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ABSTRACT

The rapidly increasing data usage and overload in mobile
broadband networks has driven mobile network providers to
actively detect and bill customers who tether tablets and
laptops to their mobile phone for mobile Internet access.
However, users may not be willing to pay additional fees only
because they use their bandwidth differently, and may con-
sider tethering detection as violation of their privacy. Fur-
thermore, accurate tethering detection is becoming harder
for providers as many modern smartphones are under full
control of the user, running customized, complex software
and applications similar to desktop systems.

In this work, we analyze the network characteristics avail-
able to network providers to detect tethering customers. We
present and categorize possible detection mechanisms and
derive cost factors based on how well the approach scales
with large customer bases. For those characteristics that
appear most reasonable and practical to deploy by large
providers, we present elimination or obfuscation mechanisms
and substantiate our design with a prototype Android App.

Categories and Subject Descriptors
C.2.0 [Security and Protection (e.g., firewalls)]

Keywords
Mobile Networks, Tethering Detection, Traffic Obfuscation

1. INTRODUCTION

The success of smartphones is having a tremendous im-
pact on the usage and development of mobile phone net-
works. On the customer side, low prices and the ability to
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run sophisticated applications result in a perpetual use of
Internet services, such as email, video streaming and social
networks. Ubiquitous Internet connectivity enables business
professionals to access company resources while traveling,
transforming idle time in airports, trains, and hotels into
office hours. Since local WiFi connections in hotels or air-
ports are often expensive and sometimes even unavailable,
customers are tempted to “tether” their laptops and tablets
to the mobile network connection provided by their smart-
phone. Already, many commodity smartphones such as An-
droid phones or Apple iPhones have integrated mechanisms
for sharing the network connection, or can be conveniently
modified to do so.

On the provider side, the rapid growth of data usage on
devices like tablets and smartphones has incurred large in-
vestments to optimize and reduce traffic load on the network
infrastructure. Systems and methods are being developed to
dynamically optimize hosting locations of content, broadcast
data in 3G networks and to adjust the bit rate of content
streams based on type and network load. In this setting, un-
expected network usage can induce significant network over-
head, breaking network optimizations and cost calculations.
As such, tethering imposes a significant burden on mobile
communication networks, a cost factor that providers like to
accommodate in appropriate data plans.

Thus, tethering is usually prohibited for private contracts
in most countries, and providers started only recently to of-
fer data plans that explicitly allow tethering at extra cos
In Europe, providers also generally require separate data
plans for tethering, and in a few cases providers deployed
large-scale tethering detectimﬂ However, a limited free rid-
ing behavior has been accepted by providers for many years
and today, many users do not see why they should pay more

'For example, the AT&T “unlimited” data plan does not
include tethering. Several customers, suspected of tether-
ing, were informed to be switched to a different data plan,
unless they report back to AT&T committing to stop their
tethering [16]. Similarly, Verizon recently started to detect
and redirect tethering users to their website, asking them to
switch to a tethering data plan [19].

2For instance, O2 was reported to contact tethering cus-
tomers via phone, to “alert” them to the terms and condi-
tions, and reserve the right to disconnect them [30].
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Figure 1: Tethering Detection Scenario

only because they share their paid bandwidth with other de-
vices. Hence, the recent enforcement of contractual agree-
ments through tethering detection is met with resistance,
and many users attempt to hide their tethering usage |11].

Regardless of whether tethering should cost extra or not,
the fundamental question for customers and providers alike
is how to detect tethering, and at what cost. Naturally, there
are many possibilities for detecting, e.g., the use of “untypi-
cal” web browsers by inspecting application layer content, or
performing a generic traffic pattern analysis. However, these
mechanisms can be rather costly to apply to large customer
bases, and subscribers may apply obfuscation techniques.

To understand the issues associated with tethering, we
must identify and analyze the potential mechanisms for the
provider to classify traffic as tethering or non-tethering, ap-
proximate the costs for these mechanisms and investigate
the effort for the subscriber to defeat classification.

Contributions and Outline.

In this work, we provide the first overall analysis on the
mechanisms and feasibility of detecting tethering, and in-
vestigate how hard it is for the client to hide from such
detection mechanism. After introducing the general prob-
lem of tethering detection in we classify possible
detection methods in and assign cost factors to
them based on the respective associated effort or cost for
the provider. In we discuss how the vast ma-
jority of practical tethering detection mechanisms can be
defeated, verifying the feasibility of our approach with an
Android-based prototype implementation. After reviewing
related work in we conclude in

2. PROBLEM DESCRIPTION AND MODEL

We consider the tethering detection scenario as illustrated
in The subscriber uses a mobile station (MS) to
connect to the mobile broadband network of the provider.
The MS is a highly customizable smartphone that may be
used by the subscriber to connect additional tethered clients
(TC), to share the mobile network connection. The provider
aims to prevent such usage by classifying the network traffic
of its subscribers (customer base) into either tethering or
non-tethering traffic. The undesired tethering traffic can
then be blocked or directly billed according to the provider’s
policy. On the other hand, the subscriber aims to hide its
use of tethering, i.e., to confuse or circumvent the tethering
detection of the provider.

Note that there are also other cases of “tethering” where
the subscriber shares the mobile connection of the provider
not only between own devices but also with third parties.
Alternatively, more powerful mobile devices may (soon) be

running virtual machines, creating a “virtual” tethering sys-
tem. From the perspective of the provider, it is hard to
distinguish these types of tethering from each other. How-
ever, since all of these approaches result in the same network
setup and incur similar load on the mobile provider’s net-
work, we assume that they are equally undesirable.

