Enhancing Grid Security Using Trusted Virtualization?!

Hans Loh# HariGovind V. Ramasaniy Ahmad-Reza Sadeghi
Stefan Schulz* Matthias Schunteand Christian Sthle!

TIBM Zurich Research Laboratory tHorst-Gortz-Institute for IT-Security
Ruschlikon, Switzerland Ruhr-University Bochum, Germany
{hvr, mts}@urich.ibmcom {I oehr, sadeghi, st uebl e}

@rypto.rub. de
*Max-Planck Institut fir Eisenforschung, Germanyschul z. st ef an@nmai | . com

Abstract. Grid applications increasingly have sophisticated functional and security require-
ments. Current techniques mostly protect the grid resource provider from attacks by the grid
user, while leaving the user comparatively dependent on the well-behavior of the provider. We
present the key components for a trustworthy grid architecture and address this trust asymme-
try by using a combination of trusted computing and virtualization technologies. We propose

a scalable offline attestation protocol, which allows the selection of trustworthy partners in the
grid with low overhead. By providing multilateral security, i.e., security for both the grid user
and the grid provider, our protocol increases the confidence that can be placed on the correctness
of a grid computation and on the protection of user-provided assets.

1 Introduction

Grid computing has been very successful in enabling massive computing efforts, but has hitherto
been dominated by ‘big science.” These projects are usually in the academic domain (such as
SETI@HOME or distributed.net) and, although important, they usually have less stringent secu-
rity requirements than commercial IT systems. Currently, security is built into grid toolkits (e.g. the
Globus toolkit [1]) used at thprovider sites (parties that offer resources for use in the grid). Secure
channels, authentication, unsupervised login, delegation, and resource usage [2] are all handled by
the toolkit. These mechanisms usually do not protect theuged (the person or entity wishing to
utilize resources).

The user is forced to trusthe provider, often without the possibility of verifying whether that
trust is justified. However, in much of the current literature on grid security (e.g., [4]), the user is
not regarded as trustworthy. This trust asymmetry could potentially lead to a situation in which the
grid provider causes large damage to the user with little risk of detection or penalty. An attacker
might publish confidential data or sabotage the entire computation by providing false results. These
problems are most evident in computational grids, especially in mobile code [5] scenarios. Other
grids, such as storage or sensor grids, may also suffer from the negative consequences of this trust
asymmetry. Because of this problem, companies are reluctant to utilize available grid resources for
critical tasks.

Given this state of affairs, Mao et al. [6] have advocated the use of the emérgsied Comput-
ing (TC) technology for the grid. In a similar vein, Smith et al. [7] more closely examine scenarios

1 A preliminary version of this work was presented (without publication) a2tiBbrkshop on Advancesin
Trusted Computing 2006 and at thelst Benelux Workshop on Information and System Security 2006.

2 In this paper, we consider “trust” to be the opposite of enforcement. Thus, a trusted component is a com-
ponent whose well-behavior cannot be enforced by another component and, therefore, has the capability to
violate a security policy. This view of trust contrasts with the notion put forward in other grid-related works,
such as [3], which view trust as a positive, reputation-based property.

that could benefit from TC techniques. TC can be used to enfouttlateral security, i.e., the
security objectives of all parties involved are taken into account.

A trustworthy grid environment that enforces multilateral security would offer a number of ben-
efits. Even sensitive computations could be performed on untrusted hosts. Most personal computers
used today possess computing abilities in excess of what is required for casual or office use. These
resources could be leveraged to run grid jobs in parallel to the users’ normal workflow and pro-
vide the computational power necessary for next-generation modeling and simulation jobs, without
costly investments into new infrastructure. Enterprises could utilize the already-present office ma-
chines more fully, resulting in an earlier return on their investment.

A large percentage of the platforms in large-scale grids are built using general-purpose hardware
and software. However, it is easy and cheap for existing platforms to incorpohatsted Platform
Module (TPM), based on specifications of tieusted Computing Group (TCG). The module pro-
vides a trusted component, usually in the form of a dedicated hardware chip. The chip is already
incorporated into many newly-shipped general-purpose computers. The TPM chip is tamper-evident
(and ideally, tamper-resistant) hardware that provides cryptographic primitives, measurement facil-
ities, and a globally unique identity. For verification purposes, a remote party can query the TPM’s
measurement of th& usted Computing Base (TCB) by means oéttestation. This mechanism, pro-
posed by the TCG, enables (remote) verification of the status of a platform’s TCB.

