain a HashMap from value identifier to
writer UID in order to tag the values. Upon reading of
values, we use a similar interface as for content providers to
perform a policy check if the reading would establish a policy
violating channel. If so, the response to the read is simply
null. We are aware of the fact, that this forms essentially a
covert-channel with one bit bandwidth, however, returning
pseudo or default values on which falsely denied legitimate
application would continue their operation might entail harm
to the rest of the system, hardware, or even the user (e.g.,
falsely assumed screen brightness or volume level).

6. EVALUATION
In this section we evaluate the performance as well as

the effectiveness of XManDroid by applying a malware test
suite that we designed constituting the most recent privi-
lege escalation attacks [13, 8, 26, 37]. Further, we select a
representative set of 50 benign applications from the An-
droid market and evaluate how XManDroid affects their
performance and functionality.
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Figure 10: Filtering of returned data to a reader at (a) System Content Providers and (b) System Services

6.1 Malware Test Suite
Our malware test suite exploits transitive permission us-

age in order to perform attacks against user privacy or to
gain unauthorized access to protected system interfaces. The
collection includes 7 attack examples described in Table 2.
Attack scenarios 2-4 are proof-of-concept examples of mal-
ware, while scenarios 1 and 5-7 emulate the attacks in [37,
26, 13, 8].

1st App 2nd App

1

Malicious voice recorder Malicious wallpaper [37]
RECORD AUDIO and INTERNET
PHONE STATE or
PROCESS OUTGOING CALLS

2
Malicious step counter Malicious wallpaper
ACCESS FINE LOCATION INTERNET

3
Malicious contacts manager Malicious wallpaper
READ CONTACTS INTERNET

4
Malicious SMS widget Malicious wallpaper
READ SMS INTERNET

5
Malicious app Vulnerable browser [26]
no INTERNET INTERNET

6
Malicious app Vulnerable dialer [13]
no CALL PHONE CALL PHONE

7
Malicious app Vulnerable SMS widget [8]
no SEND SMS SEND SMS

Table 2: Malware test suite

Attacks 1-4 involve two colluding malicious applications,
where one application has Internet access, while another
one can obtain sensitive user data, such as user location,
recorded audio, contact and SMS database. In the sce-
nario 1, the malicious voice recorder additionally requires
the PHONE STATE or PROCCESS OUTGOING CALLS
permission in order to be notified when the incoming or out-
going call begins. Applications collude to deliver private user
data to the remote adversary. In scenarios 2-4, applications
establish the standard ICC communication link, while in the
scenario 1 they communicate by means of a covert channel
(similarly to Soundcomber eavesdopping malware [37]). We
validated three types of covert channels: (i) synchronized
adjustment and reading of the voice volume; (ii) change of

the screen state and (iii) change of the vibration settings.
In the attack scenarios 5-7 a malicious application misuses

a vulnerable application with access to the Internet, voice
call or SMS services in order to obtain transitive unautho-
rized access to these system interfaces. Scenario 5 emulates
attacks shown in [26, 10] and implements unauthorized down-
load of malicious files by exploiting an unprotected interface
of the Android web-browser, while scenario 6 reproduces
unauthorized phone call by misusing a vulnerability of the
Android Phone application reported in [13]. Note that since
this vulnerability of Android Phone application has been
already fixed, we developed an own vulnerable dialer ap-
plication for testing purposes. In scenario 7 the malicious
application sends unauthorized text messages, similar to the
attack reported in [8].

6.2 Effectiveness
We tested XManDroid to evaluate its effectiveness in de-

tecting the malware presented in 6.1. All tests were per-
formed on the Nexus One developer phone running Android
2.2.1 with our patches. The system policy of XManDroid in-
cluded the fine-grained policy rules (1)-(7) shown in Table 1.

We installed the malicious applications from our test suite
and performed the corresponding attacks. All attacks were
successfully detected and prevented by XManDroid .

6.3 Performance
We used a clean Android system using automated testing

scripts to test performance of XManDroid with 50 applica-
tions from Android market. The applications were installed,
used by Monkey tool14 and deinstalled.

