
A SECURITY ARCHITECTURE FOR ACCESSING
HEALTH RECORDS ON MOBILE PHONES

Alexandra Dmitrienko, Zecir Hadzic, Hans Löhr and Marcel Winandy
Horst Görtz Institute for IT Security, Ruhr-University Bochum, Germany

{alexandra.dmitrienko, zecir.hadzic, hans.loehr, marcel.winandy}@trust.rub.de

Ahmad-Reza Sadeghi
Fraunhofer-Institut SIT Darmstadt, Technische Universität Darmstadt, Germany

ahmad.sadeghi@cased.de

Keywords: Health records, mobile computing, smartphone, security architecture, trusted computing.

Abstract: Using mobile phones to access healthcare data is an upcoming application scenario of increasing
importance in the near future. However, important aspects to consider in this context are the high
security and privacy requirements for sensitive medical data. Current mobile phones using standard
operating systems and software cannot offer appropriate protection for sensitive data, although
the hardware platform often offers dedicated security features. Malicious software (malware) like
Trojan horses on the mobile phone could gain unauthorized access to sensitive medical data.
In this paper, we propose a complete security framework to protect medical data (such as electronic
health records) and authentication credentials that are used to access e-health servers. Derived
from a generic architecture that can be used for PCs, we introduce a security architecture specif-
ically for mobile phones, based on existing hardware security extensions. We describe security
building blocks, including trusted hardware features, a security kernel providing isolated applica-
tion environments as well as a secure graphical user interface, and a trusted wallet (TruWallet) for
secure authentication to e-health servers. Moreover, we present a prototype implementation of the
trusted wallet on a current smartphone: the Nokia N900. Based on our architecture, health care
professionals can safely and securely process medical data on their mobile phones without the risk
of disclosing sensitive information as compared to commodity mobile operating systems.

1 INTRODUCTION

The usage of mobile phones as multi-purpose
assistant device in healthcare has been proposed
in several application scenarios. Its usefulness is
derived from its mobility and flexibility, i.e., to-
day’s smartphones offer appropriate computing
and storage capacity allowing the realization of
various applications that can be used basically
from everywhere. For instance, healthcare profes-
sionals can use a mobile phones to download and
share electronic health records of their patients
(Benelli and Pozzebon, 2010). In other scenar-
ios, patients use their mobile phones to provide
personal health data, e.g., taken from additional
bio-sensors, to a medical information and diagno-
sis system (Han et al., 2008).

While smartphones are very flexible and cost-

efficient computing devices, they generally do not
offer sufficient security mechanisms to protect the
data they operate on. This is mainly due to the
architectural shortcomings of their operating sys-
tems, which are derived from the same (secu-
rity) architecture as desktop operating systems.
Typical examples are Google Android (Android
Open Source Project, 2010), Apple iOS (Apple
Inc., 2010), Symbian (Symbian Foundation Com-
munity, 2010), and Windows Mobile (Microsoft,
2010). Although, some of them provide more so-
phisticated security mechanisms than their desk-
top counterparts, e.g., application-oriented access
control in Android (Google Android, 2010), they
still suffer from fundamental security problems
due to their large code base and complexity, lack-
ing of strong isolation of applications (secure exe-
cution) and insufficient protection of stored data



(secure storage). Recent attacks on smartphones
demonstrate their vulnerability (Iozzo and Wein-
mann, 2010; Vennon, 2010; Aggarwal and Ven-
non, 2010). But the secure operation of a mobile
phone is an important aspect when a user is work-
ing with security and privacy-sensitive data such
as personal health records on the device.

Especially in healthcare telematics infrastruc-
tures, the end-user systems of health professionals
have been identified as an insecure and less spec-
ified component (Sunyaev et al., 2010). Malware
on the user’s computing platform could steal pass-
words that are used to access healthcare informa-
tion systems, manipulate data such as medical
prescriptions, or eavesdrop on and copy private
data such as personal health records. While the
connection of stationary desktop systems to the
healthcare telematics may be protected by addi-
tional secure hardware network components like,
e.g., special firewalls and gateway routers, the sit-
uation gets worse when mobile phones are used.
Due to their mobility and changing connectivity
(wireless LAN or GSM network), mobile phones
may usually only use Virtual Private Network
(VPN) technology to secure the connection. But
the necessary credentials, like user passwords and
VPN keys, are not sufficiently protected against
malware on the device, and, hence, could be ac-
cessed by unauthorized parties.

