
Gadge Me If You Can
Secure and Efficient Ad-hoc Instruction-Level Randomization

for x86 and ARM

Lucas Davi1,2, Alexandra Dmitrienko3, Stefan Nürnberger2, Ahmad-Reza Sadeghi1,2,3

1

Intel Collaborative Research
2

CASED/System Security Lab
3

Fraunhofer Institute for
Institute for Secure Computing (ICRI-SC) Technische Universität Darmstadt Secure Information Technology

at TU-Darmstadt, Germany Darmstadt, Germany Darmstadt, Germany

ABSTRACT
Code reuse attacks such as return-oriented programming are
one of the most powerful threats to contemporary software.
ASLR was introduced to impede these attacks by dispersing
shared libraries and the executable in memory. However, in
practice its entropy is rather low and, more importantly, the
leakage of a single address reveals the position of a whole
library in memory. The recent mitigation literature followed
the route of randomization, applied it at different stages
such as source code or the executable binary. However,
the code segments still stay in one block. In contrast to
previous work, our randomization solution, called XIFER,
(1) disperses all code (executable and libraries) across the
whole address space, (2) re-randomizes the address space for
each run, (3) is compatible to code signing, and (4) does
neither require offline static analysis nor source-code. Our
prototype implementation supports the Linux ELF file format
and covers both mainstream processor architectures x86 and
ARM. Our evaluation demonstrates that XIFER performs
efficiently at load- and during run-time (1.2% overhead).

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security

Keywords
software diversity; randomization; ASLR; return-oriented
programming, return-into-libc

1. INTRODUCTION
Security-critical operations such as online banking are in-
creasingly performed by widespread everyday-software. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIA CCS’13, May 8–10, 2013, Hangzhou, China.
Copyright 2013 ACM 978-1-4503-1767-2/13/05 ...$15.00.

makes them an appealing target for various attacks, in partic-
ular runtime attacks which subject a process to an adversary’s
control. Albeit control-flow attacks on software are known
for about two decades, they are still one of the major threats
to software on desktop PCs and mobile devices. The NIST
vulnerability database reported 663 buffer errors in 2011, and
724 for 2012 [26]. The broad introduction of non-executable
memory, write-xor-execute (W ⊕X) for short, successfully
mitigates code injection attacks but gave rise to a form of
attacks that re-use existing code by intelligently stitching
small code fractions, so-called gadgets, together in order to
execute arbitrary code. These gadgets are well selected so
that they end in an instruction that transfers control to
the next gadget, e.g. a ret (return) instruction which pops
its target off the stack. Hence, the name return-oriented
programming (ROP [31]).

Since these attacks rely on exact addresses of the instruc-
tions they want to abuse, Address Space Layout Random-
ization (ASLR, e.g. [29]) debuted as the next move in that
cat-and-mouse game. By randomizing the base address of
loaded code and data in memory, ASLR in theory makes it
infeasible for an attacker to predict the location of gadgets
in memory. However, low entropy [32] and the fact that a
single leaked pointer makes it possible to calculate relative
addresses called for yet another step of defense. Such a means
of defense has come to light in the form of finer and finer code
randomization that, in contrast to ASLR, also shuffles the
code itself, not just its base address. Despite the fact that
such randomization is a simple idea, its implementation is
highly involved and several approaches exist in the literature,
ranging from compiler-based solutions [6, 11, 18] to run-time
solutions [16] that randomize the program either once or
even constantly during its lifetime [13].

As we elaborate in Section 3, most of the existing works
have at least one of the following drawbacks: they (i) need
access to source code, (ii) do not cover the whole address
space, e.g. no loaded libraries and the code segment stays in
one block, (iii) do not re-randomize at each process start, or
(iv) touch the executable file rendering them incompatible
to code signing which is prevalent for commercial software
and mandatory in modern app stores.

In order to compare and measure existing software diver-
sity methods, we establish a set of properties that make a
randomization solution ideal, i.e., featuring the best trade-off
among these properties. These properties are: (1) mitigation
of code reuse attacks (ROP and return-into-libc), (2) high

diversification entropy, (3) efficient re-randomization, (4) re-
quired input information (e.g., source code or other side
information), (5) code coverage (code parts that cannot be
diversified), (6) compliance to code signing, (7) performance,
(8) space consumption (memory and disk) (9) shared library
support, and (10) generality vs. specificity, i.e. applicability
or limit to certain hardware architectures.

To our surprise, recent software diversity and random-
ization approaches do not fulfil these criteria (as shown in
the comparison in Table 1). In particular, they randomize
the code only within its segment so that it stays as one
block, which means a leaked pointer is always surrounded
by the remainder of the code. Moreover, most of the ex-
isting work avoids re-randomization for each run, probably
due to efficiency concerns. Hence, all binaries of a system
remain unchanged leading to an increasing advantage for an
adversary over time. Further, many existing solutions touch
the main executable file which courrupts a potential digital
signature that could be in place.

Our Contribution. In this paper, we present a novel tool,
called XIFER that adequately addresses the aforementioned
requirements for an ideal randomization tool:

• It achieves an instruction granularity randomization.

• It randomizes all sections of an executable and library
(not just .text) and disperses fractions of the executable
segments so that they do not stay in one block, changing
all relative relations of code and data so that leaked
pointers cannot be used to calculate relative addresses.

• The randomization takes place on-the-fly – not requir-
ing an offline static analysis – leading to a different
address space layout for each process.

• The high randomization performance needed for an on-
the-fly solution stems from a technique we call partial
dis- and reassembly. This technique leverages the fact
that most of the instructions do not reference code or
data and hence do not need to be dis- or re-assembled.

We evaluated our prototype for x86 and ARM by using the
benchmark suite SPEC CPU2006. Our evaluation results
(see Section 6) demonstrate that XIFER efficiently performs
randomization so that the resulting runtime overhead is only
1.2%, and the linear load-time overhead achieves 5500 kBit/s.

2. BACKGROUND
A simplified view of a code reuse attack is shown in Figure 1.
It shows an abstract memory layout of a vulnerable appli-
cation, where an adversary hijacks the intended execution
flow of the application by exploiting a memory-related vul-
nerability on the stack (e.g., a buffer overflow). In step 1,
the adversary exploits the vulnerability to inject a number
of pointers (Return Address 1 to 3) on the stack (step 1).
Each of these addresses point to a certain code sequence
residing in the linked libraries or the executable itself. The
executable/library code segment contains a number of func-
tions, where each function consists of several so-called basic
blocks (BBLs). A BBL is a sequence of machine instructions
with a single entry and exit instruction, where the latter one
can be any branch instruction the processor supports (e.g.,
return, indirect/direct jump or call).

After the adversary has subverted the execution flow by, e.g.
overwriting the program’s return address, the execution is

Stack&

Executable/&
Shared&Libraries&

Return&Address&1&
Return&Address&2&
Return&Address&3&

Adversary&

Stack&Pointer&(SP)&

1&

3&

2&

FuncAon&A&
RET&
RET&
RET&

BBL&1&
BBL&2&
BBL&3&

Figure 1: Memory view of a stack-based code reuse attack.

redirected to BBL 1 (step 2). After BBL 1 has executed, the
terminating return instruction (RET) pops the next return
address off the stack (Return Address 2), thereby increasing
the stack pointer by one memory word, and redirects the
execution to BBL 3 and so forth.