The subscriber could also deploy a VPN tunnel to hide
connection details from the provider. However, VPNs in-
troduce configuration and compatibility issues, and increase
network delay due to overlay routing. VPNs are also easy to
detect, so that a widespread use of VPN to hide tethering
may result in a ban of VPNs for cheap data plans.

2.1 Adversary Model

For the purpose of this investigation we treat the mobile
provider as the adversary. We assume that the provider has
full control over the network connection of the subscriber
and may re-route, insert, modify or block transmitted pack-
ets. Additionally, the provider is able to read all transmit-
ted data, including application layer information, except in
cases where the subscriber uses end-to-end encryption mech-
anisms like SSL or VPN.

However, the provider is subject to certain practical lim-
itations: The subscriber has full control over the programs
running on the mobile station MS and any tethered client
TC. Moreover, manipulation of application layer content or
active OS fingerprinting may be detected by the subscriber
and regarded as an attack, which we consider costly for the
provider. Some attacks also require more resources than oth-
ers, such as application layer inspection or stateful tracking
of connections, increasing the cost for tethering detection.

We model these limitations by considering the cost or
practicality (“effort”) of the attack with regard to the vari-
ous criteria that may be relevant for the mobile provider. In
particular, we rate the effort as “low”; “medium”, “high” for
the following criteria:

Impact Type: We distinguish passive, active and destruc-
tive detection methods. Passive methods simply moni-
tor transferred network traffic, such as TCP/IP source
and destination header fields, and incur low effort. In
contrast, active attacks manipulate the data that the
provider transfers on behalf of the subscriber or inject
custom packets to prompt a reaction from the sub-
scriber. This generally requires more resources due to
realtime traffic processing and tracking, which we rate
as medium effort. Some active attacks can result in
noticeable interruption of ongoing network communi-
cation for the subscriber and thus are not suitable for
large-scale scanning of a provider’s customer base. We
consider such destructive attacks tmpractical.

Protocol Layer: We distinguish attacks on network layer
(low), application layer (medium) and “behavior layer”
(high). Application layer attacks are generally more
costly than network layer attacks since more complex
protocol parsing and interaction is required, while lower
layer protocols can be processed by most common hard-
ware. With “behavior layer” attacks we denote the
collection of traffic meta-data, which can encompass
simple characteristics like timing and size of packets
or more complex connection patterns. Due to the re-
quired long-term observation of individual customers
we rate this as high effort attack.



Privacy Violation: We distinguish attacks that are not
privacy-critical (low) from those that work with privacy-
sensitive data (medium) (e.g., inspection of application
layer data) and attacks that modify or inject appli-
cation data (high). The latter approaches are often
problematic with regard to data protection laws, and
especially the undesired modification of user data is
strictly prohibited in many countries [18].

Pre-condition: We categorize attacks as either uncondi-
tional (low) or conditional (medium). Unconditional
attacks can always be launched, e.g., traffic analysis or
querying the MS for active fingerprinting. In contrast,
conditional attacks such as special HT'TP or DNS ac-
cess patterns depend on the behavior of the targeted
subscriber and may be more or less likely to occur.
Note that some pre-conditions may be easily met by
longer-term passive observation, while others are only
realistic if the provider can actively manipulate the
MS, such as sending uncommon IP packets for OS fin-
gerprinting. If a pre-condition is unlikely to occur even
in active attack scenarios we denote the attack as im-
practical.

Detection Effort: We categorize detection methods based
on signatures (low), heuristics (medium) or profiles
(high). Heuristic and profile-based methods suffer from
increased costs due to the computational efforts re-
quired for traffic processing, and profile-based meth-
ods are the most expensive as they additionally need
traffic profiles to classify collected traffic with high ac-
curacy. For example, network layer fingerprinting uses
a simple database lookup (“signature”) to classify OS
implementations and is generally cheaper than traf-
fic classification with statistical analysis and machine
learning.

Using this classification, we derive the overall effort for
each attack as the maximum of the efforts for each particular
criterion. For example, the effort of evaluating the HTTP
User Agent header is medium: It is a low-impact attack
(low) but the inspected data is on application layer and may
be considered privacy-sensitive (medium).

2.2 Communication Architecture

We assume a standard 2G /3G network setup on the provider

side and a regular TCP/IP LANEl on the subscriber side.
The mobile station MS dials into the provider’s network and
provides multiple interfaces such as wireless LAN, Bluetooth
and USB to connect to local devices of the subscriber.

2.2.1 Tethering Technology

The tethering mechanism that connects the subscriber’s
LAN to the provider’s WAN can be implemented in several
ways. Most commonly, the MS is used either as a modem
or IP gateway. Historically, the modem solution was used
as it requires the least resources on the MS. However, the
IP gateway solution is preferred on todays smartphones as
it allows the simultaneous use of voice and data services.
Some applications also offer other tethering techniques like
application layer proxies or port-forwarding, however, such

%Note that we use the term TCP/IP in this work to refer to
the complete TCP /IP protocol stack with UDP and ICMP.
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Figure 2: Overview of the 2G/3G communication
architecture.

solutions provide only limited connectivity and are not eas-
ily deployed in combination with, e.g., VPN or VoIP soft-
ware. Hence, we focus on the case of tethering where the
smartphone acts as an IP router and gateway for the LAN,
forwarding IP packets between LAN and WAN.