Table 3 lists our performance results. In total 11970 ICC
calls occurred during the testing and we observed 11592 cache
hits (378 cache misses). The measured average runtime
for the Android ReferenceMonitor was 0.184ms, to which
XManDroid added in average 13.126ms in case of an uncached

14UI/Application Exerciser Monkey:
http://developer.android.com/guide/developing/
tools/monkey.html
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Type Calls Average Min Max Std. dev.
(ms) (ms) (ms) (ms)

Original Reference Monitor runtime
system 11920 0.184 0.031 208.862 2.490
XManDroid DecisionMaker overhead
uncached 378 13.126 0.305 779.510 43.783
cached 11592 0.105 0.031 23.712 0.636

Table 3: ICC timing results

ICC type
Policy Denied

Percentage
checks ICC

ICCs between apps 1746 33 1.9%
ICCs to System Ser-
vice Providers

377 17 4.5%

ICC to System Con-
tent Providers

1701 48 2.8%

Total 3824 98 3.0%

Table 4: Aggregated number of occurred and denied
ICCs during user tests

ICC call or 0.105ms in case of a cached call. The low standard
deviation for our test cases indicates a consistent performance
of our implementation. However, due to system load and
hardware limitations such as I/O bandwidth, rare but strong
fluctuations occurred, e.g., 779.510ms for uncached ICC calls.

The maximum memory usage of XManDroid during these
tests was about 4MB, thus in an acceptable range.

Our tests show that the performance overhead imposed
by our architecture is below human perception and the user
will not notice any performance delays.

6.4 False Positives and Usability Test
To evaluate how XManDroid affects 3rd party applications,

we selected the representative set of 50 free well-known appli-
cations from the Android market. In particular, we included
applications which properties match vertex descriptions (see
details in Section 5.3) for tested policy rules, thus increasing
probability for policy match.

To perform our usability test, we evaluate how many policy
matches XManDroid produce in a user-study with a group
of 20 students. We opted for manual testing, as automated
testing of mobile phone applications has been shown to
exhibit a very low execution path coverage, approximately
40% in average and only 1% in worst case [19]. Our test
results comply to this observation, as during our performance
test no policy matches occurred. Note that the performance
overhead of our policy check is worst when no match is
detected and, thus, the results of our performance test form
an upper bound.

The students’ task was to install and thoroughly use the
50 applications in our test set in an arbitrary order, with
interleaving installation, uninstallation, and usage of the
apps. The evaluation was conducted with an implementa-
tion, that did not yet provide the data filtering feature on
system content providers and services, since its full imple-
mentation is ongoing work. Table 4 shows the number of
policy checks that occurred during the user tests and how
many ICCs were denied. The relative number of denied ICCs
is very small, especially compared to a static system like
Kirin [13]. If our policies would be enforced with Kirin, each
of the 50 test applications would in average conflict with 27
other applications from the set. Several applications would
even conflict with more than 40 other apps. However, the
testers reported that the impact on the user experience with
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XManDroid was still noticeable and the the system has to
be further optimized.

An evaluation of the denied ICCs revealed that all of them
were false positives. Particular sources for false positives were
(i) a customized application launcher app, causing 29 of the
33 false positives for direct ICC due to the high number of
permissions this app holds (particularly, the CALL PHONE
permission caused the majority of the policy matches); (ii)
the power system service provider, causing all false positives
for the system service providers; and (ii) the system settings
content provider, causing 45 of the 48 false positives. An
examination of the ICCs to the settings content provider and
power service showed, that more than 90% of the ICCs were
read operations and roughly 10% write operations by trusted
Android components. The false positives for the custom
launcher application occurred when starting an application
with the launcher, which requires direct ICC between those
two applications.

While the false positives for the custom launcher can be
prevented with tuning of the system policies, the false pos-
itives for the settings content provider and power service
would have been prevented with enabled fine-grained filter-
ing of data and values. Although filtering does not prevent
false positives per se, it significantly reduces the rate of
false positives induced by system providers as shown in our
evaluation.

7. RELATED WORK
Figure 11 gives an high-level overview of the main relevant

security extensions for Android. It depicts the main compo-
nents of the middleware layer consisting of the application
installer, the reference monitor, the permission database, and
the Dalvik virtual machine. Each solution requires extension
to one or more component. Figure 11 also shows several
offline static analysis tools that aim to detect vulnerable
or malicious application components and interfaces. In the
following we will discuss the strengths and shortcomings of
these extensions with respect to privilege escalation attacks.

Kirin is an extension to Android’s application installer [13,
14]. Its model requires checking permissions at install-time.
It denies the installation of applications that may encompass
a set of permissions that violates a given system policy. The

13



Kirin framework described in [13] identifies security-critical
communication links which may be used for a collusion at-
tack. This is achieved by analyzing which interfaces the new
application is authorized to contact. However, Kirin does not
accurately address the fact that Android applications provide
unprotected interfaces, by which applications can establish
communication links without requiring any permission.15

Due to its static nature, Kirin has to consider all poten-
tial communication links over the unprotected interfaces to
address this problem. This will stop any application from
being installed, since applications can potentially establish
many communication links whereas most of them can be
exploited for a privilege escalation attack. Moreover, Kirin
focuses only on directly reachable interfaces [13, Section 5.2],
whereas transitive permission attacks may involve multiple
applications. In contrast to Kirin, XManDroid (1) focuses
on real communication links rather than on potential ones,
(2) decides at runtime if the link (including communications
over unprotected interfaces) to be established violates the
system policy, (3) detects transitive permission usage over
any number of hops, and (4) handles exceptional cases (e.g.,
pending intents and dynamic broadcast receivers).