In practice, an application includes a large number of
BBLs. While return-into-libc attacks would target execution
of known functions, return-oriented programming enables the
combination of arbitrary code sequences. Both attack tech-
niques form a Turing-complete basis for building arbitrary
(malicious) programs [31, 34]. Since code-reuse attacks have
become the standard runtime attack vector against desktop
and mobile computing platforms [35, 14, 30, 17, 25, 20, 7,
19], our goal in this paper is to present an efficient mitigation
technique that entirely prevents these attacks.

3. RELATED WORK
To mitigate the threat of code reuse attacks, recent proposals
apply various randomization techniques. We define a set
of properties that we think are vital for secure, effective
and efficient randomization and use them to motivate the
design and implementation of our approach. In Table 1,
these properties are also compared to existing randomization
proposals realized as compiler extensions [6, 11, 18, 4], system-
wide base address randomization (ASLR) [29], and binary
rewriting tools [21, 28, 16, 36].
P1 – Effectiveness Against Code Reuse Attacks. The
solution shall mitigate return-into-libc and ROP, since both
have been shown to be Turing-complete [31, 34].
P2 – Entropy. A strong randomization scheme must pro-
vide enough entropy to render brute-force attacks infeasible
and should change relative distances between code and data
as well in order to render a leaked pointer futile.
P3 – Randomization Frequency. A randomization tool
should be able to re-diversify a program for each execution.
Otherwise, an adversary could acquire knowledge about the
memory layout of the diversified program by running the
program various times and launching brute-force attacks.
P4 – Input Information. The fact that a randomization
solutions requires access to source code or to additional
information like debug symbols or relocation information.
P5 – Code Coverage. The recent past has shown that
only a piece of un-randomized code is in many cases sufficient
to launch a code-reuse attack [12]. Hence, randomizing the
whole address space is a necessity.

P6 – Compliance to Code Signing. Code signing is a
mandatory feature in nearly all modern app stores [24, 15,
9]. A randomization tool should not touch the executable
file in order to keep the signature intact.
P7 – Performance. Performance is influenced by the fact
that (1) randomized code pieces must be connected to retain
their original order and (2) the reduced locality of code is
more prone to cache misses.
P8 – Memory and Disk Space. The randomization so-
lution might need a static analysis or caches to be built and
maintained in an offline phase or at run-time. A large size
of either of these is undesirable.
P9 – Library Support. Libraries exist to ease application
development and to save space on disk. As code-reuse attacks
typically leverage code residing in libraries, it is crucial that
a randomization tool can also be applied to libraries.
P10 – Target Hardware Architectures. A randomiza-
tion tool should be general enough to be easily ported to
another processor architecture.

Compiler-Based Randomization.
The original randomization approach targets and proposes a
compiler-based solution [6]. Recently, Franz et al. [11, 18]
have explored the feasibility of a compiler-based approach
for large-scale software diversity in the mobile market. The
authors suggest that app store providers integrate a multicom-
piler (diversifier) in the code production process. However,
this approach has two shortcomings: App store providers
have no access to the app source code. This requires the
multicompiler to be deployed on the developer side, who has
to deliver thousands of different app instances to the app
store. Secondly, an app instance gets only randomized once.
A former randomization work by Bhatkar et al. [4] does not
suffer from this shortcoming, because it deploys a source
code transformer that enables re-randomization for each run.

In general, compiler based solutions have the potential
to provide among all randomization approaches the highest
degree of entropy due to the access to source code. However,
as argued above, source code is rarely available in practice
and current app store models are not compatible to a multi-
compiler approach.

Binary Instrumentation Based Randomization.
These techniques directly operate on the application binary
to perform code randomization. In particular, Kil et al. [21]
introduce address space layout permutation (ASLP). The pro-
posed scheme statically rewrites ELF executables to permute
all functions and data objects of an executable. Moreover,
the Linux kernel has been modified to increase the entropy
for the base address randomization of shared libraries. Al-
though, the presented scheme is efficient and supports re-
randomization, it is not directly compatible to code signing,
provides a lower randomization entropy compared to instruc-
tion or basic block (BBL) randomization, and does not apply
code randomization to shared libraries.

Recently, Pappas et al. [28] introduced ORP, a static rewrit-
ing tool which randomizes instructions and registers within
a BBL to mitigate ROP attacks. However, ORP cannot
prevent return-into-libc attacks (which have shown to be
Turing-complete [34]), since all functions remain at their
original position. In contrast, ILR (instruction location ran-
domization) [16] translates each address to a randomized
version while executing in a process virtual machine. For this,

a program needs to be analyzed and re-assembled during a
static analysis phase which induces significant run-time per-
formance and space overhead (the rewriting rules reserve on
average 104 MB for only one benchmark of SPEC CPU). ILR
also suffers from code coverage deficiencies due to imprecision
of the static analysis phase. This concerns in particular the
destination addresses of indirect jumps, indirect calls, and
function returns. Specifically, ILR does not attempt to re-
solve destination addresses of indirect calls [16, 6] allowing an
adversary to launch return-into-libc like attacks. Both ORP
and ILR cannot re-randomize a binary for each program.

In contrast, STIR [36] randomizes and permutes BBLs for
each execution and hence provides a higher randomization
entropy compared to ORP and ILR. However, STIR still
requires a static analysis and rewriting phase which is not
compatible to code signing. Moreover, it suffers from a high
space overhead, because the file size of a stirred program
increases by 73 % on average.

Finally, Guiffrida et al. [13] propose a fine-grained random-
ization proposal for operating system kernels. Besides stack,
heap and code randomization, it allows re-randomization of
a module at runtime but is limited to microkernels.

4. DESIGN
In this section, we first present the design of our random-
ization tool XIFER, after which we elaborate on several
technical challenges and present our solutions thereof.

4.1 High-Level Design of XIFER
As already alluded to, the goal of our tool is to fulfill all of
the aforementioned properties and criteria by randomizing
the complete address space for every start of a process. This
randomization deliberately tears code apart subjecting rel-
ative distances within code to change. This is achieved by
randomizing the position of each executable and library seg-
ment (such as .text, .init, .ctors, .data, .bss) in memory
and additionally twirling the code so that leaked pointers do
not reveal anything about the remainder of the code or data.

Executable

A B C D 1 2 3 4 5 6

CODE DATA

Process / Address Space

1 2 3 4 5 6

RW RX RX RX RX

Library

E F G H I 7 8 9

CODE DATA

Split Executable

A 1 2 3 4 5 6

CODE DATA

D

Split Library

E F 7 8 9

CODE DATA

G H I

7 8 9 H I G A E F E F

RX RW

a)

b)

c)

B C

D

RX

Figure 2: High-level process of the randomization

As depicted in Figure 2, the idea of our randomization ap-
proach is to cover the complete executable code of a process,
which consists of the executable file itself and all loaded
libraries. For that purpose, we apply the necessary random-
ization steps right before execution of a process starts, but
after all the necessary code has been loaded into the address
space by the linker (step a in Figure 2). In order to ran-
domize the individual code segments and to intermix them

Criteria and Properties Multicompiler Source Trans- ASLR ASLP ORP ILR STIR XIFER
[6, 11, 18] former [4] e.g.,[29] [21] [28] [16] [36]

P1 - Effectiveness
a) ROP yes yes partially yes yes yes yes yes
b) Return-into-Libc yes yes partially yes no no partially yes