However, modern smartphone hardware offers
advanced security functionality, which are embed-
ded in their processors, but generally not used by
the mainstream mobile operating systems. For
instance, ARM TrustZone (Tiago Alves, 2004)
and Texas Instruments M-Shield (Azema and
Fayad, 2008) offer secure boot1 functionality, se-
cure storage and secure execution environments
for security-critical functions, which are isolated
based on hardware mechanism from other pro-
cesses running on the phone.

On the other hand, previous works on secure
operating systems, e.g., (Fraim, 1983; Karger
et al., 1990), have shown how to achieve strong
isolation for secure execution and to have less
complexity for the trusted computing base, i.e.,
the code that all security relies upon. The con-
cept of a security kernel (Anderson, 1972) in-
corporates all relevant functionality needed to
enforce the security into a kernel that is iso-
lated and protected from tampering by other
software and small enough to be verifiable for

1Secure boot means that a system terminates the
boot process in case the integrity check of a compo-
nent to be loaded fails.

its correctness and security. While earlier sys-
tems suffered mostly from poor performance in
those days, recent CPU hardware technology, es-
pecially their virtualization support, and the de-
velopment of efficient microkernel software archi-
tectures (Liedtke, 1995) allow for the realization
of security kernels with low performance over-
head while maintaining compatibility to exist-
ing applications. For example, Turaya (EMSCB
Project Consortium, 2008) and the OpenTC se-
curity architecture (The OpenTC Project Con-
sortium, 2009) are research efforts that take ad-
vantage of these technologies to develop a security
kernel on modern CPU hardware.

Contribution In this paper, we propose a se-
curity architecture for accessing e-health services
on mobile phones. We present the combination
of efficient solutions that current technology can
offer on mobile phones for the secure handling of
accessing and processing of security-sensitive data
such as electronic health records. In particular,
we propose (i) a security framework to create a
secure runtime environment for medical applica-
tions, and (ii) specific tools that protect the au-
thentication of users and their mobile devices to
e-health servers.

In our security framework, we combine the
concept of a security kernel with hardware se-
curity features of modern mobile phone proces-
sors. On top of this layer, we use isolated ex-
ecution compartments to separate applications
that process medical data (e.g., an EHR viewer)
and applications that process non-medical data
(e.g., the telephony application or an ordinary
web browser).

As a secure authentication tool, we propose a
trusted wallet service that protects the user’s lo-
gin credentials and performs the authentication
to e-health (or other) servers on behalf of the
user. This tool protects the users from being
tricked into entering their credentials in malicious
applications or faked web sites, and takes advan-
tage of the underlying security framework to pro-
tect the credentials from malicious software po-
tentially running on the phone. We present a new
implementation of this wallet for mobile phones
based on the Nokia N900 platform.

Compared to commodity mobile phone oper-
ating systems, our approach provides a secure en-
vironment against software attacks like malware.
The usage of security-critical data like patients
health records is effectively isolated from other
software running on the phone, and secret data



like login credentials to healthcare information
systems is protected by the advanced hardware
security features.

In the following, we describe the usage and
adversary scenario we consider (Section 2). Then,
we present our security architecture (Section 3):
first from a generic perspective, which can be used
on all platforms, followed by its instantiation on
mobile phone platforms. In Section 4, we describe
how our architecture can be implemented and we
present our Mobile TruWallet prototype. Finally,
we conclude in Section 5.

2 PROBLEM SCENARIO

We consider a scenario in which electronic
health records (EHRs) of patients are stored on
a local server of a healthcare provider, e.g., in a
hospital. Health care professionals, like doctors
and nurses, are equipped with mobile computing
devices (smartphones) on which they can create,
edit, and view EHRs. The EHRs are stored on
the e-health server, and the smartphones commu-
nicate with the server via wireless network con-
nections. For instance, the access of medical data
can be realized with web-based applications, us-
ing standard web browser software on mobile de-
vices. Figure 1 depicts the scenario we consider.

Figure 1: Use Case and Adversary Model

Since EHRs are very security-sensitive pri-
vate data, and in most countries protected under
strong privacy laws, unauthorized access to these
data must be prevented. An adversary may try
to eavesdrop or manipulate the sensitive data. As
mentioned before, end-user devices are typically
the least specified and least secured devices in
healthcare infrastructures. Hence, an adversary
would most likely try to attack the mobile phone
and its communication connection to the server
in order to illegitimately access medical data.

Studies like (Vouyioukas et al., 2008) have an-
alyzed how to secure the data transfer, i.e., via
encryption (for confidentiality), digital signatures

(for integrity and authenticity), and user authen-
tication (for legitimacy of access). However, the
protection of the critical cryptographic keys that
are needed for those mechanisms is not addressed
appropriately. Hence, an attacker who gains ac-
cess to these keys can circumvent any other pro-
tection mechanism.