Technically, IP gateways for tethering on mobile phones
are implemented using Network Address Translation (NAT),
specifically Network Address Port Translation (NAPT) [33].
In NAT the port numbers and request identifiers of UDP,
TCP, ICMP and other protocols are used to multiplex con-
nections from the private LAN IP address space to the sin-
gle, public IP that is typically issued to the mobile station
MS by the provider. The deployment of NAT has three
major consequences for tethering detection: (1) NAT trans-
forms forwarded IP traffic, resulting in a modified traffic pat-
tern that may be used to directly detect NAT; (2) a tethered
client TC is not directly reachable from the WAN, so that,
e.g., active fingerprinting by the provider will always only
detect the MS itself but not TC; (3) since NAT is designed
to be transparent, TCP and UDP payloads are transmitted
unmodified, resulting in several options for tethering detec-
tion at application layer.

2.2.2 Mobile Networks Architecture
shows an overview of the 2G/3G mobile com-

munication architecture. On the left, the MS is connected
to one or more tethered clients via, e.g., wireless LAN. The
mobile station acts as an IP router with NAT for these LAN
clients, forwarding their IP packets through the provider’s
2G/3G network in a General Packet Radio Service (GPRS)
tunnel. The provider’s Base Transceiver Stations (BTSs)
forwards the GPRS frames on link layer to the Base Station
Controller (BSC) and then to the Serving GPRS Support
Node (SGSN) [1]. Once in the provider’s network, GPRS
frames are separated from voice traffic and forwarded to the
Gateway GPRS Support Node (GGSN), where they are fi-
nally forwarded to the Internet [2].

As can be seen in[Figure 2] the lowest protocol layer that is
transported all the way from the MS through the provider’s
network is the topmost IP layer. Any lower layer informa-
tion in the subscriber’s LAN/WLAN is discarded already at
MS, where forwarded TCP/IP packets are encapsulated in
GPRS frames in the same way as locally generated (“non-
tethered”) packets, and are thus indistinguishable on link
layer. Although the IP layer information can have some ef-
fect on lower layers, such as frame length and timing, these
characteristics are also extractable at the IP layer. Hence,
we reduce our analysis of tethering detection mechanisms to
IP and higher layer protocols used by MS and TC.
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Figure 3: Classification of tethering detection mech-
anisms. Tetherway includes defenses against all low
and medium effort detection techniques.

3. DETECTING TETHERING

Superficially, tethering detection appears similar to well-
known mechanisms from network or OS fingerprinting and
analysis of application behavior. However, most common
fingerprinting techniques are not actually applicable and
more complex attacks like active manipulation or traffic anal-
ysis quickly become too costly to be applied to the huge
customer base of a mobile provider.

A general overview of the different types of attacks is pro-
vided in Abstractly, we can classify the possible
tethering detection mechanisms into (1) network layer fin-
gerprinting, (2) application layer inspection and manipula-
tion, and (3) behavior and traffic pattern analysis.

In the following, we discuss each of these approaches in
detail and rate their feasibility and practicality by assigning
costs based on the adversary model in

3.1 Network Layer Attacks

Tethering detection methods on network layer can be gen-
erally described as fingerprinting attacks. However, we must
emphasize that tethering detection is different from the well-
known OS fingerprinting attacks: In OS fingerprinting, the
adversary aims to detect the OS type running on a specific
remote machine, while in tethering detection we are inter-
ested in identifying additional hosts behind the MS, or the
fact that Network Address Translation (NAT) is enabled at
the MS. Hence, many standard attacks are not effective while
other and new attacks become useful. In the following we
thus distinguish passive attacks and active attacks that are
based on (i) requests, (ii) injection, and (iii) manipulation.

3.1.1 Passive Fingerprinting

Passive observation of network and transport layer header
fields and traffic flows can be used to distinguish hosts be-
hind NAT or directly detect the use of NAT. In the IP
header, the fields for Differentiated Services (DS), Expli-
cit Congestion Notification (ECN), IP Flags and especially
Time To Live (TTL) may be used differently depending on

the OS that the packet originates from (e.g., |5} |35} |25]).
Similarly, information on the Initial TCP Window Size and
Sequence Number, the supported types, values and order of
TCP Option fields such as Maximum Segment Size (MSS),
Window Scaling and Timestamps can be used to discrimi-
nate different TCP/IP implementations behind NAT |7} |37,
9]. We consider such passive network layer attacks as low
effort, as they are the least invasive and most scalable.

3.1.2  Fingerprinting by Request

Most established OS fingerprinting techniques assume an
active adversary to query the target with specially crafted
TCP or ICMP requests [32} 4]. However, such requests are
usually answered by the mobile station MS itself, and thus
can only identify the MS and not the TCs. To the best of
our knowledge there are also no active fingerprinting attacks
that directly detect the use of NAT by querying the MS.
Hence, active fingerprinting attacks based on requests are
generally ineffective, as long as they only target the MS itself
and cannot detect its use of NAT, so that we denote such
attacks as impractical.

In the following we discuss two different approaches for ac-
tive fingerprinting which either inject or manipulate packets
of existing connections. The NAT at the MS keeps track of
such existing connections and will forward injected or ma-
nipulated packets as long as they can still be recognized as
part of a known ongoing connectio

3.1.3 Fingerprinting by Injection

An active fingerprinting attack can traverse the NAT bar-
rier by injecting packets into an existing connection, so that
they are recognized and translated by the NAT engine. For
the UDP protocol, no such attacks are known in the related
work, likely due to its inherent simplicity. TCP packet in-
jection attacks are possible but problematic, as packet injec-
tions desynchronize the TCP connection between the orig-
inal sender and receiver [44]. This requires the provider
to constantly manipulate the TCP packet stream until an
opportunity for re-synchronization occurs, or until the con-
nection is ended, or otherwise results in a noticeable inter-
ruption of the TCP session of the subscriber. We rate the
resulting longer-term realtime traffic manipulation as a high
effort attack.