P2 - Entropy very high medium low medium medium high high high
P3 - Frequency one time many many many one time many many many
P4 - Input Information source code source code reloc reloc none none none reloc
P5 - Code Coverage high high high high medium medium high high
P6 - Code Signing Comp. partially partially yes yes yes no no yes
P7 - Performance no impl.∗ ≈ 11% 0% 0% ≈ 1% ≈ 13% ≈ 6.6% ≈ 1.2%
P8 - Memory Consumption

a) Memory Footprint no impl.∗ low∗∗ 0% low∗∗ 0% high ≈ 37% ≈ 5%
b) Disk Space no impl.∗ low∗∗ 0 low∗∗ 0 ≈ 104MB 73% 0/7%

P9 - Library Support
a) Static Libraries yes yes yes yes yes yes yes yes
b) Shared Libraries yes partially yes partially yes no no yes

P10 - Target Architectures no impl.∗ x86 x86,ARM, x86 x86 x86 x86 x86/ARM
ELF . . . ELF PE ELF ELF/PE ELF

Table 1: Comparison of Existing Randomization Methods to XIFER

∗ In [6], only an experimental setup has been used. The author mentions that the approach induces negligible performance and space overhead.
In contrast, [11, 18] provide no implementation and evaluation.

∗∗ No precise numbers provided in [4, 21].

(all library code and executable code), the code is cut into
arbitrarily small pieces (step b). In the last step c, all code
pieces are spread across the whole address space.

In order to make the individual steps work, we have to
overcome several challenges. The most obvious one is the fact,
that code cannot simply be re-arranged without breaking its
semantics since all control flow information (e.g., branch ad-
dresses) is outdated. This challenge is addressed by building
upon binary rewriting techniques, that is disassembling code,
understanding its semantics and subjecting it to the desired
changes and re-assembling it. The binary rewriter’s duty
is to make sure that all changes are reflected in the output
code but also its original semantics are still preserved. With
a rewriter in place, we can intelligently choose the points
where we cut the code into pieces and the rewriting process
preserves the original control flow despite its shuffled layout.
A dynamic translation approach – mimicking the changes in
a virtual machine – is out of the question because of its poor
performance [23, 5, 16] due to its piecemeal and constant
translation process.

The existing binary rewriting approaches do not feature
load-time static rewriting and are not customizable to our
needs. Further, a full-blown rewriter is over the top for
our needs and hence does not deliver the performance for
an ad hoc translation at process start-up. Hence, we built
a rewriter from scratch as detailed in the implementation
(Section 5). For the time being, we take the binary rewriter
for granted and first explain our randomization solution.

4.2 Randomization
The randomization’s goal is that no instruction remains at

its original relative distance to any other instruction. This
ensures that leaked pointers do not reveal any information
about their surrounding code. The locality of code is further
kept minimal, i.e. it is split apart, so that an attacker cannot
guess anything about the surrounding of any byte of code.
Other randomization solutions that keep the code segment
as one block always reveal that for any leaked pointer at
position x the remainder of the code must be in the interval
]x−s, x+s[while s is the size of the code. Our deliberate low
locality on the other hand is achieved by splitting the code at

certain positions right between two subsequent instructions.
These cuts result in code that is broken in pieces whose order
can be shuffled. The binary rewriter automatically takes care
of keeping formerly subsequent instructions that have been
severed in a sequential control flow (see Figure 3).

A B C D E F G H A B C D E F G H

a) b)

Figure 3: Splitting of code into several interconnected pieces.

4.3 Piece Size
Another challenge is the fact that splitting code in too

many pieces imposes a lot of pressure on the processor’s
instruction cache (as can be seen in the evaluation section 6)
since the locality of code has been destroyed. This is why we
constrain the amount and position of the cuts:
Positions: When possible, we leverage already existing
control transfer instructions (e.g. jump, call) as a splitting
boundary. This has two advantages: First, there is no need to
connect the severed control flow later, when the pieces have
been moved away from each other, because there is already a
control flow instruction that can be adjusted. Second, when
using an already existing control flow instruction, the cache
miss penalty is most likely to be identical to the original
program.
Amount: The maximum possible entropy of a 32-bit user
mode process however is limited to 231 (2 GB). The en-
tropy of 13 permutations is already larger than that (13! =
6, 227, 020, 800 ≈ 232.5). Hence, it actually makes no sense
to split more than 12 times1 for 32-bit system or more than
16 times for a 64-bit system (with 48 bit address user space).

112 times splitting makes 13 pieces, log213! ≈ 32.54 bits of
entropy

4.4 Compliance
As described in Section 3, an ideal randomization tool needs
to comply with several criteria. While not all of the criteria
can be fulfilled at the same time, in this section, we explain
why we think the best trade-off of them is met by XIFER.
P1 – Effectiveness. The most important property (P1)
concerns the effectiveness of our solution against code reuse
attacks, which is the main objective of this paper. We achieve
complete mitigation of code-reuse attacks by diversifying the
location of each instruction, so that the addresses needed to
mount a successful code-reuse attack remain unknown. In
addition, XIFER is not vulnerable to disclosure attacks, i.e.
the address of a known function is leaked to the adversary al-
lowing him to revert the memory structure of the executable,
a library or even the whole application. This is due to the
fact that all offsets between functions, basic blocks of code
and even instructions have been randomly changed. Even
if the permutation and the memory layout of one specific
instance is known, the adversary cannot assume that the
target device is using this instance, since our diversification
is re-applied for each application run.
P2 – Entropy. Our diversification techniques also yield
very high diversification entropy, i.e. every instruction is
moved from its original location, and their relative distance
to each other is completely random. With the permutation
of arbitrarily small code pieces, we achieve an entropy of n!,
while n denotes the number of pieces the code was divided
into. While n can be arbitrarily large, a suitable position to
cut is a boundary of a basic block. Our tests have shown
that on average 15.5% of all instructions are such boundaries.
This means that for a sample 1000-instruction-binary we end
up with 156 code pieces to shuffle. This entropy of 156! is
already higher than the ultimate ASLR solution that would
provide an entropy of 248 on a 64-bit system. Moreover,
besides code transformation, we randomize the location of
each data section to achieve a fully-randomized memory
layout.
P3 – Frequency and P6 – Signing. Since XIFER per-
forms its operation entirely at runtime, we are able to au-
tomatically randomize a program for each run (P3) while
keeping compliance to code signing (P6).
P4 – Input Information. Instructions may reference other
data or other code (control flow). These references need to
be detected reliably in order to adjust them accordingly to
the new randomized position. In most cases, references are
encoded in the instruction (e.g. a branch) and can be de-
tected automatically by disassembling the code. However,
the value of a register at run-time could represent an address
which is used to direct control flow (indirect jump) or to
dereference data (pointer). Calculating the value of that
register beforehand is a highly involved task. For instance,
mov $0x8067ab, %eax might represent an arbitrary number
being moved to %eax or it might be an address to which eax

should point. Relocation information solves this problem
by pointing to positions in code and data that represent
addresses. Fortunately, all address references, including C++
vTables, and indirect jumps benefit from that identification
and can be rewritten reliably. There exists literature about
how to reliably disassemble and rewrite code when no relo-
cation information is available [33]. However, these solutions
suffer from significant space problems, and cannot accurately
determine indirect jump targets. Hence, for the time being,
our solution was implemented using relocation information.