Saint introduces a fine-grained access control model [35]
that allows applications to protect themselves from being
misused. It requires application developers to add security
features to their applications and extends the basic Android
permission system by allowing the system to enforce security
decisions based on signatures, configurations and contexts
(e.g., phone state), whereas security decisions are enforced
both at install-time and at runtime. This gives application
developers the possibility to protect their applications, in
particular the application’s interfaces, from being misused by
unauthorized or malicious applications. In order to prevent
privilege escalation attacks, application developers have to
assign appropriate security policies on each interface. For
instance, the Browser attack [26] could be prevented by as-
signing Saint policies to the interfaces of the Android’s web
browser. However, since application developers have to define
these policies themselves, they might fail to consider all secu-
rity threats. Thus, developer-defined permission systems are
more likely to be error-prone than system-centric approaches
as we use in XManDroid . Finally, Saint does not address
malicious developers, that will not deploy Saint policies for
obvious reasons thereby allowing two malicious (colluding)
applications to communicate with each other without being
controlled by Saint policies.

Porscha provides policy-oriented secure content handling
in Android [34]. The goal of Porscha is to bind any security-
sensitive data or content to a certain phone and to a specific
set of applications. Content sources such as devices trans-
mitting SMS, MMS, or e-mails can attach a DRM (Digital
Rights Management) policy to the message. Even though
Porscha introduces a much more fine-grained permission
model, it cannot prevent leakage of data not tagged with a
security policy. Further, the main purpose of Porscha is to
control data flows, whereas privilege escalation attacks based
on control flows are not addressed by Porscha.

Recently, Enck et al. presented TaintDroid, a sophis-
ticated framework which detects unauthorized leakage of
sensitive data [11]. TaintDroid exploits dynamic taint analy-
sis in order to label privately declared data with a taint mark,

15For instance, enforcing downloads of malicious files can
be mounted over the unprotected interface of the Android
Browser [26] without requiring the INTERNET permission.

audit on track tainted data as it propagates through the sys-
tem, and alerts the user if tainted data aims to leave the
system at a taint sink (e.g., network interface). TaintDroid
is able to detect data leakage attacks potentially initiated
through a privilege escalation attack. However, similar to
Porscha, TaintDroid mainly addresses data flows, whereas
privilege escalation attacks also involve control flows. Enck
et al. [11] mention that tracking the control flow with Taint-
Droid will likely result in much higher performance penalties.
Moreover, in contrast to XManDroid , TaintDroid cannot
detect attacks that exploit covert channels to leak sensitive
information [37].

PiOS is a static analysis system to detect leakage of private
data by applications for Apple’s iOS operating system [10]. In
contrast to TaintDroid, it does not perform a dynamic check
at runtime, but analyzes the binary code of iOS applications
statically. PiOS constructs a call graph from the binary and
looks at all paths from a “privacy source” to a “sink” and
checks whether private data (such as address book or GPS
location) are transmitted to a sink without notifying the
user. Hence, PiOS can only detect privacy leaks within a
single application, but not if two or more applications are
transitively chained together as in our attack scenario.

Apex is an extension framework of Android’s permission
model [30]. It allows the user to selectively grant and deny
permissions requested by applications at install time. More-
over, the user has the possibility to define runtime constraints,
e.g., limit the number of text messages to be send per day.
Even though Apex makes Android much more flexible by
allowing users to constraint certain functionalities, it unfortu-
nately relies on the user to take security decisions. Moreover,
privilege escalation attacks where permissions are split over
multiple applications are not addressed by Apex.

CRePE (Context-Related Policy Enforcement for An-
droid) enables the enforcement of context-related policies [7].
Hence, users may define policies which enable/disable certain
functionalities (e.g., read SMS, bluetooth discovery, GPS)
depending on the context of the phone (e.g., location, tem-
perature, noise, user, etc.). Moreover, contexts can be also
defined by a trusted third party facilitating, for instance,
employers to enforce a company-wide policy for all employ-
ees owning Android smartphones. However, CRePE does
not address privilege escalation attacks in general, since it
mainly focuses on the enabling/disabling of certain function-
alities rather than on the transitive permission usage across
different applications.