The remaining network layer protocol that is frequently
used today is ICMP. For active fingerprinting of hosts be-
hind NAT, an ICMP error message could be injected from
the provider based on an existing UDP or TCP connection.
A NAT engine is required to statefully rewrite and forward
several types of such messages to ensure transparent IP oper-
ation [34]. However, ICMP errors often signal critical faults
in the forwarding of IP packets and are thus not designed to
generate an observable response. In fact, most ICMP errors
will immediately terminate the respective UDP or TCP con-
nection, leading to noticeable interruptions that make such
approaches impractical.

We have identified only one error message that is (1) regu-
larly forwarded into the LAN behind a NAT gateway, (2) han-
dled by standard TCP/IP implementations, including An-

4In TCP and UDP, the connection is identified by the source
and destination ports and IPs addresses. ICMP packets are
recognized by their identifiers or, in case of ICMP error mes-
sages, based on the UDP/TCP port and IPs contained in
their embedded TCP/UDP fragment [33] |34].
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Figure 4: ICMP injection attack for detecting NAT.

droid, and (3) results in changes observable to the provider
if handled by a tethering client: the ICMP “fragmentation
needed and don’t fragment bit was set” error message. As il-
lustrated in the provider may inject such a message
as a response to an ongoing TCP/IP connection. The error
is forwarded by the NAT gateway, manipulating one of the
tethered hosts to believe into a smaller Maximum Transmis-
sion Unit (MTU) for this particular IP route, i.e., for the IP
layer connection between the source and destination of the
respective TCP or UDP connection. As a result, the target
of the injected ICMP error (TC or MS) will start transmit-
ting smaller packets for that particular IP route, which can
be observed by the provider. But since the ICMP error is
regularly forwarded to only one of the potentially multiple
hosts on subscriber side, the provider can then detect the
use of tethering by checking if all other connections using
the same IP route adopt the same reduced MTU.

The main drawback of this attack is that it only works
if multiple IP connections to the same destination hosts are
opened at the same time by different tethering hosts, as oth-
erwise no difference in the behavior of any two connections
can be observed. While this pre-condition cannot be easily
induced by the provider, it is also not very unlikely to oc-
cur, especially when considering the high frequency at which
email, instant messaging and news aggregation clients con-
nect to popular Internet services today. We classify such
ICMP injection as a medium effort attack due to its active
manipulation of traffic and the required pre-condition.

3.1.4 Fingerprinting by Modification

The adversary may also manipulate IP and TCP headers
that are destined for the MS and potential TCs with the
goal to create observable changes in the connection state or
behavior. The scenario is similar to the ICMP MTU attack
illustrated in When manipulating the IP or TCP
headers of an ongoing TCP/IP connection, the manipula-
tion propagates through the NAT barrier at the MS. The
tethered clients TCy, TCz,... may then act differently de-
pending on the included options, creating a client-specific
feedback that is observable by the provider.

One example of such an attack is to set the TTL for in-
bound packets towards the MS to “1”. Such packets can
be received by the MS, but an additional forwarding to the
TCs would decrement the TTL to “0”, so that the packet is
dropped at the NAT gateway. Similarly, the Flags field or
Header Checksum of the IP or TCP header may be manipu-
lated to detect different types of operating systems through
their different ways of error handling. However, all these

manipulations involve a high risk to noticeably interrupt on-
going connections, making them impractical for scanning of
large customer bases.

There are also several less common optional headers in
IP and TCP that may be handled and supported differ-
ently by different TCP/IP implementations. The provider
may exploit the difference in endpoint behavior to detect
the existence of multiple hosts at the MS, by injecting TCP
options into existing TCP/IP streams and observing the re-
sponse behavior. Due to their optional nature, the injection
or deletion of such options will usually not break the connec-
tion, however, they still require an active manipulation and
stateful observation of the traffic flow, resulting in medium
effort attack.

3.2 Application Layer Attacks

A large number of application layer characteristics can be
used to differentiate hosts behind a NAT, either explicitly
based on meta-data information in protocol headers or im-
plicitly, by exploiting the different features supported by in-
dividual applications. However, the line between mobile and
desktop “Apps” becomes increasingly blurred by the rapid
progress in smartphones and particularly tablets, which are
getting as complex and powerful as desktop systems.

3.2.1 Application Data Analysis

The easiest way to identify the number and type of hosts
and applications on application layer is passive application
layer inspection or Deep Packet Inspection (DPI). Well
known examples for application layer data that identify sys-
tems and applications behind the MS are the User Agent
field in the HTTP header and the host identifier strings
sent as part of eMail or Instant Messaging (IM) communica-
tion [§]. Protocols with more complex negotiation of features
and algorithms, such as TLS or IPsec, also often exchange
an implementation-characteristic sets of supported features
during their negotiation phase, which potentially allow to
distinguish multiple hosts behind a NAT gateway even if
the actual user data is encrypted.

Passive application layer attacks are highly practical. The
required DPI can be done asynchronously and is already
available for several policy-enforcement scenarios in the net-
work management. Hence we can rate this approach as
medium effort.

3.2.2 Application Layer Injection

For active attacks, i.e., the injection of code into trans-
ferred websites or the redirection of users to the provider’s
servers, the attack surface for distinguishing TCs is prac-
tically unlimitecﬂ However, such active attacks are also
rather resource intensive, have a high risk of getting noticed
and may be interpreted by the client as intrusion and pri-
vacy invasion |19} |30]. According to our cost model, the
effort for such attacks is therefore considered to be high due
to potential privacy violations.