Note that P7 -P10 are implementation-related and we will
show how XIFER addresses these criteria in the implemen-
tation section (Section 5) and the performance evaluation
(Section 6). To meet the code coverage property (P5) our
solution faces and tackles several technical challenges that
are addressed in the following subsection.

4.5 Technical Challenges
Our goal is to achieve all properties mentioned in Section 3.
This poses several technical challenges that are mainly re-
lated to the code coverage criterion (P5). Without loss of
generality, examples herein are given in x86 assembler.

CH1 – Function Returns.
The position of a split at the end of one and the beginning
of the respective next basic block is not always a trivial
case. Simple cases are instructions that unconditionally
transfer control to another point in the program, e.g., a
jump instruction (jmp 0x1234) for x86. These instructions
can simply be rewritten to their new address in memory to
which the original target has been moved. However, this does
not hold for function calls or conditional branches as they
feature an implicit fall-through control flow, i.e. the control
flow will continue at the next instruction after returning
from the call. The same is true for conditional branches
which might continue at the next instruction depending on
the outcome of a comparison. In either case, the subsequent
instruction to which the control flow would implicitly fall
through can potentially be moved away because it is now
being part of a different code piece that has been shuffled
away.

Code

A
instrA1
instrA2

B
instrB1

instrB2

ret

C

ret

Call 0x12C0

0x1000:

0x1200:

0x12C0: instrC1

a) original b) randomized

Code

B

instrB2

ret

C

ret

A
instrA1
instrA2

Call 0x46D1

0x4600:

0x464B:

0x46D1: instrC1

Flow: instrA1, instrA2, instrC1, instrB1, instrB2

Jmp 0x4600

instrB1

Figure 4: Implicit fall-through control flow requires the in-
jection of jumps in order to retain the original sequence.

Consider the example shown in Figure 4. After the execution
returns from the call to 0x12C0 (original), it will continue
execution after the call instruction by falling through to
code piece B (instrB1, instrB2). The randomized version
would also return to the position right after the call where it
left off. In contrast to the original, the code has been moved
away and the control flow would fall through to code piece
C, which is wrong. Consequently, we need to insert a jump
in order to connect control flow with the original code piece
that now resides at a different position.

CH2 – Position-Independent Code (PIC).
PIC can start execution immediately without the need for
certain instructions to be adjusted. It became widely adopted
with the introduction of ASLR in modern operating systems.
The avoidance of addresses is achieved by using only relative
addressing for code branches, function calls and even data.
Consequently, the absolute addresses in memory may shift,
i.e. the base address of code and data may change, but
the relative distances within code and data must stay intact
in order for the relative calculations not to become stale.
Typically, the code calculates its own address in memory
and references code and data relative to its current position.
Data is referenced using the Global Offset Table (GOT) by
knowing the relative distance to the GOT and indexing the
GOT to read and write data.

Code

A
instrA1
instrA2

add $0xC8, %ebx

mov $42, 4(%ebx)

Call 0x1008

0x1000:

0x1004:

0x1008: pop %ebx

a) original b) randomized

0x10D0:

0x10D4:

Data

GOT

Note: 0x1004 + 0xC8 = 0x10D0

……

42

Code

A2
A1
instrA1
instrA2

...

Call 0x46A0

0x46A0:

0xD7B7:

0xD7BC:

pop %ebx

0xD8B0:

0xD8B4:

Data

GOT
……

42

add $0xF4, %ebx

mov $42, 4(%ebx)

0xD7BC + 0xF4 = 0xD8B0

Figure 5: Position-independent code (PIC) needs to be ad-
justed as it assumes relative relations inside the code.

As we move around code pieces to deliberately change code
layout and hence their relative distances to each other, the
calculation of the GOT is no longer correct. This necessitates
a detection of PIC and its correction in order for the data
references to be still valid after the shuffling of code pieces.
Consider the example in Figure 5 which depicts a common
write operation to data residing in the GOT. In this example,
a call instruction was issued by the compiler that targets the
next instruction. This next instruction (pop %ebx) in turn
pops the return address off the stack that has been placed
there by the call. With this trick, register ebx now holds the
absolute address in memory of where the call should return,
in this case the absolute position of the pop instruction.

In the randomized version (Figure 5b), the instructions
have not only been split apart but also the pop %ebx instruc-
tion no longer pops its own absolute address off the stack.
To compensate for this effect, we correct the offset added
to the register ebx in order to restore the reference to the
GOT. To apply this correction in a general fashion, we detect
call targets that do not return but rather save a position
of the stack that holds the return address. We then follow
the register to find the instruction that adds the offset to
the found position. When the original offset plus its calcu-
lated own position equals the GOT, we have found such a
case and correct that offset by rewriting the instruction (e.g.
add $0xF4, %ebx).

CH3 – C++ Exceptions.
When the GCC compiler compiles C++ exceptions, a so-
called unwind frame is created for every function in a special
section called .eh_frame. It contains information about how
to restore the stack and registers when returning to the
point in code that actually catches the exception. This list
works similar to a hash map which is indexed with the posi-
tion in memory that has thrown the exception and provides
information about which function catches that particular
exception. The information about how to unwind the stack
is stored as a stack machine bytecode that is interpreted at
run-time while the exception is thrown. This GCC -specific
machine language incorporates code load addresses and as-
sumes relative offsets, e.g. how to get to the beginning of
a function and where the frame pointer is stored. However,
since we randomized the code this information is no longer
valid. The .eh_frame would need to be rewritten according
to the changed layout, which we actually did not implement,
and leave as future work. Note that with the exception of
ILR [16], GCC C++ exceptions are also not supported by
other randomization approaches.

CH4 – Intermixed Code and Data.
Compilers often optimize code by aligning functions in mem-
ory so that they start at the beginning of a cache line. The
inevitable gap before aligned functions is sometimes filled
with data in the middle of code. A typical fall-through disas-
sembly2 is thus not possible, as it would interpret alignment
zeros (garbage) or intentional data as instructions. To pre-
vent this, code must not be disassembled in a linear fashion
but should rather recursively follow the control-flow with
respect to indicators for the start of an instruction. There are
plenty of such indicators, e.g. targets of control-flow such as
function calls, conditional and unconditional branches. We
leverage this information to re-align the disassembly process
based on discovered control-flow targets and sanity checks
that ensure all references from and to code and data stay in
their respective segment and target only the beginning of an
instruction. We are aware of the fact that from a theoretical
point of view, there might be corner cases in which such a
disassembly might not be complete. However, we could not
find any such cases and a reliable disassembly is not the main
topic of this paper but a mere building block. However, it
should be noted that an incorrect disassembly could lead to
program crashes.

CH5 – Shared Libraries.
Typically, applications link by default to a number of shared
libraries (e.g., the Unix standard library libc). Due to space
and efficiency reasons, the code pages of these libraries are
shared among the various simultaneously running processes.
Hence, when every process gets a randomized version of the
same shared library, the operating system can no longer
benefit from code sharing across multiple processes because
their content has changed. For flexibility reasons, we offer
the user or system administrator to decide himself whether
to favor security (i.e., allowing XIFER to generate multiple
randomized library versions on-demand for each application)
or benefit from shared library memory savings (i.e., random-
izing a library once at boot or in a static offline phase). In

2The process of disassembling instructions from the beginning
of the code in a linear fashion to its end.

particular, for the latter case, we have implemented the pos-
sibility to write the randomized libraries back to disk as ELF
files. Since shared system libraries are typically not included
in digital signatures for signed applications, randomizing
them (e.g. every boot or in an offline phase) does not pose
a threat to the signatures as long as the main executable
remains untouched. Due to our support of shared libraries,
we accurately address P9.