Paranoid Android (PA) detects viruses and runtime
attacks exploiting memory errors such as buffer overflows
by deploying a virus scanner and a dynamic taint analysis
system [36]. Potentially PA could be extended to check
control flows thereby being able to address privilege escala-
tion attacks. However, PA requires the execution trace to
be stored in secure storage (in order to prevent malicious
modification) and impacts the performance of the device,
since the execution trace has to be continuously transmitted
to a remote analysis server that replays and analyses the
execution trace.

QUIRE [9] is a recent Android security extension. It
provides a lightweight provenance system that prevents the
so-called confused deputy attack. This attack is a special
type of privilege escalation attacks where a malicious ap-
plication abuses the interfaces of a trusted application to
perform an unauthorized operation. In order to determine
the originator of a security-critical operation, QUIRE tracks
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and records the ICC call chain, and denies the request if
the originating application has not been assigned the corre-
sponding permission right. Additionally, QUIRE extends the
network module residing in the Android Linux kernel to per-
form its analysis also on remote procedure calls (RPCs). In
summary, QUIRE addresses privilege escalation attacks that
exploit vulnerable interfaces of trusted applications. This
approach is complementary to ours, however, QUIRE does
not address privilege escalation that are based on maliciously
colluding applications. Since the ICC call chain is forwarded
and propagated by the applications themselves, colluding
applications may forge the ICC call chain to obscure the orig-
inating application, and hence, circumvent QUIRE’s defense
mechanism. Moreover, the current scheme of QUIRE does
not allow the prevention of privilege escalation attacks that
exploit covert channels in the Android Core, and finally, their
approach is in contrast to XManDroid not system-centric.

IPC Inspection [17] is a very recent work that similarly
to QUIRE addresses confused deputy attacks. Remarkably,
the authors discovered several severe attacks against An-
droid’s system applications and demonstrated that a number
of pre-installed applications are vulnerable to confused deputy
attacks. The key insight of IPC Inspection is to reduce the
permissions of an application when it receives a message from
a less-privileged one. In contrast to XManDroid , IPC inspec-
tion does not require a policy framework, and hence, can
prevent attacks immediately, while in our system we require
the deployment of appropriate policies. On the other hand,
IPC inspection is less general than XManDroid , and does not
cover many types of attacks that XManDroid prevents. First,
IPC Inspection does not address the case of a malicious devel-
oper, and hence, it cannot prevent collusion attacks, mainly
because the individual application instances still reside in one
sandbox. Second, it provides no means to prevent attacks
launched via covert or overt channels (like Soundcomber).
Third, IPC inspection considers only control-flows, but does
not tackle attacks that are performed through data channels.
Fourth, it performs permission reduction for permissions
classified as dangerous, but neglects permissions classified as
normal, and does therefore not prevent privilege escalation
attacks that exploit these permissions. Fifth, IPC Inspection
does not consider confused deputy attacks that might happen
as a result of a IPC callback. Finally, it remains unclear how
permission reduction is performed for permissions that are
controlled by the underlying Linux discretionary access con-
trol (DAC) system rather than Android’s reference monitor
(e.g., Internet or Bluetooth). Unfortunately, the authors do
not mention this issue. Apart aforesaid, IPC Inspection is
likely to impose significant usability drawbacks. Although
the authors present no performance measurements for IPC
inspection, it will likely induce higher performance penalties
than XManDroid , because it requires the creation and main-
tenance of multiple application instances with different sets
of privileges. Second, unexpectedly revoking permissions at
runtime very likely causes applications to crash, as their de-
velopers do not anticipate this and omit corresponding error
handling code. Moreover, the framework is not compatible
with legacy Android applications, because it requires many
applications to be recompiled with a higher permission set.

ComDroid [6] is a recent static analysis tool that de-
tects application communication vulnerabilities. It analyzes
a single application and detects vulnerable application in-
terfaces and security-critical intent/broadcast transmissions.
For instance, it warns the application developer from send-

ing privacy-sensitive data with a public broadcast, because
this would allow a malicious registered broadcast receiver
to eavesdrop the message. Although ComDroid is able to
detect vulnerable application communications, it cannot de-
tect privilege escalation attacks that are based on multiple
colluding applications, since it focus on a single application.
Moreover, static analysis tools (like ComDroid) are likely to
be incomplete, because they cannot completely predict the
actual application communication that will occur at runtime.