3.3 Traffic Metadata Analysis

The third main category of tethering detection concerns
the analysis of traffic meta-data. Similar to application
layer attacks, the area of statistical traffic analysis is very
large [10]. However, we can single out two approaches that

5See, e.g., http://browserspy.dk and the demonstration at
https://panopticlick.eff.org/
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result in rather efficient detection mechanisms, while the
more sophisticated traffic analysis with machine learning is
more resource intensive.

We emphasize that the popular packet size and timing
analysis usually requires long-term observation and sophis-
ticated machine learning techniques to classify traffic with
reasonable accuracy. As such it constitutes a rather high
effort attack when applied to the large customer base of a
mobile phone provider.

3.3.1 Endpoint-Specific Services

Many operating systems and applications can be identi-
fied based on the individual Internet services they use. For
example, Android phones are unlikely to connect to the Mi-
crosoft Windows update servers or to package repositories
provided by most large Linux distributions. Instead, they
will mainly connect to the Android Market for software up-
date information, and to the configured Google, Exchange or
Facebook accounts for synchronization of contact data, etc.
Similar considerations apply to individual applications such
as anti-virus scanners, office suites, PDF viewers and Java
runtime environments that are known to regularly contact
the servers of their respective vendors.

A special case of this category are tethering applications
provided by the mobile provider itself, which explicitly sig-
nal the use of tethering by switching the provider’s access
point (APN). These applications are regularly shipped with
iPhones, but also with many Android phones.

Endpoint-specific tethering detection requires only passive
traffic monitoring on network layer, without any particular
post-processing of data. While the considered events (pre-
conditions) are usually not easily to trigger by the provider,
they are still likely to occur. For example, many systems
check for software updates as soon as an Internet connection
is established. Hence we rate this kind of attacks as low
effort.

3.3.2  Statistical Analysis

With this category we denote approaches that use sim-
ple frequency or random distribution analysis, i.e., which
employ rather simple analysis models [6] [13]. Well-known
examples of this category concern the random distribution
or range of values in individual network layer header fields,
such as the IP ID fields |35, |5] or the clock skew in values
of the TCP timestamp header [9]. We also found that the
port-multiplexing of NAT leads to distinctive changes in the
source port range and distribution. In contrast to previous
works [35], we found this characteristic to be highly suitable
for tethering detection (cf. and [4.3)).

A common property of these attacks is that they con-
cern only lower-layer protocols and require only short to
medium observation time, so we consider their overall cost
as medium.

3.3.3 Machine Learning

Apart from the direct evaluation of header fields and con-
nection states, a major approach in the classification of traf-
fic is the traffic pattern analysis with machine learning. This
approach is characterized by collection and model-based anal-
ysis of network meta-data such as traffic volume, packet size
and timing, as well as more complex patterns like the num-
ber of simultaneous TCP connections for given destinations,
or with specific higher-layer protocols.

IP Gateway :
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Appl. Layer | | LocaI'IP
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TCP/IP Masked | !
! Normalizer NAT ;

Figure 5: Tethering Normalization Architecture.

An example attack that could be mounted in this way to
reveal tethering is the detection of multiple browser caches
at the client, which results in different HTTP object request
patterns. Alternatively, the provider may attempt to distin-
guish particular TCP flow control algorithms implemented
at the MS, based on how individual TCP connections in-
crease or throttle their packet rates over time.

The data processing phase involves the use of general-
ized profiles that are created by observing and then either
implicitly or explicitly classifying large amounts of data (su-
pervised or unsupervised learning, see [28, |42|). However,
supervised learning involves a high effort in the learning
phase, and the results of unsupervised learning require simi-
larly high effort to confirm potential matches and filter false
positives [20]. In the end, all types of learning-based traf-
fic analysis appear to require long-term observation, careful
system analysis and post-processing. Due to the high costs
in regard to Detection Effort and Protocol Layer we rate
their overall effort as high.

4. DEFEATING TETHERING DETECTION

To evaluate the practicality of tethering detection, we have
developed a generic architecture for normalization and ob-
fuscation of the tethering characteristics identified in
In this context, normalization describes the process
of modifying the distribution of values for the previously
identified characteristics, such that they are close or identi-
cal to the distribution of a non-tethering system. We have
implemented a prototype to defeat against the most practi-
cal (i.e., cheapest) attacks identified above and compare its
performance against simple VPN solutions.

4.1 Tethering Normalization Architecture

depicts our approach to normalization and obfus-
cation of tethering characteristics in network traffic. There
are two main components for traffic normalization: (1) the
Application Layer Filter and Cache and (2) the TCP/IP
Normalizer with Masked NAT. A packet filter is used to
assign data streams to the respective components, and after
processing all packets are forwarded through the same WAN
interface to the provider, as discussed in

The Application Layer Filters must be developed specifi-
cally for each individual application layer protocol, like HT'TP,
and can thus also normalize application-specific patterns
such as the User Agent meta-information in HTTP head-
ers. Moreover, they can block, aggregate and cache queries
to obfuscate access behavior and traffic patterns or imitate
desired patterns. After the application layer payloads are
processed, they are forwarded using the local IP handler of
the MS, so that no TCP/IP layer normalization is required.
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Figure 6: Normalized IP and UDP header fields.

The main disadvantage of this approach is that it must be
implemented for each individual application protocol and
cannot handle unknown protocols.