5. IMPLEMENTATION
The very heart of XIFER is the binary rewriter that is

responsible for keeping the program semantics despite all the
changes we subject the program to. We implemented the
rewriter for both mainstream processor architectures Intel
x86 and ARM for Linux and its Android derivative. Our
prototype can be applied to all binaries that comply with
the Linux ELF format which is the default file format for
all Linux distributions and includes executable files as well
as shared libraries. The code is entirely written in C++ and
contains 7183 source code lines (SLOC).

The binary rewriter builds the foundation for disassem-
bling instructions, injecting instructions, relocating code and
adjusting references. This is enabled by keeping an additional
layer of references above the original x86/ARM instructions
that keep track of references to/from code and to/from data.
Transformation to achieve the desired randomization are ap-
plied directly on selected instructions. There code can teared
apart and new addresses can be assigned to the individual
newly generated code pieces. Lastly, the code pieces are
transformed back to x86 or ARM instructions either on-the-
fly in the address space of a process or can be written as an
ELF file on disk, if need be. Most of the code is architecture-
agnostic, only special cases of ARM and x86 are handled in
small fractions of the total code. It is, however, not possible
to transform a program from x86 to ARM due to the unique
design that treats most of the code as a black-box because
it does not operate on an intermediate language. Any other
processor architecture can be easily supported when a dis-
assembler for the architecture is available. Thus, XIFER
accurately addresses property P10 (see Section 3).

5.1 Internal Workflow
We explain the implementation of our on-the-fly rewriter

with the running example of ARM code shown in Figure 6.
The example also applies to Intel x86 instructions. This
example assumes a very simplified program that consists of
a branch (beq) whose target is the mov instruction located
at address 837c. This example explains why not all of the
code needs to be disassembled while still guaranteeing an
instruction-granularity randomization. In the following, the
main steps involved in the rewriting process are explained:

1. Loading the executable.

2. Disassembling the bytecode on-the-fly.

3. Building a reference graph of the executable.

4. Applying code transformation.

5. Writing the executable back to memory (fixation) so
that it can start executing

Step 1 — Executable Loading.
In general, a program is composed of different loadable

(code and data) segments. These segments originate from
different files like the executable file itself and shared libraries
the program depends on. Therefore, we intercept the loading
of the ELF executable file after all its dependent libraries have
been loaded in the address space but before execution begins.
To achieve that, we use the LD_PRELOAD environment variable
that defines shared libraries that are forced to be present in an
address space by the operating system. Originally intended
to fix bugs of legacy software by allowing the override the
symbol resolution of shared libraries, it is a perfect anchor
point for our randomization solution. XIFER is compiled as
a library (librewrite.so) to be automatically injected using
LD_PRELOAD and features a special section called .init that is
guaranteed to get executed before any other code. At that
moment in time, the program that is to be randomized and
all libraries the program depends on (including our injected
librewrite.so) are now marked as loaded by the Linux kernel.
This does not mean that they are actually loaded. Luckily,
Linux uses a mechanism referred to as lazy binding for the
resolution of symbols in shared libraries and on-demand
paging for the loading of code in the main executable as
well as all shared libraries. We use the second advantage
of the LD_PRELOAD mechanism, i.e. overriding symbols, to
replace the on-demand resolution of symbols with calls to
our librewrite.so. This way, the rewriter and the standard
Linux linker do not get in each other’s way and do not do
double the work.

By iterating over the mapped shared libraries and the
executable file, we load file handlers to the particular ELF
files representing the code and data of all loaded libraries.
If available, we read the relocation information from the
ELF file as well. However, relocation information provide
no information about local data/code references within a
segment, but XIFER still requires this information in order
to accurately perform code transformations within a code
segment, which makes a disassembly component a necessity.

Step 2 — Disassembly.
The main goal of the dis- and reassembly process is to

make it partial as to avoid putting labor in instructions that
are not modified in the rewriting process anyway. This is
true for the majority of instructions as they do not reference
memory addresses and hence their byte representation is not
affected by the randomization.

ARM and x86 instructions are composed of a mandatory
opcode, potentially followed by other information, most im-
portantly an immediate value such as a memory address.
This eases the processes of disassembly as we can simply use
a look-up table for the opcodes to know whether a particular
instruction uses an immediate value that encodes an address.
If it is not, it is simply treated as a black-box – a blob of bytes.
This feature does not only increase the performance3 but
due to inspecting only instructions of interest, it also comes
in handy because ’uninteresting’ black-box instructions are
treated no different from data. This is an advantage com-
pared to classical disassemblers such as IDA Pro or objdump
which need to decide whether some position is either code or
data.

3Our experiments showed that our disassembler is faster by
factor 10 compared to binutil’s disassembler that objdump
internally uses.

ST
EP

Bytecode Disassembly Reference Graph Transformations Fixation Assembly

1. Adjust Code

2. Identify BBLs

3. Injection

4. Splitting

5. Permutation

0a 00 00 02 beq 837c

e1 a0 00 03 mov r0, r3

ConditionalBranch

to

e1 a0 00 03

EX
A

M
P

LE

Loading

New Address

836c

837c

a7cd4c

New Address

cc94b8

0a 09 31 d3

e1 a0 00 03

Execution

Figure 6: Processing Steps of the Rewriter

In contrast to ARM, which features a fixed-length instruc-
tion set, that of x86 is variable. That means, going through
the code to find instructions is not a matter of indexing them
by a multiple of 4 – which would be the instruction length
for ARM. Hence, for x86 it is impossible to predict where an
instruction begins without knowing where the preceding one
ended. Again, we use the same look-up process to identify
an opcode and look-up its length. The opcode also includes
information about whether optional immediate values make
the instruction longer. Once the length has been determined,
the way is paved to start over at the next instruction and so
forth.

All instructions that reference data or code are candidates
that potentially need to be rewritten later and act as input
to build the reference graph that provides information as
to which other part of code or data an instruction refers
to. The reference graph is similar to relocation information
in the sense that it is architecture-agnostic and only saves
which part of an instruction encodes an absolute or relative
address. As an optimizing step, all instructions still have the
original bytecode attached, so that they can be written back
to memory and are either left untouched in case of a black-
box instruction or are rewritten with aid of the reference
graph that tells which part of the instruction encodes an
immediate value that needs to be adjusted. Further, x86
and ARM are both generic enough, so that changing address-
dependent information in a bytecode is limited to changing
two’s complement bits in a masked representation of the
bytecode. This enables an efficient rewriting process as all of
the original bytes are copied to their new memory position
and are adjusted with the aid of the reference graph.

Step 3 — Building The Reference Graph.
To resolve code and data references, we build a reference

graph by decoding only those instructions that are known
to potentially refer to addresses. As an example decoding,
we explain this process using the beq instruction in Figure 6.
This instruction’s bytecode is 0a 00 00 02, while 0a rep-
resents the opcode (beq) and 00 00 02 encodes the two’s
complement representation of a relative addressing. This
two’s complement representation of the decimal number 2
must be multiplied by 4 (as ARM instructions can only target
addresses that are aligned by a multiple of 4). The beq in-
struction is stored at address 836c which leads to an absolute
target of 836c +2 · 4 = 8374. Moreover, due to the pipelined
architecture of ARM, the program counter PC always points
two pipeline stages (or 8 bytes) ahead, which leads to 837c

as absolute target for the beq instruction. This decoding is
stored as additional FastDecode (see Table 2) information
and is attached to the instruction, so that it can be used to
generate appropriate bytecodes later. Particularly, FastDe-

code information includes whether it is signed or unsigned, a
bit mask, a bit shift and a summand. This coding is generic
enough to enable the rewriter to later write back addresses to
an instruction without understanding the instruction itself,
and is faster than assembling an instruction. In this example,
the attached information would store the values depicted in
Table 2 for the beq instruction.