Similar static analysis tools were presented very recently:
Stowaway is built on top of ComDroid and checks if an appli-
cation follows the least privilege principle [16]. In particular,
the authors applied Stowaway to 940 Android applications
and showed that one third of them are overprivileged. A
similar application study has been performed on 1,100 popu-
lar Android applications by Enck et al. [12]. To perform the
application study, the authors developed the sophisticated
ded decompiler that decompiles Dalvik executables to Java
source code. After obtaining the source code of the applica-
tion, they perform static analysis on the source code to detect
vulnerable interfaces and malicious components. The study
shows that many applications leak sensitive information like
phone identifiers and location. On the other hand, there has
been no evidence for malware or exploitable vulnerabilities.
However, similar to ComDroid, these static analysis tools
do not in general target privilege escalation attacks. Instead
they detect vulnerable interfaces and malicious components
within a single application.

SELinux can be incorporated into the Android Linux
kernel [38] to mitigate kernel-level privilege escalation attacks.
Since SELinux operates at the kernel level, it cannot prevent
application-level privilege escalation attacks which we mainly
consider in this paper. However, we believe that defense
mechanisms addressing application-level privilege escalation
attacks can be implemented on top of a SELinux secured
Linux kernel.

In order to complete the overview on Android’s security
extensions, we finally present the defense mechanism Schlegel
et al. [37] propose against their own developed voice record-
ing Android Trojan Soundcomber [37]. In general, Sound-
comber exploits covert channels of the Android OS enabling
two colluding applications to communicate. The defense
technique is specific to Soundcomber, and not general, as
provided by XManDroid : It maintains a list of critical num-
bers and disables audio recording during a sensitive phone
call.

To summarize, Android’s security extensions such as Kirin,
Saint, TaintDroid, and QUIRE currently do not provide
general solutions against privilege escalation attacks, in par-
ticular, none of them can detect recent attacks such as Sound-
comber that escalates privileges over covert channels.

8. CONCLUSION AND FUTURE WORK
In this paper we address the problem of application-level

privilege escalation attacks on Android as shown recently
by several severe attacks [13, 8, 26, 37]. Existing security
extensions to Android such as Kirin [13, 14], Saint [35], and
TaintDroid [11] cannot adequately address these attacks.
We present the design and implementation of XManDroid
(eXtended Monitoring on Android) that extends the Android
permission framework. XManDroid analyzes communication
links among applications and ensures they comply to a desired
system policy. Our reference implementation is very efficient
and induces small performance overhead. XManDroid can
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prevent recently published privilege escalation attacks [13, 8,
26, 37], including collusion attacks (e.g., Soundcomber) that
exploit the covert channels provided by the Android’s core
application.

Further, we are integrating a new concept for storing
the decisions made by XManDroid which can be directly
integrated in the standard permission framework of Android.
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APPENDIX
A. SYSTEM POLICY XML SCHEMA

<schema xmlns=”http://www.w3.org/2001/XMLSchema”>
<element name=”SystemPolicy” type=”SystemPolicyType” />
<complexType name=”SystemPolicyType”>
<sequence>
<element name=”PolicyRule” type=”PolicyRuleType” />

</sequence>
</complexType>
<complexType name=”PolicyRuleType”>
<attribute name=”name” type=”string” use=”required” />
<attribute name=”group” type=”integer” use=”required” />
<attribute name=”proceed” type=”integer” use=”required” />
<attribute name=”maxHops” type=”integer” use=”optional” />
<sequence>
<element name=”Vertex” type=”VertexType” minOccurs=”2”

maxOccurs=”unbounded” />
<element name=”Edge” type=”EdgeType” minOccurs=”2”

maxOccurs=”unbounded” />
</sequence>

</complexType>
<complexType name=”VertexType”>
<sequence>
<element name=”Property”>
<complexType>
<attribute name=”type” type=”VPropTypes” use=”required”

/>
<attribute name=”value” type=”string” use=”required” />
<attribute name=”negated” type=”boolean” use=”optional”

/>
</complexType>

</element>
</sequence>

</complexType>
<completeType name=”EdgeType”>
<sequence>
<element name=”Property”>
<complexType>
<attribute name=”type” type=”EPropType” use=”required”

/>
<attribute name=”value” type=”string” use=”required” />
<attribute name=”negated” type=”boolean” use=”optional”

/>
</complexType>

</element>
</sequence>

</completeType>
<simpleType name=”VPropTypes”>
<restriction base=”string”>
<pattern value=”(PackageName|RequestedPermissions|

RequiredPermissions|UID|SharedUID)” />
</restriction>

</simpleType>
<simpleType name=”EPropTypes”>
<restriction base=”string”>
<pattern value=”(Data|Action|Extras|Component|Package)” />

</restriction>
</simpleType>

</schema>
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