Hence, we have added the TCP/IP Normalizer as a generic
network layer normalizer in case no Application Layer Fil-
ter was defined for a particular data stream. This also in-
cludes many protocols where application-layer processing is
not possible or not deemed necessary, such as encrypted
traffic. As a network layer normalizer, its capabilities are
limited to the normalization of header fields and filtering
of unusual requests and header options, as detailed in
The normalization is followed by the Masked
NAT component, which translates the IP address range of
the LAN traffic to that of the WAN traffic [33]. The NAT is
masked in the sense that the range and distribution of the
modified header fields are indistinguishable from that of the

local IP stack (cf. [Section 4.2.1)).
4.2 Tethering with Tetherway

To verify the practicality of network normalization on
smartphones, we implemented an Android App for tethering
normalization system called Tetherway. Tetherway is based
on the popular Android App andmz’d-wiﬁ-tetherﬂ which can
use the ad-hoc wireless network, USB or Bluetooth personal
network of the MS to connect to tethered clients, providing
a standard IP gateway with DHCP and NAT. In the follow-
ing we describe the implementation details of the TCP/IP
Normalizer, Masked NAT, and two Application Layer Filters
for DNS and HTTP. We denote packets that are destined to
the Internet or provider network as outbound packets, and
packets destined for the MS or TCs as inbound packets.

4.2.1 TCP/IP Normalization

We have implemented a TCP /IP packet normalization us-
ing the libnetfilter-queue extensiorﬂ of the Linux firewall
subsystem. The extension allows us to program custom
packet filters in the Linux userspace, enabling arbitrary rewrite
of network packets to simulate non-tethering behavior.

IP Header Normalization.

On IP layer we reset the DS field for outbound packets
and enabled ECN. We set the TTL field to 64 and also
reset the IP flags and fragment offset to disable fragmenta-
tion, as this is the default behavior in Android smartphones.

Shttp://code.google.com/p/android-wifi-tether/
"http://netfilter.org/projects/libnetfilter_queue/
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Note that while NAT cannot handle fragments, Linux trans-
parently defragments packets before NAT processing so that
they are treated in the same way, regardless of whether they
are destined for the MS or TCs.

More involved is the adjustment of the IP ID field to
elicit the same random distribution as the IP ID values of
a standard Android platform without NAT, i.e., a random-
ized initial value that is incremented with each packet of the
same TCP/IP session. To imitate this behavior of modern
Linux kernels we have implemented a corresponding stateful
rewrite of IP IDs for TCP/IP sessions, using local copies of
the respective randomization functions in the Linux kernel.
For UDP, no normalization is required since the standard
behavior to set the IP ID to zero is the same as it is done
by regular NAT in Linux. Only in case of DNS requests,
the IP ID may contain a random number to mitigate DNS
cache poisoning attacks [21]. However, we have deployed a
caching DNS proxy for this case. Finally, our system filters
all inbound and outbound IP options as they are usually not
used or needed.

ICMP MTU Exceeded Injection.

The ICMP injection attack we proposed in
can be partly mitigated by replicating ICMP errors on the
NAT gateway: Similar to the approach of IPsec, the gate-
way can record received ICMP MTU errors from the WAN
and distribute them not only to the respective LAN host ref-
erenced in the error message, but also to all other hosts that
send a packet larger than the reported MTU to the same
destination IP. As a result, the provider will not receive any
packets larger than the MTU size previously injected. The
provider could still wait for the reduced MTU values to time
out on the individual TCs, an event that occurs at different
times depending on the deployed OS at the TCs. However,
this event occurs only after 1-2 minutes, complicating detec-
tion as many T'CP connections are not sufficiently long-lived.

Hence, while our defense is not perfect, the attack cost
is increased by requiring long-term observation and the pre-
condition of multiple long-lived TCP connections is less likely
to occur, so we rate the new effort for this attack as high.

TCP and UDP Header Normalization.

and [7] give an overview of the normalized fields
in the typical TCP/IP headers. For the TCP header, we
normalize the Sequence Number field and the ECN and Re-
served Flags, as well as several TCP option headers. The Ac-
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knowledgment Number, Window Size and Checksum fields
are also updated as a consequence of other corrections.

Just like in the IP header, the Explicit Congestion Notifi-
cation (ECN) flags can be safely reset to always enable ECN
support: ECN is supported by all modern hosts, and systems
that do not support ECN suffer the resulting performance
penalty in any case.

To normalize the TCP (Initial) Sequence Number (ISN),
we statefully track TCP connections and use the functions
for randomized ISN selection from the Linux kernel to se-
lect a new ISN for each TCP connection over NAT. Since
the endpoints of a TCP connection rely on the sequence
numbering for ordering and acknowledging received TCP
segments, we then record the offset between the original
and newly chosen ISN for each new connection and adjust
(1) all subsequent Sequence Numbers on outbound and (2)
all Acknowledgment Numbers on inbound packets accord-
ingly. Hence the provider is unable to distinguish ISNs for
tethering, and all Sequence Numbers are correctly rewritten
regardless of the packet reordering.

TCP Option Headers.

We must normalize the various TCP Option headers to
mitigate the problem of fingerprinting by modification (cf.
ISection 3.1.4)). For this purpose, we purge all TCP Options
that are not used by Android from inbound as well as out-
bound packets, i.e., all Option headers except for the Mes-

sage Segment Size (MSS), Selective ACK (SACK), Timestamp

(TS), Window Scale (Wscale) and No Operation (NOP)
fields. For outbound packets, we furthermore normalize the
order and content of the remaining supported TCP Options.