Info Value
Opcode 0a
Signedness Signed
Bit Mask 0x00ffffff
Bit Shift 2 (left)
Summand 8

Table 2: FastDecode information codes how to write back a
part of an instruction in an assembler-agnostic way

Using this information, we build the reference graph. The
reference graph (see Figure 7) is built by introducing a layer
of indirection. Each instruction is routed through the layer
of indirection to the instruction it refers to. This is the
most important step as it keeps references to the original
instruction, even through they might be moved in memory.

836c

8370

8374

8378

837c

8380

8384

ab cd ef 01 12345

C
o

d
e

D
at

a

beq 8380

b 8374

movw r0, #0x2345

movt r0, #0x1

pop {fp, pc}

mov r0, r3

pop {fp, pc}

Figure 7: Building the Reference Graph from Instructions

Step 4 — Code Transformation.
The rewriter supports grouping instructions to Instruction

Sequences that are later used to move code pieces together in
memory. Inserting instructions in the Instruction Sequence
is supported and used as a building block for the necessary
explicit connection of severed code pieces (see challenge CH1)
or for the insertion of nop instructions that do not change
the program behavior.

The actual idea of randomization, or code piece permuta-
tion respectively, is implemented as operations that can be
applied to Instruction Sequences or individual instructions.
Prior to these operations, the challenge CH1 of implicit
control-flow needs to be tackled. We do this by introducing
explicit branches (e.g., jump 0x1234) at the end of a code
piece in case the original control-flow exhibited an implicit

fall-through as described in Section 4. Using this trick, we
can then move the code to different memory positions and
the reference graph (see Step 3) will later ensure that this
injected jump points corresponding code piece that is ought
to be connected to it. The number of those artificial code
pieces can be specified by the security parameter.

Step 5 — Fixation & Assembly.
This step assigns a randomly chosen address to each code

piece. To keep the number of wasted memory pages low,
code pieces are grouped to sections that resemble the size of
a memory page (e.g. 4 kB). Should an instruction or code
piece not fit in (a multiple of) a memory page, it must go
into the next one. The induced overhead of this procedure
is rather low, as the aligned instructions on ARM allow
exactly 1024 instructions to take place in a memory page
without the need for padding. For x86, there is no standard
instruction length or alignment, hence how many bytes need
to be padded at the end of a memory page varies depending
on the instruction. Our empirical studies have shown that
the padding in the range of 2 to 4 bytes, albeit the theoretical
maximum of one complete instruction that does not fit is 14
bytes4.

We then assign randomly chosen addresses to the created
sections (being a multiple of a page size in length). The
number of sections, again, depends on the security parameter,
as it is not necessary to introduce a higher entropy than the
theoretical limit of either 32 bits of 64 bit address space.

Now every section has an address assigned. We then write
back the instructions to their respective new addresses in
memory while adjusting all code and data references with aid
of the reference graph. This can be efficiently done, as the
original bytecode of an instruction is still stored behind the
layer of indirection by the reference graph. If we encounter an
instruction that references code or data, a new bytecode with
the adjusted address has to be emitted to the corresponding
new location of that instruction with aid of the attached
FastDecode information. If the instruction does not need
any memory address corrections, the old bytecode is simply
copied without the need to assemble a new instruction (see
Figure 8).

Original Memory Image

add r3, r3, #1 cmp r3, #5 beq 837c

Emitted Memory (Piece 1)

movw r0, #1

add r3, r3, #1 cmp r3, #5 beq 837c a7f8

(Piece 2) ...

Reference Graph

FastDecode

a7f8

Figure 8: Emitting the Final Opcodes to Memory

Finishing.
Once the rewriting process is done and execution could

start, we unload the rewriter by releasing the mapped mem-
ory that librewrite.so occupies. This is easily doable as
the entire code of the rewriter resides in the .init section
which is never executed again after it has been finished. This

4The longest x86 instruction consumes 15 bytes

procedure is similar to how the Linux kernel frees memory
after the initialization of modules has finished.

Debugging.
Debugging a software-diversified process is rather difficult

in comparison to the normal process for two reasons: First,
the debugger expects the instructions in memory to be in
the same order as the program that is stored on disk. How-
ever, XIFER completely permuted the layout and addresses
of the process and thereby renders the debug symbols ob-
solete. Since our randomization also shuffles the memory
pages at process load time, this has to be propagated back
to the debugger. In order to solve this problem, debug sym-
bols according to the permutation of our tool are emitted
when requested by the user. We chose to rewrite the de-
bug information of an ELF file to a different file according
to the randomization. Currently we support the common
DWARF [1] file format which can be read e.g. by the ’gdb’
debugger. The gdb debugger can then step through the code,
inspect variables etc. as if the program were unmodified.

The second debugging issue is that two subsequent exe-
cutions of a program result in completely different memory
layouts, which makes it harder for humans to understand
memory-related faults in the program in question. Further,
symbolic debuggers usually allow to visually track data struc-
tures based on their addresses. If the addresses would change
between every program run, finding the new addresses is
labor-intensive. We avoided this issue by adding a debug flag
to librewrite.so that indicates that the same random seed
should be used for every execution of the program, result-
ing in the same memory layout for each executing with the
debug flag enabled. The consequence is that every run of a
particular program ends up in exactly the same address space
layout of a process with every single instruction being at
the exact same address across multiple runs. For all intends
and purposes, this is against common sense of randomizing a
process in the first place but greatly helps debugging a ran-
domized process because all the variables reside at the very
same address across different process runs or even reboots.

6. EVALUATION
In this section we evaluate the effectiveness of our random-

ization solution empirically as well as theoretically. In order
to demonstrate the efficiency, we used industry standard
performance benchmarks (SPEC CPU2006) as well as micro
benchmarks for the important control flow instructions.

6.1 Practical Security Evaluation
In order to test the effectiveness, two experiments were per-
formed: (1) Calculating the gadget elimination. A compar-
ison of found gadgets before and after the randomization.
(2) Mitigation of an exploit targeted to a vulnerable pro-
gram.
Gadget Elimination. We used the 12 benchmark programs
from the SPEC CPU2006 suite (see Table 3) to find ROP
gadgets using the program ROPgadget [2]. After randomizing
the code and writing it to an ELF file, ROPgadget was run
again to check whether and how many gadgets have stayed
at the original position.
Exploit. To demonstrate the effectiveness against an exploit,
we constructed a sample program that is vulnerable to code-
reuse attacks. The code is shown in Appendix A. The
function foo() opens a file of which the path and length

Benchmark
ROP

gadgets
Remaining
gadgets

400.perlbench 67 0
401.bzip2 51 0
403.gcc 194 0
429.mcf 45 0
445.gobmk 105 0
456.hmmer 58 0
458.sjeng 57 0
462.libquantum 45 0
464.h264ref 79 0
471.omnetpp 168 0
473.astar 91 0
483.xalancbmk 460 0

Table 3: Overview of the SPEC CPU2006 integer benchmark
suite. The C++ benchmarks are listed in gray.

are provided as parameters. Then, fgets() reads as many
characters as specified by the file_length parameter and
copies them into the local buffer buf without checking its
bounds. This in turn allows an adversary to divert the control-
flow by overflowing the buffer and eventually overwriting the
return address of foo(), and inject a ROP payload on the
stack. We used ROPgadget to find gadgets in the executable
and then successfully mounted a shellcode exploit.