Therefore, in this paper we concentrate on an
adversary model in which the attacker targets the
mobile computing device of health care profes-
sionals in order to obtain the secret login creden-
tials or keys that are needed to access the EHR
server. Once the adversary has access to these
credentials, he can download or modify all medi-
cal data from the server to which the credentials
allow access to. To achieve this goal, the adver-
sary can follow two strategies:

• Direct Access: The adversary tries to directly
access the sensitive data or keys. He could try
to manipulate software running on the phone
to access the data, or he could steal the de-
vice and try to access the data. The former
could be achieved by letting the users install
malicious software (malware, such as trojan
horses) without their notice, e.g., when they
browse to a website containing malicious code
that exploits a vulnerability of the phone’s
software to install the malware. Doctors may
use their phones also for other tasks and they
may want to download additional applications
to run them on the phone, which could create
the vulnerability for such an attack.

• Indirect Access: The adversary tries to trick
the users to enter their passwords into a faked
EHR viewer application. The faked applica-
tion looks like the real one, but instead of log-
ging into the server, it sends the passwords
to the adversary. The faked application could
be installed on the phone in the same way as
malware described above.

The problem with a commodity mobile phone
operating system (OS) is that it cannot provide
a sufficient level of protection for the applications
or stored credentials. A mobile phone OS that is
directly derived from a desktop OS (e.g., Linux
or Windows) has limited protection capabilities,
i.e., simple process isolation and access control.
However, malicious applications can modify or
eavesdrop data of other applications since they
are running with the same user privileges as other
applications.

A more advanced OS, e.g., like
SELinux (Loscocco and Smalley, 2001), can
enforce mandatory access rules, which provide a



stronger isolation of different applications from
each other. For instance, a text editor could only
edit text files, whereas an audio application could
not modify text files. The application of such a
system in a mobile e-health scenario has been
shown earlier (Agreiter et al., 2007). However,
SELinux is a very complex system with security
policies that are hard to configure correctly even
for moderately complicated scenarios. Moreover,
due to a relatively large code base, it is infeasible
to perform a comprehensive formal (or even
semi-formal) verification of the correctness and
security of SELinux. Another example is An-
droid (Google Android, 2010), which provides a
similar application-oriented access control, i.e., it
defines for each application different access rules
and privileges — in contrast to user-oriented
access control as in normal Linux and Windows,
where all programs of one user share the same
access rights.

Nevertheless, even advanced mobile phone
OS’s still suffer from ineffective protection against
unauthorized modifications of programs or even
modifications of the OS itself. An adversary could
install on the user’s phone additional (faked) pro-
grams or replace existing programs. The user has
seldom a chance to notice the modification, and
critical data like credentials could be transferred
to the adversary.

3 WALLET ARCHITECTURE

3.1 General Idea

Our security architecture aims to protect against
the attacks described above. To counter direct
access attacks, our architecture is based on a se-
curity kernel that isolates different applications,
supports secure boot, and provides secure stor-
age. Hence, authentication data is stored en-
crypted, and can only be accessed by the legit-
imate application (TruWallet) when the correct
(unmodified) system has been booted.

Our wallet architecture aims to prevent indi-
rect attacks by letting the wallet handle all au-
thentication procedures. During a normal au-
thentication, users do not enter passwords (this
is automatically done by the wallet), hence they
cannot accidentally disclose them towards a fake
application that tries to spoof the look and feel of
the legitimate EHR viewer or another application
trusted by the user.

Figure 2: General idea of TruWallet

Our wallet-based security architecture pro-
vides two levels of protection (cf. Figure 2):

1. Protection of authentication data: TruWal-
let protects the user’s credentials (username
and password) against unauthorized access.
This approach is generic, and can be used also
for other scenarios (e.g., web applications like
eBay or Amazon). Indeed, TruWallet can be
used simultaneously by different applications,
yet it only authenticates each application to
the server where it has been registered as le-
gitimate application before.

2. Protection of medical data: An isolated
EHR viewer (which can be a special-purpose
browser) is used to view EHRs. This viewer
cannot be modified because a fixed program
image is executed, which is measured by the
security kernel by computing a cryptographic
hash and compared to a known-good reference
value. This ensures that all modifications of
the EHR viewer can be detected. In case a
browser is used as EHR viewer, this browser
is only allowed to contact the EHR server and
cannot connect to other sites.