The MSS Option can be normalized using the iptables
clamp-mss-to-pmitu option. The SACK and Wscale Op-
tions are used only in the initial TCP handshake to signal
support for selective acknowledgments and window scaling.
The SACK Option does not contain any actual values and
thus does not require normalization, except for its location
within the TCP header. However, the Wscale Option on
mobile stations often advertises the smaller Window Scale
factor than the one used for the LAN and WLAN interfaces
of desktop systems. To transparently rewrite this value, we
statefully track the TCP connection, recording the original
Window Scale factor before reseting it to the typical Wscale
factor of “1” for Android. For all outbound TCP headers,
we recompute (left shift) the Window Size header value to
compensate for the smaller Window Scale factor. In the
worst case, this modification reduces the absolute receive
window assumed by the sender, possibly reducing TCP per-
formance. However, this is also the expected behavior for a
regular (non-tethering) MS. Finally, the T'S Option adds two
timestamps to all TCP packets to let endpoints compute the
precise Round-Trip Time (RTT) of a connection 17} 9]. To
make the TS values indistinguishable from the timestamps
of the MS, we simply replace all timestamps inserted by the
TCs with values generated by the MS. The resulting change
in the computed RTT is negligible, as TC and MS are typi-
cally very close.

Apart from the SACK Option, all of the discussed Options
could be synthesized on the gateway without breaking the
TCP session. However, currently we treat a missing TCP
Option as an error and do not currently implement such
synthesis.
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Figure 8: Source port distributions for Android and
Windows 7 without NAT, with NAT and with Teth-
erway.

Masked NAT.

The source port multiplexing by NAT, or more specifi-
cally Network Address Port Translation (NAPT), can lead
to characteristic source port distributions: Firstly, the stan-
dard Linux NAPT implementation uses a different port range
than the standard range for ephemeral source ports in out-
bound connections. Moreover, Linux NAT tries to preserve
the original source ports whenever possible, so that source
port distributions of different TCs are likely to remain visible
regardless of NAT (cf. [Figure §).

Fortunately, the Linux NAPT subsystem also supports
two parameters to set the port range and enable port ran-
domization. By source code inspection we confirmed that
enabling port randomization disables the preservation of
source ports, and that the employed randomization function
is the same as the one used in the ephemeral source port se-
lection for local traffic. Hence, we can eliminate differences
in the distribution of source port values sent via NAT versus
that of local connections by the MS, by enabling randomized
port mapping and setting the same range of ports as used
by the regular ephemeral port selection of Android.

4.2.2 Application Layer Proxies

We have implemented application layer filtering for the
two most used services, DNS and HTTP. In both cases we
have deployed standard application layer proxies to imple-
ment the filtering and caching required for eluding tethering
detection.

For HTTP, we deployed Pm’voxq,ﬁ as a filtering proxy.
Privoxy is used to anonymize HTTP traffic for users of To%
and provides extensive and well-tested rules for filtering, e.g.,
user tracking based on cookies and Webbugs, or embedded
active content such as Adobe Flash. To obfuscate object
request patterns on the behavior layer, the filtering proxy is
backed by a caching parent proxy, Polz‘pﬂ As a result of
this construction, the HT'TP request behavior becomes sim-
ilar to that of an endpoint with only a single browser cache,
as it would be expected from a non-tethering MS.

For DNS, we use dnsmasq{El as a local DNS cache on the
MS. We implement a simple DNS filter by returning the lo-
cal host IP address 127.0.0.1 for blacklisted DNS records.

8http://www.privoxy.org/
%http://www.torproject.org

Ohttp://www.pps. jussieu.fr/~jch/software/polipo/
"http://thekelleys.org.uk/dnsmasq/doc.html
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Figure 9: Power consumption for Tetherway com-
pared to regular tethering and VPN.

This can be used to block behavioral patterns like accesses
to Windows Update or the standard Windows time synchro-
nization servers.

4.3 Evaluation

We evaluate the efficiency of our normalization engine by
comparing the phone’s power consumption while download-
ing 960 objects (50MB total) from 2 websites using (1) reg-
ular non-normalizing tethering, (2) a typical VPN software
and (3) our Tetherway prototype. In particular, we com-
pared Tetherway against the android-wifi-tether App that
it is based on, and against Juniper Junos Pulse VPN for
Android. As can be seen in the total energy con-
sumption and the amount of time of Tetherway for com-
pleting the same task are close to that of regular tethering
and notably below that of a VPN client. This confirms our
subjective impression that responsiveness of the VPN con-
nection was notably lower, likely due to the additional hops
introduced by the VPN tunnel.

To confirm the proper normalization of header fields, we
compare the distributions of critical header fields such as the
source ports in and TCP initial sequence numbers
in In each case, a clear difference in the distribu-
tions of standard Android and a Windows 7 TC can be iden-
tified. Specifically, shows a highly predictable port
usage for Windows 7 hosts, while Android uses a different
port range with randomized source port selection. Similarly,
the random distribution of the TCP ISN values shown in
Figure 10|is distinctively different for Windows 7 and Linux,
with Windows hosts using a larger range of values that are
not changed by regular NAT. In contrast, the distribution
of the Windows 7 client behind Tetherway is similar to the
one expected from a non-tethering Android MS.

We conclude that our normalization is efficient and effec-

tive, making tethering detection much harder for the provider.

VPN software can also be used to hide all of the identified
tethering characteristics, by setting up the MS as a VPN
gateway for the TCs. However, VPNs are not designed for
this purpose, resulting in noticeable network overhead and
increased power consumption. Moreover, with a widespread
use of tethering via VPN, mobile providers may be tempted
to restrict the use of VPNs to specialized “business” data
plans, for exactly the same reasons that they try to restrict
the use of tethering today.