After the randomized program has been started the ex-
ploit failed. Even intentionally disclosing addresses with
printf ("%x", &foo) no longer works as the relative offsets
in the code segment have been changed.

6.2 Performance Evaluation
We evaluated the performance of XIFER on the Intel x86

platform and conducted micro benchmarks on the ARM
platform. To evaluate the efficiency, we used the SPEC
CPU2006 integer benchmark suite for the x86 version.

Runtime Overhead on Intel x86.
All benchmarks were performed on an Intel Core i7-2600

CPU running at 3.4 GHz with 8 GB of DDR3-SDRAM. We
excluded two of the total twelve benchmarks because they
use C++ exceptions (see section 4.5 CH3). We compiled all
benchmarks using gcc-4.5.3 and the uClibc C library. All
measurements include a complete randomization of the entire
address space including the executable and all shared libraries.
We examined three different randomization configurations:
(Config-1) Maximum entropy of 52 bits, (Config-2) Forcing a
split of code after exactly 15 instructions (Config-3) Strict
BBL permutation: all found BBls are split into code pieces.

The results of our evaluation are summarized in Figure 9
and demonstrate that XIFER is highly efficient and hence
addresses property P7 (see Section 3). For Config-1, which
already achieves an entropy of 52 bits, the overhead is only
5%.

Runtime Overhead on ARM.
In contrast to our evaluation on x86, we conducted mi-

cro benchmarks for ARM. In particular, we used an An-
droid Nexus S device running Android version 4.0.3. To
perform precise measurements, we leveraged the ARM hard-
ware clock cycle counter (CCNT) which is part of the system
co-processor (CP15). To measure the runtime overhead of
our prototype, we developed an application that calculates
10,000 times the SHA-1 hash of a 1K buffer with padding.
The second micro benchmark is a standard bubble sort algo-

0,00%

2,00%

4,00%

6,00%

8,00%

10,00%

12,00%

14,00%

Performance Run-Time Overhead

All BLLs Entropy 52 bits

Figure 9: Runtime Measurements with SPEC CPUint2006

rithm being run on an array of 1024 reverse-ordered elements,
so all elements in the array need to be touched (worst-case
scenario). Again, measured 10,000 times and averaged. In
average, the runtime overhead for the diversified executable
is only 1.52% for the SHA-1 benchmark, and 1.92% for the
bubble sort algorithm.
Cache Miss Penalty. We also evaluated the cache effects
of XIFER. Since wild jumping in the code due to the random-
ization thwarts the locality of code that a processor cache
assumes, it has negative impact. For this impact to be mea-
sured, we handcrafted code that consists of add-instructions
whose input depends on the prior output. These instructions
are aligned in memory so that they start at the beginning
of a cache line and re-occur in memory so that every cache
set and every cache line is filled after execution. The total
number of instructions exactly fit the entire L1 cache of the
Intel Core i7 CPU.

We then split the instruction sequences by inserting jumps
between them while keeping the original number of inter-
dependent add instructions. This effectively decreases the
number of instructions that are executed per cache line be-
fore jumping to the next location. As the jmp instructions
are inserted in equal distance to split the sequences, the total
number of instructions to execute grows larger than the L1
cache, which leads to cache misses and lines being evicted
from the cache in order to load new lines. The total runtime
of all instructions in the cache was measured 100,000 times.

For our benchmark system, equipped with an Intel Core
i7-2600 (32 KB L1 cache, 64 bytes per line), we found an
acceptable minimum length of 6 add instructions (12 bytes)
before a jump. This yields a negligible overhead of 0.4%. On
the other hand, smaller sizes induce a significant number of
cache misses. For instance, when we lower the maximum
number of instructions between a jump to 2 instructions,
we notice 90.3% overhead due to cache misses as every 3rd
instruction is a jump instruction. Hence, we suggest not to
set the granularity of randomization to ≤ 6 since this still
achieves a very high entropy.

6.3 Rewriting Time
Based on the SPEC CPUint2006 benchmarks we also eval-

uated the time XIFER requires to rewrite and randomize
a program. In average, the throughput of the rewriting is

5500 kBit/s which demonstrates the efficiency of our ap-
proach.

6.4 Memory Overhead
The possibility to write out ELF executable or shared

library files might increase their file size compared to the
original, because the code is more bloated and additional
segment have been introduced to cope with the different load
addresses.
File Size. Encapsulating each memory page in a separate
segment in the ELF file requires the allocation of one section
header and one program header per page. A section header is
40 bytes and the ELF program header is 32 bytes which leads
to an overhead of 72 bytes per 4096 byte memory page, or
≈ 1.76%. Figure 10 depicts both, the increase of instructions
due the static translation as well as the increase of the ELF
section and program headers. librewrite.so itself occupies
72 kB when loaded.

0%

5%

10%

15%

20%

25%

ELF File (avg. 1.76%)
Instructions (avg. 12%)

Figure 10: Memory overhead after static translation.

Run-Time. During run-time, the librewrite.so has to
loaded once into the address space of a process. It is, how-
ever, unloaded after the .init section has finished and the
target program has been randomized. The code size of
librewrite.so that is temporarily mapped into an address
space is ≈ 90kB. The overhead due to the inserted instruc-
tion varies. On average, it increases the code by ≈ 5%.

In summary, our approach has a negligible impact on file-
size and memory. Hence, we accurately address criterionP8.

7. OTHER MITIGATION TECHNIQUES
In this paper we focused on randomization-based counter-
measures against code reuse attacks. The main advantage of
these defenses resides in the fact that they typically require
no access to source code, perform efficiently, and are already
deployed in its basic form (ASLR) on today’s commodity
systems. Nevertheless, and for the sake of completeness,
we briefly elaborate on the most well-known countermea-
sures against return-oriented programming like attacks in
the following.

One of the first defense techniques against runtime attacks
(that are based on corrupting return addresses) is Stack-
Guard [8], a compiler extension which inserts random stack
canaries before return addresses on the stack. A more com-
prehensive defense is provided by StackGhost [10] which
encrypts return addresses on the stack and proposes the
concept of return address stacks (i.e., shadow stacks) to keep
valid copies of return addresses in a protected memory area.
However, these defenses only focus on specific code reuse

attacks, and can typically be circumvented by a sophisticated
adversary. Another compiler-based solution against ROP
attacks was proposed by Onarlioglu et al. [27]. The authors
propose a compiler extension for Intel x86 to eliminate the
so-called unintended instruction sequences of a program.

A very well-known binary based solution against code-
reuse attacks is monitoring of the program flow which has
been originally proposed by Kiriansky et al. [22]. In particu-
lar, control-flow integrity (CFI) [3] ensures that a program
only follows legitimate execution paths. However, CFI in-
duces more performance overhead than randomization-based
proposals [3].