3.2 System model

Our system model for TruWallet consists of sev-
eral parties (see Figure 3): A user interacts with
a computing platform through a secure graphi-
cal user interface secure GUI. An EHR viewer
is used to render content that it gets from the
wallet, which is acting as a proxy. The wallet
obtains the requested content from the server,
blinds security-sensitive fields (e.g., password) on
the pages presented to the browser, and fills in lo-
gin credentials when logging into the system. For
this, TruWallet has to handle two different SSL
sessions: one between wallet and EHR viewer,
and one between wallet and server. The secure
GUI controls the input/output devices and mul-
tiplexes the screen output of the EHR viewer and
of the wallet. Moreover, it always indicates the
name of the application the user is currently in-



teracting with via a reserved area on the screen,
hence providing a trusted path between user and
application. Moreover, our architecture includes
a compartment for non-medical data and appli-
cations. This compartment is strictly separated
from the EHR viewer and can be used for arbi-
trary applications.

3.3 Generic Wallet-Based e-Health
Architecture

The generic TruWallet architecture is based on a
security kernel, which is a small trusted software
layer, providing trusted services and isolated com-
partments. Thus, the security kernel ensures run-
time security of the system. Compartments con-
tain arbitrary software, e.g., a complete legacy
operating system (Linux in our case), and may
communicate only via well-defined interfaces. In
particular, a malicious compartment cannot read
arbitrary memory of other compartments. In our
solution, EHR viewer, non-medical applications
and wallet run in different compartments, and
we assume that arbitrary software (including mal-
ware like Trojan horses and viruses) may be run-
ning in the non-medical compartment. Therefore,
the security of our solution is based on trusted
components (wallet and EHR viewer) that are ex-
ecuted in separated compartments, isolated from
untrusted software that might be running simul-
taneously on the same platform.

In an earlier work (Gajek et al., 2009), we
have demonstrated the feasibility of the wallet ar-
chitecture on a PC platform. In the PC-based
implementation, the compartmentalization was
realized by using the isolation property of vir-
tual machines combined with the resource sharing
control of an underlying microkernel. The wal-
let compartment is trusted, which is motivated
by the fact that the complexity of the wallet is
much lower than that of an EHR viewer or a
compartment containing several different appli-
cations. Moreover, users cannot install arbitrary
software (which may be malicious or flawed) in
the wallet compartment, but they may install ar-
bitrary viewers or other tools into other compart-
ments. To prevent unauthorized access by other
users to the platform and, hence, the sensitive
data, the security kernel requires an overall user
authentication (e.g., a user password) to login
into the whole system. In this way, the credentials
stored by the wallet are bound to the correspond-
ing user.2

2In fact the security kernel has to provide com-

Trusted Computing support. Trusted Com-
puting (TC) hardware and TC-enabled software
is used to provide authenticated boot, i.e., based
on a “chain of trust”, the integrity of the soft-
ware stack including the Trusted Computing Base
(TCB) can be verified later, e.g., before access to
cryptographic keys is allowed. An alternative to
authenticated boot which is usually used on for
mobile platforms is secure boot : In this case, the
system’s integrity state is compared to reference
values and can be started only if it has not been
modified.3 Moreover, TC hardware can be used
for secure storage, i.e., encryption keys protected
by the hardware can only be used if load-time in-
tegrity of the system is maintained. Thus, the
credentials stored by the wallet are bound to the
TCB to prevent an adversary from gaining ac-
cess to the data by replacing software (e.g., boot-
ing a different OS). On the PC platform (Gajek
et al., 2009) we used a Trusted Platform Module
(TPM) version 1.2 (Trusted Computing Group,
2009) as TC hardware for TruWallet. The TPM
is a dedicated security chip that provides – among
other features – cryptographic operations (e.g.,
key generation, encryption, digital signatures),
support for authenticated boot, and the possibil-
ity to bind cryptographic keys to the load-time
integrity state of the system.

Figure 3: Generic TruWallet Architecture

3.4 Mobile TruWallet

To implement our security architecture for mo-
bile e-health scenarios, several building blocks for
mobile environments are required:

prehensive user access control as in typical operating
systems, including system login and screen lock func-
tionality, in order to prevent unauthorized access to
the wallet. However, the details of those mechanisms
are out of scope of this paper.

3Of course, it is important that these reference
values are stored in a secure location, e.g., protected
by security hardware, to avoid manipulations.



• Trusted hardware for mobile platforms which
supports features to protect cryptographic
keys and verify the system integrity;

• a secure hypervisor layer for mobile platforms
to provide isolated execution environments for
applications;

• a security kernel with a secure GUI for mo-
bile platforms to provide a trusted path be-
tween the user and applications, and with se-
cure storage for applications;

• a trusted wallet (TruWallet) to handle au-
thentication and protect the user’s creden-
tials.