4.4 Limitations

Tetherway focuses on the most common and most easily
detected tethering characteristics, as illustrated in [Figure 3|
Several possibilities remain to identify tethering setups. Our
HTTP and DNS caches do not enforce a particular packet
timing or obfuscate patterns in the network access behavior
of email or IM clients. However, such normalization can be
added, e.g., using the Linux network emulator nete

Furthermore, although HTTP and DNS traffic accounts
for a large amount of device mobile traffic, many other proto-
cols such as Simple Mail Transfer Protocol (SMTP), Internet
Message Access Protocol (IMAP) or the several Instant Mes-
saging protocols are also in widespread use. However, most
modern applications employ encryption based on TLS, hid-
ing any application layer characteristics.

Note that several more complex detection mechanisms,
e.g., based on traffic analysis, may still be viable if the
provider applies some preliminary filtering to reduce the
number of suspects, e.g., based on the amount of traffic us-
age. However, an in-depth analysis of these approaches is
outside the scope of this work.

S. RELATED WORK

To our knowledge, this work is the first to consider the
problem of tethering detection, which can be seen as a gen-
eralization of the previously considered NAT detection. We
systematize tethering detection methods and show that the
most cost-effective techniques can be mitigated efficiently.

Vendors like Cisco and Sandvine already provide tethering
detection solutions [12} 31]. However, they currently inspect
only a rather simple mix of network and application layer
headers, indicating that injection or traffic analysis attacks
are indeed more costly. Consequently, first tethering Apps
also provide correspondingly simple detection countermea-
sures like resetting the IP TTL ﬁelﬂ or using proxie

Regarding the general problem of tethering detection, we
identify three major categories of related work: (1) Reveal-
ing multiple hosts or different operating systems behind an
IP gateway, (2) detecting use of NAT and (3) performing
general statistical analysis of network traffic.

Direct NAT detection. The use of NAT and the count-
ing of hosts behind NAT was previously considered as a
general problem of network mapping and measurement. For
example, it was proposed to detect NAT based on analysis of
the IP ID field in the IP header and to count “NATed hosts”
through reconstruction of IP ID sequences [5]. In another
approach, a naive Bayesian classifier was used to detect hosts
behind NAT based on IP TTL, DF, initial TCP window size
and TCP SYN packet size |7]. Similarly, the authors of [35]
propose to combine multiple parameters to increase detec-
tion accuracy, using data such as IP ID, TTL and source
port distribution.

We consider these attacks among the most practical since
they involve only simple statistical analysis on network layer
data. We extend on these works by showing that source port
distribution is a highly practical tool for detecting NAT,
and that countermeasures for all previously presented net-
work layer NAT detection techniques are feasible even on

resource-limited devices (cf. [Section 4.2.1)).

12See, e.g.,[tcn.hypert.net/tcmanual . pdf
!3PdaNet 5.01 http://junefabrics.com/index.php
Mandroinica.com/tag/clockwordmod-tether/
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Fingerprinting and Scrubbing. OS fingerprinting is a
general technique to identify remote systems by the differ-
ence in their TCP/IP stack implementations and
network scanners like Nma or p0f"| are widely available.

However, as shown in our analysis, the most common ac-
tive fingerprinting attacks, which work by sending specially
crafted requests to the target, are ineffective in case of teth-
ering detection (cf. [Section 3.1). Similarly, most fingerprint-
ing attacks that rely on the modification of header fields of-
ten break the affected connection, making them unsuitable
for tethering detection by providers.

Multiple works propose normalization or scrubbing of net-
work traffic, such as IP Personalit, Morph or ip-
Morph . Network-based normalization has also been
proposed to normalize traffic for processing in network in-
trusion detection systems . The main difference be-
tween Tetherway and existing solutions is the purpose of
normalization, which determines the kind of distributions
to imitate and in our case requires, e.g., the use of masked
NAT, while defense against active fingerprinting by request
is not needed.

Traffic Analysis. Traffic analysis has been used to de-
tect network applications , online activities , behav-
ior profiles of client systems and properties of the en-
crypted network, namely routing and flows . Further-
more, it was shown that traffic analysis could yield results
even if the transferred packets are encrypted or timing is
masked @] On the other hand, various counter-
measures against traffic analysis have been proposed, rang-
ing from network layer meta-data normalization
to efficient application layer obfuscation .

We believe that complex traffic analysis attacks are not
practical for tethering detection with large customer bases.
Instead, we only normalize header fields such as the TCP /IP
source ports, which elicit highly characteristic patterns in
case of tethering. While we deploy application layer proxies
for simple obfuscation of packet timing and connection pat-
terns, we defer a detailed analysis of possible novel attacks
and countermeasures for later work.

http://nmap.org/
http://1camtuf . coredump.cx/pOf . shtml
Yhttp://ippersonality.sourceforge.net/

6. CONCLUSION

We have presented the first general analysis and classifi-
cation of tethering detection techniques. Our analysis indi-
cates that tethering detection is a heuristic, highly fragile
process, and many techniques are easily defeated by a mod-
ified mobile station.

VPN software can be used as a readily available tool to
evade tethering detection, but reduces network performance
notably and is easily detected by the mobile provider. In
contrast, our Tetherway prototype closely imitates regular
non-tethering traffic with modest overhead.

The large amount of potential attacks makes comprehen-
sive precautionary measures impractical. However, given a
known specific detection mechanism, additional normaliza-
tion or obfuscation mechanisms can often be deployed. As
a result, we expect that any widespread tethering detection
method will quickly be countered through community ef-
fort, increasing the development cost at the provider until
tethering detection itself is not cost-effective anymore.

For future work, it would be interesting to further inves-
tigate the potential and efficiency of traffic analysis in face
of basic defenses such as proxies or random packet delays.
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