8. CONCLUSION
Runtime attacks that reuse existing code pieces (e.g.,

return-oriented programming and return-into-libc) are a
prevalent attack vector against today’s applications. In this
paper, we tackle these attacks and present the design and
implementation of an efficient mitigation technique that is
inspired by the principle of software diversity. Our software
diversity tool XIFER accurately mitigates code-reuse attacks
by diversifying the structure of an application for each run
by means of binary rewriting at the load-time of the appli-
cation. At the heart of XIFER is our binary rewriter which
disassembles application binaries on-the-fly, performs code
transformations and assembles new application instances
with new memory layouts, while still covering the entire
semantics of the initial program. XIFER is fully dynamic,
highly effective (provides a high randomization entropy based
on a security parameter), and efficient (induces only 1.2%
of runtime overhead in average). Moreover, it requires no
access to source codes (which are rarely available in practice),
and is compatible to application signatures. Our reference
implementation targets both ARM and Intel x86 processors.
In order to achieve a highly efficient and effective dynamic
binary rewriter, we had to overcome a number of challenges
which we highlighted in this paper.

9. REFERENCES
[1] Dwarf 2.0 debugging format standard.

http://www.dwarfstd.org/doc/dwarf-2.0.0.pdf.

[2] ROPgadget.
http://shell-storm.org/project/ROPgadget/.

[3] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.
Control-Flow Integrity: Principles, Implementations,
and Applications. In ACM Conference on Computer
and Communications Security (CCS), 2005.

[4] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient
techniques for comprehensive protection from memory
error exploits. In USENIX Security Symposium.
USENIX Association, 2005.

[5] D. Bruenning. Efficient, Transparent and
Comprehensive Run-time Code Manipulation. PhD
thesis, Massachusetts Institute of Technology, 2004.

[6] F. B. Cohen. Operating system protection through
program evolution. Computer & Security,
12(6):565–584, Oct. 1993.

[7] comex. http://www.jailbreakme.com//#.

[8] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang.
StackGuard: Automatic Adaptive Detection and

Prevention of Buffer-Overflow Attacks. In USENIX
Security Symposium, 1998.

[9] R. Enderle. Windows 8: The app store to rule them all?
http://www.conceivablytech.com/9973/products/

windows-8-the-app-store-to-rule-them-all.

[10] M. Frantzen and M. Shuey. StackGhost: Hardware
Facilitated Stack Protection. In USENIX Security
Symposium, 2001.

[11] M. Franz. E unibus pluram: massive-scale software
diversity as a defense mechanism. In Proceedings of the
2010 workshop on New security paradigms, pages 7–16.
ACM, 2010.

[12] G. Fresi Roglia, L. Martignoni, R. Paleari, and
D. Bruschi. Surgically Returning to Randomized lib(c).
In ACSAC, 2009.

[13] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum.
Enhanced operating system security through efficient
and fine-grained address space randomization. In
USENIX Security Symposium, 2012.

[14] D. Goodin. Apple QuickTime backdoor creates
code-execution peril. http://www.theregister.co.uk/
2010/08/30/apple_quicktime_critical_vuln/, 2010.

[15] Google Play. https://play.google.com/store.

[16] J. D. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and
J. W. Davidson. ILR: Where’d My Gadgets Go? In
IEEE Symposium on Security and Privacy, 2012.

[17] V. Iozzo and R. Weinmann. PWN2OWN contest.
http://blog.zynamics.com/2010/03/24/

ralf-philipp-weinmann-vincenzo-iozzo-own-the-

iphone-at-pwn2own/, 2010.

[18] T. Jackson, B. Salamat, A. Homescu, K. Manivannan,
G. Wagner, A. Gal, S. Brunthaler, C. Wimmer, and
M. Franz. Compiler-generated software diversity. In
Moving Target Defense. 2011.

[19] X. Jiang. GingerMaster: First android malware
utilizing a root exploit on Android 2.3 (Gingerbread).
http:

//www.csc.ncsu.edu/faculty/jiang/GingerMaster/,
2011.

[20] M. Keith. Android 2.0-2.1 Reverse Shell Exploit, 2010.
http://www.exploit-db.com/exploits/15423/.

[21] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning.
Address space layout permutation (ASLP): Towards
fine-grained randomization of commodity software. In
ACSAC, 2006.

[22] V. Kiriansky, D. Bruening, and S. P. Amarasinghe.
Secure Execution via Program Shepherding. In
USENIX Security Symposium, 2002.

[23] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. Reddi, and K. Hazelwood.
Pin: building customized program analysis tools with
dynamic instrumentation. In ACM SIGPLAN Notices,
volume 40, pages 190–200. ACM, 2005.

[24] Mac App Store. http://itunes.apple.com/us/app/
apple-store/id375380948?mt=8.

[25] C. Miller and D. Blazakis. Pwn2Own contest.
http://www.ditii.com/2011/03/10/pwn2own

-iphone-4-running-ios-4-2-1-successfully-hacked/,
2011.

[26] National Institute of Standards and Technology.
National vulnerability database statistics.
http://web.nvd.nist.gov/view/vuln/search.

[27] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and
E. Kirda. G-Free: defeating return-oriented
programming through gadget-less binaries. In
ACSAC’10, Annual Computer Security Applications
Conference, Dec. 2010.

[28] V. Pappas, M. Polychronakis, and A. D. Keromytis.
Smashing the gadgets: Hindering return-oriented
programming using in-place code randomization. In
IEEE Symposium on Security and Privacy, 2012.

[29] PaX Team. PaX Address Space Layout Randomization
(ASLR).
http://pax.grsecurity.net/docs/aslr.txt.

[30] M. J. Schwartz. Adobe Acrobat, Reader under attack
from zero-day exploit. http://www.informationweek.
com/news/security/vulnerabilities/227400016,
2010.

[31] H. Shacham. The Geometry of Innocent Flesh on the
Bone: Return-into-libc Without Function Calls (on the
x86). In ACM Conference on Computer and
Communications Security (CCS), 2007.

[32] H. Shacham, E. jin Goh, N. Modadugu, B. Pfaff, and
D. Boneh. On the Effectiveness of Address-space
Randomization. In ACM Conference on Computer and
Communications Security (CCS), 2004.

[33] M. Smithson, K. Anand, A. Kotha, K. Elwazeer,
N. Giles, and R. Barua. Binary rewriting without
relocation information. Technical report, University of
Maryland, 2010.

[34] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh,
and P. Ning. On the expressiveness of return-into-libc
attacks. In Proceedings of the 14th international
conference on Recent Advances in Intrusion Detection.
Springer-Verlag, 2011.

[35] P. Vreugdenhil. Pwn2Own 2010 Windows 7 Internet
Explorer 8 exploit. http://vreugdenhilresearch.nl/
Pwn2Own-2010-Windows7-InternetExplorer8.pdf,
2010.

[36] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin.
Binary stirring: Self-randomizing instruction addresses
of legacy x86 binary code. In ACM Conference on
Computer and Communications Security (CCS), 2012.

APPENDIX
A. VULNERABLE PROGRAM

1 FILE ∗ s F i l e ;
2 void f oo (char ∗path , f i l e l e n g t h) {
3 char buf [8] ;
4 s F i l e = fopen (path , ‘ ‘ r ’ ’) ;
5 f g e t s (buf , f i l e l e n g t h , s F i l e) ;
6 f c l o s e (s F i l e) ;
7 }