In the following, we briefly introduce the first
three building blocks, before we focus in more
detail on the implementation of a trusted wallet
on a mobile phone in the next section.

Trusted hardware for mobile platforms.
The architecture of TruWallet relies of trusted
hardware for performing security critical opera-
tions. To instantiate TruWallet architecture on a
mobile phone, we have to use mobile hardware se-
curity extensions instead of a TPM (which is not
available on current phones). On mobile plat-
forms, general-purpose secure hardware such as
M-Shield (Azema and Fayad, 2008) and Trust-
Zone (Alves and Felton, 2004) is available. In
this paper, we focus on M-Shield, because this
hardware extension is available in some current
mobile phones, including Nokia N900 (which we
used for our prototype).

M-Shield provides a small amount of dedi-
cated on-chip ROM and RAM as well as one-time
programmable memory for device keys which are
accessible only in a special execution mode of
the main CPU – the Trusted Execution Envi-
ronment (TrEE). A secure state machine (SSM)
guarantees secure switching between both proces-
sor modes, thus the TrEE and normal execution
environment are isolated from each other. M-
Shield enables the TrEE on a device with the
following features: (i) isolated secure code execu-
tion; (ii) secure boot; (iii) hardware-based secure
storage.

Secure hypervisor for mobile devices.
Several microkernels for mobile and embed-
ded devices have been implemented, for in-
stance the commercially available L4 microker-
nels OKL4 (Open Kernel Labs, 2010) and PikeOS
P4 (Brygier et al., 2009). These microkernels
provide isolation between user space applications,

just like their counterparts on other platforms
(e.g., on PCs). Therefore, they can be used for a
secure hypervisor layer for a security kernel on
mobile phones. In particular, the seL4 micro-
kernel has been formally verified for correctness
(Klein et al., 2009), hence taking an important
step towards building a formally verifiable secu-
rity kernel on top of a microkernel.

Security kernel with secure GUI for mobile
devices. The Turaya Trusted Mobile Desktop
(Selhorst et al., 2010) implements a security ker-
nel with a secure user interface for mobile de-
vices. Its TCB consists of a hypervisor layer and
a trusted software layer. The hypervisor layer is
implemented on top of an L4 microkernel, which
has been ported to the Nokia N900 mobile phone.
The Trusted Software Layer contains a number of
security services, such as a secure graphical user
interface (called TrustedGUI), a virtual private
network (VPN) client, and a file encryption ser-
vice.

4 WALLET PROTOTYPE ON
NOKIA N900

In order to demonstrate the feasibility of run-
ning a trusted wallet on a mobile phone, we have
implemented Mobile TruWallet, a mobile version
of trusted wallet, on a Nokia N900 device.

4.1 Mobile TruWallet Architecture

Instead of realizing the full implementation of a
security kernel, for which we refer to the works of
(Brygier et al., 2009; Klein et al., 2009; Selhorst
et al., 2010), we have implemented the wallet on
Maemo (Maemo, 2010), which is based on Linux
and provides standard operating system process
isolation and discretionary access control.

The architecture of Mobile TruWallet we have
implemented is depicted in Figure 4. As it can
be seen, TruWallet resides on the operating sys-
tem side, but also operates on secrets at the same
time, e.g., maintains a TLS channel to the web-
server and also performs authentication with the
user passwords. However, our generic architec-
ture assumes that TruWallet is isolated from the
rest of the system. This assumption is reasonable
to some extend in the context of existing oper-
ating systems for Nokia mobile phones: Symbian
OS and Maemo. Their platform security enables,



Figure 4: Mobile TruWallet Architecture

with different degrees, process isolation. The
microkernel-based Symbian OS provides process
execution isolation and enforces control on inter-
process communication via a capability mecha-
nism, while Maemo’s security model is based on
Discretionary Access Control (DAC) which en-
forces security by process ownership.

We achieved process isolation on Maemo by
creating a Mobile TruWallet process under a
unique UserID and defining restrictive access
rights to that UserID. Note that for this proto-
type, we rely on the standard Unix/Linux dis-
cretionary access control security framework, and
there is always the threat that an administrator
(root account) with the super-user access rights
is compromised. However, we implemented the
wallet as if it was running on a security kernel.
This approach allows us to concentrate on the
wallet-specific aspects for the prototype (i.e., per-
formance, user interface, compatibility to the mo-
bile web browser and web sites, etc.). In a later
stage, the wallet can be easily adapted to a secu-
rity kernel system like the L4-based one on N900
(Selhorst et al., 2010).

Nokia N900 device is based on M-Shield secure
hardware. We utilize M-Shield functionality for
the secure boot, and we also implement secure
storage functionality on the top of M-Shield.

Only authenticated programs, so-called pro-
tected applications (PAs), can be executed within
the TrEE of M-Shield. However, protected ap-
plications have to be authorized, i.e., certified,
by the device’s M-Shield stakeholder, most likely
the device manufacturer. As we have not been
able to get the PA certified by the device manu-
facturer, we use a different approach: We reuse
the general purpose APIs available for M-Shield
TrEE. This approach allows third parties to lever-

age the TrEE. For instance, the On-board Cre-
dentials platform (ObC) (Kostiainen et al., 2009)
provides the means to develop programs for the
TrEE without the involvement of the manufac-
turer. In our implementation, we build the secure
storage functionality of Mobile TruWallet on top
of ObC.

4.2 ObC Architecture

Figure 5 illustrates the ObC architecture. The
core component of the ObC platform – which
resides in the dedicated RAM and can be exe-
cuted in secure environment – is an interpreter.
The interpreter provides a virtualized environ-
ment where “credential programs”, i.e., scripts
developed by third parties, can be executed. The
credential programs are written using (a subset
of) Lua scripting language (Lua, 2010) or in as-
sembler. When a credential program is executed,
the interpreter isolates it from secrets that are
stored within the TrEE and from the execution
of other credential programs.

The interpreter makes use of a Crypto Li-
brary which provides an interface for commonly
used cryptographic primitives. It provides a seal-
ing/unsealing function for ObC programs, which
can be used to protect secret data stored per-
sistently outside the secure environment. Sealed
data is encrypted with a key which is protected by
the TrEE, and the ObC platform controls the us-
age of this key. A device-specific symmetric key
called ObC platform key (OPK) is used for the
sealing/unsealing functionality.

Credential Manager is a mediator between
OS side applications and components that reside
within the TrEE. It provides an API for third-
party developed applications. Using the API the
applications can execute credential programs, and
create and use new asymmetric keys. The cre-
dential manager maintains a database, in which
credentials and credential programs are stored in
a cryptographically sealed way.

A more detailed description of the ObC archi-
tecture can be found in (Kostiainen et al., 2009;
Kostiainen et al., 2010).

4.3 Implementation

In our prototype, the wallet is implemented in the
C programming language, contains about 2600
lines of code, and runs as separate process with a
unique UserID. For the SSL/TLS proxy, we use
Paros (Paros, 2010), which is an open-source im-



Figure 5: On-board Credential architecture

plementation in Java, and it executes as a process
with the same UserID as the wallet. We define
restrictive access rights on this UserID so that
other processes cannot access the data or code of
the wallet.

Accessing Health Records. The wallet uses
the libxml library to parse web sites and web
forms in order to search for password fields.
Whenever it finds such fields, these forms are
put into a cache and are disabled before they are
shown in the web browser. This prevents the user
from accidentally typing passwords into a poten-
tially malicious or faked web site. Instead users
just provide their user name and simply click the
submit or login button in the mobile web browser.

Hence, when doctors want to access a health
record from the e-health server, they simply open
the EHR viewer browser on the phone and click
the login button. The wallet replaces then au-
tomatically the disabled password field with the
actual password of the doctor’s account on the e-
health server. This process runs transparently, so
the doctor just sees the EHR viewer application,
and when the login is completed he can access the
health records on the server.

Registration. Before doctors can use the wal-
let to login to websites like the e-health server,
they have to register their account in the wallet
on the phone. Therefore, the wallet also looks for
registration forms. When the user tries to access
a website with the browser for the first time, the
wallet asks the user for an existing password or
it can create a new one. Figure 6 shows a corre-
sponding screenshot where the wallet dialog pops
up after the user opened a website (with a login
field) in the browser for the first time.

Once the password has been provided (or

Figure 6: Screenshot of Mobile TruWallet when reg-
istering an existing password

newly created), the wallet stores the credentials
in a specific file. During runtime, the access to
this file is only granted to the UserID of the wal-
let. Hence, other programs cannot read or modify
the stored credentials. When the device is going
to be shut off, this file is sealed using the ObC
platform as mentioned before.

Figure 7: Screenshot of Mobile TruWallet showing
stored passwords

Users can view a list of the stored accounts in
wallet, as the screenshot in Figure 7 shows. For
example, it shows a web-based e-mail account and
“ehealth.local”, which is our local EHR server
in our prototype. We realized the user interface
based on the Hildon GUI framework (Hildon Ap-
plication Framework, 2010) on Maemo.

Interoperability. We have tested our wallet
implementation with several public websites, like
web e-mail services, eBay, Amazon, etc. Regis-
tration and login work transparently and with-
out noticeable performance overhead for the user.
Hence, it should be easy to integrate web-based e-
health services on our platform. Special-purpose
EHR viewers or other medical applications can be
supported as well as long as they use SSL/TLS
and web-based login procedures. Other authen-



tication protocols could also be integrated, but
may require some effort to adapt the wallet.

5 CONCLUSION AND FUTURE
WORK

Mobile access to electronic medical data is an
emerging application scenario with strong secu-
rity and privacy requirements that is rapidly gain-
ing practical importance. Existing systems suffer
from a lack of appropriate protection for security-
and privacy-critical data and applications. More-
over, standard operating systems do not use ex-
isting hardware security features of mobile plat-
forms to their full extent.

To enable secure mobile access to electronic
health records containing privacy-sensitive data,
we propose an e-health security architecture
which protects the user’s authentication creden-
tials as well as the sensitive medical data. Our ar-
chitecture is based on commonly available trusted
hardware components, a security kernel, and a
trusted wallet. In this paper, we introduce our
comprehensive security architecture, discuss se-
curity building blocks on mobile phones, and
present our implementation of Mobile TruWallet
on a commodity smartphone.

Since our Mobile TruWallet prototype demon-
strates the feasibility of the architecture on mo-
bile phones, future work includes the integration
of all security building blocks (i.e., the use of
hardware security features, a security kernel con-
sisting of a secure hypervisor and a trusted soft-
ware layer, and the Mobile TruWallet authentica-
tion solution) into one system.

ACKNOWLEDGMENTS

This work was partially funded by the German
federal state North Rhine-Westphalia and sup-
ported by the European Regional Development
Fund under the project RUBTrust/MediTrust.
Further, the author Alexandra Dmitrienko was
supported by the Erasmus Mundus External Co-
operation Window Programme of the European
Union.

REFERENCES

Aggarwal, M. and Vennon, T. (2010). Study of
BlackBerry proof-of-concept malicious applica-

tions. Technical Report White paper, SMobile
Global Threat Center.

Agreiter, B., Alam, M., Hafner, M., Seifert, J. P., and
Zhang, X. (2007). Model driven configuration of
secure operating systems for mobile applications
in healthcare. In Proceedings of the 1st Inter-
national Workshop on Mode-Based Trustworthy
Health Information Systems.

Alves, T. and Felton, D. (2004). TrustZone: Inte-
grated hardware and software security. Techni-
cal report, ARM.

Anderson, J. (1972). Computer security technology
planning study. Technical Report ESD-TR-73-
51, AFSC, Hanscom AFB, Bedford, MA. AD-
758 206, ESD/AFSC.

Android Open Source Project (2010). Project web-
site. http://www.android.com.

Apple Inc. (2010). iOS website. http://www.apple.
com/iphone/ios4.

Azema, J. and Fayad, G. (2008). M-ShieldTM

mobile security technology: making wire-
less secure. Texas Instruments White Pa-
per. http://focus.ti.com/pdfs/wtbu/ti_
mshield_whitepaper.pdf.

Benelli, G. and Pozzebon, A. (2010). Near field
communication and health: Turning a mobile
phone into an interactive multipurpose assistant
in healthcare scenarios. In Biomedical Engi-
neering Systems and Technologies, International
Joint Conference, BIOSTEC 2009, Revised Se-
lected Papers, volume 52 of Communications in
Computer and Information Science, pages 356–
368. Springer.

Brygier, J., Fuchsen, R., and Blasum, H. (2009).
PikeOS: Safe and secure virtualization in a sep-
aration microkernel. Technical report, Sysgo.

EMSCB Project Consortium (2005–2008). The Eu-
ropean Multilaterally Secure Computing Base
(EMSCB) project. http://www.emscb.org.

Fraim, L. (1983). SCOMP: A solution to the mul-
tilevel security problem. In IEEE Computer,
pages 26–34.

Gajek, S., Löhr, H., Sadeghi, A.-R., and Winandy, M.
(2009). TruWallet: Trustworthy and migratable
wallet-based web authentication. In The 2009
ACM Workshop on Scalable Trusted Computing
(STC’09), pages 19–28. ACM.

Google Android (2010). Security and permis-
sions. http://developer.android.com/intl/
de/guide/topics/security/security.html.

Han, D., Park, S., and Lee, M. (2008). THE-MUSS:
Mobile u-health service system. In Biomedical
Engineering Systems and Technologies, Interna-
tional Joint Conference, BIOSTEC 2008, Re-
vised Selected Papers, volume 25 of Communi-
cations in Computer and Information Science,
pages 377–389. Springer.

Hildon Application Framework (2010). Project web-
site. http://live.gnome.org/Hildon.



Iozzo, V. and Weinmann, R.-P. (2010). Ralf-
Philipp Weinmann & Vincenzo Iozzo own
the iPhone at PWN2OWN. http://blog.
zynamics.com/2010/03/24/ralf-philipp
-weinmann-vincenzo-iozzo-own-the-iphone
-at-pwn2own/.

Karger, P. A., Zurko, M. E., Bonin, D. W., Mason,
A. H., and Kahn, C. E. (1990). A VMM secu-
rity kernel for the VAX architecture. In Pro-
ceedings of the IEEE Symposium on Research in
Security and Privacy, pages 2–19, Oakland, CA.
IEEE Computer Society, Technical Committee
on Security and Privacy, IEEE Computer Soci-
ety Press.

Klein, G., Elphinstone, K., Heiser, G., Andronick,
J., Cock, D., Derrin, P., Elkaduwe, D., Engel-
hardt, K., Kolanski, R., Norrish, M., Sewell, T.,
Tuch, H., and Winwood, S. (2009). seL4: For-
mal verification of an OS kernel. In Proceedings
of the 22nd ACM Symposium on Operating Sys-
tems Principles, Big Sky, MT, USA. ACM Press.
To appear.

Kostiainen, K., Dmitrienko, A., Ekberg, J.-E.,
Sadeghi, A.-R., and Asokan, N. (2010). Key at-
testation from trusted execution environments.
In TRUST 2010: Proceedings of the 3rd Inter-
national Conference on Trust and Trustworthy
Computing, pages 30–46. Springer.

Kostiainen, K., Ekberg, J.-E., Asokan, N., and
Rantala, A. (2009). On-board credentials with
open provisioning. In ASIACCS ’09: Proceed-
ings of the 4th International Symposium on In-
formation, Computer, and Communications Se-
curity, pages 104–115. ACM.

Liedtke, J. (1995). On microkernel construction. In
Proceedings of the 15th ACM Symposium on Op-
erating Systems Principles (SOSP’95), Copper
Mountain Resort, Colorado. Appeared as ACM
Operating Systems Review 29.5.

Loscocco, P. and Smalley, S. (2001). Integrating
flexible support for security policies into the
Linux operating system. In Proceedings of the
FREENIX Track: 2001 USENIX Annual Tech-
nical Conference, pages 29–42. USENIX Associ-
ation.

Lua (2010). Project website. http://www.lua.org.

Maemo (2010). Project website. http://maemo.org.

Microsoft (2010). Windows mobile website. http:
//www.microsoft.com/windowsmobile.

Open Kernel Labs (2010). OKL4 project website.
http://okl4.org.

Paros (2010). Project website. http://www.
parosproxy.org.

Selhorst, M., Stüble, C., Feldmann, F., and Gnaida,
U. (2010). Towards a trusted mobile desktop.
In Trust and Trustworthy Computing (TRUST
2010), volume 6101 of LNCS, pages 78–94.
Springer.

Sunyaev, A., Leimeister, J. M., and Krcmar, H.
(2010). Open security issues in german health-
care telematics. In HEALTHINF 2010 - Pro-
ceedings of the 3rd International Conference on
Health Informatics, pages 187–194. INSTICC.

Symbian Foundation Community (2010). Project
website. http://www.symbian.org.

The OpenTC Project Consortium (2005–2009). The
Open Trusted Computing (OpenTC) project.
http://www.opentc.net.

Tiago Alves, D. F. (2004). TrustZone: Integrated
Hardware and Software Security. http://www.
arm.com/pdfs/TZ%20Whitepaper.pdf.

Trusted Computing Group (2009). TPM Main Speci-
fication. http://www.trustedcomputinggroup.
org.

Vennon, T. (2010). Android malware. A study of
known and potential malware threats. Techni-
cal Report White paper, SMobile Global Threat
Center.

Vouyioukas, D., Kambourakis, G., Maglogiannis, I.,
Rouskas, A., Kolias, C., and Gritzalis, S. (2008).
Enabling the provision of secure web based m-
health services utilizing xml based security mod-
els. Security and Communication Networks,
1(5):375–388.