One approach to securing computing systems that process potentially malicious code (such as in
many number-crunching grid applications) is to provide a virtualized environment. This technique
is widely used for providing “V-Servers,” i.e., servers running several virtual machines that may be
rented to one or several users. Although users have full control over the virtual environment, they
cannot cause damage outside that environment, except possibly through attempts at resource monop-
olization, for example, by “fork bombing.” Although virtualization offers abstraction from physical
hardware and some control over process interaction, there still are problems to be solved. For ex-
ample, in the x86 architecture, direct memory access (DMA) devices can access arbitrary physical
memory locations. However, hardware innovations such as Intel's Trusted Execution Technology
[8] (formerly known as LaGrande) and AMD’s Virtualization Technology [9] (formerly code-named
Pacifica) aim to address these problems and could eventually lead to secure isolation among virtual
machines. Virtualization technology can be leveraged for building a trustworthy grid environment,
especially because several works, such as [10], have already begun to consider architectures that
feature policy enforcement in the virtualization framework.

Our Contribution. To address the trust asymmetry in grid computing explained above, we propose

a realistic security architecture that uses TC functionality and enforces multilateral security in a

grid scenario. Leveraging a combination of the isolation (between virtual machines) provided by

virtualization and a trusted base system, our design is able to protect confidentiality and integrity in a
multilateral fashion. We feel our compartmented security design offers a stronger level of protection
than many current techniques can provide.

Using our security architecture, we propose a grid job submission protocol that is based on
offline attestation. The protocol allows a user to verify that a previously selected provider is in a
trusted state prior to accessing a submitted grid job, with little overhead and improved resistance to
attack. Our protocol also guaranteemnsitive trust relations if the provider in turn performs further
delegations to other providers.

2 Preliminaries

2.1 System Model and Notation

We consider the following abstract model of the grid. A grid usean attempt to access any grid
providerP. Each participant in the grid is considered to be a partner-and-adversary that potentially

intends to harm other participants but also provides services. A participant can be depended upon
to execute a given task correctly only if it can prove its inability to cause damage (break a partner’s
security policy).

A machinen is a single physical host. It can host one or more logical participants of either role.
We consider delegation to be modeled as one participant being both a provider and a user. Every
participant has its own, distinct policy. Each componeni &f an independent actor offering some
interface(s) to other components, and usually utilizing interfaces offered by other components. The
set of providers and users need not be static, but can grow and shrink dynamically as new resources
are being added to the grid virtual organization (VO), and some participants leave the VO. However,
joining and leaving are not the focus of this paper.

For our purposes, a job image is a tuple- (data,C, SPy), wheredata may be an invocation
to some predefined interface or carry executable code. For security purposes, both input data and
executable code have the same requirements and can be protected using the same techniques. There-
fore, we do not distinguish between “code” and “data,” and refer to bottaas. C represents the
credentials of the usér, which may be needed to gain access to the prowid&he user also passes
a policySPy as part of its invocation, which specifies constraints to be upheld for that particular job.
The job, once scheduled, can communicate directly Wigbubject to the policgP y).

A machinen always has exactly one statalescribing the status of the TCB rather than a partic-
ular VM. This state comprises all code running as part of the TCB. TCB components are critical to
the correct functioning of the system and need to be trusted. Adding, removing, or modifying such
a component changes However,o will not change because of “user actions,” such as installing
application software, browsing the web, or executing a grid job. Furthermore, the system will not
allow any party (not even system administrators) to alter the TCB without chamgiag is the
reported state of the platform, possibly different fremWe assume that ando’ can be encoded
as a configuration (or metricgpnf, a short representation of the state (e.g., a hash value) as de-
termined by ameasurement facility (e.g., the TPM) of the machine. A specific aspect of the user’s
security policySPy is thegood set, which contains theonf values of all states considered to be
trustworthy by that policy.

K denotes an asymmetric cryptographic key, with private padnd public parpx. enc,, (X)
denotes a piece of dafsi encrypted with a public keyy. sign, (X) denotes a data iteo¥ that
has been digitally signed by a private key.

2.2 Usage Scenario

We consider the following scenario: When a node joins the grid, it generates and publishes an at-
testation tokenr, which can be used by potential partners to obtain assurance about the node’s
trustworthiness. Grid users retrieve attestation tokens from different grid nodes and select a token
indicating a configuration they are willing to trust. The selection decision is made offline, and in-
curs negligible overhead on the part of the user. Once an acceptable provider has been found, users
can submit jobs that can only be read by the selected node in the configuration they consider as
trustworthy. If the node has changed to another configuration, communication will fail.

The main advantage of this approach is that the creation of the attestation tokens is decoupled
from the process of job submission, while still providing freshness. In addition, these tokens are
transferable and their correct creation can be verified without interacting with their creators.

2.3 Requirements

In this paper, we focus on security requirements, nanmghgrity and confidentiality. Providing
integrity means protection against unauthorized modifications. For instance] skeuld not be
able to alter aspects of provideto elevate its privilege level. Similarlp, should be prevented from

N e N
. Trusted
Provider () 0 LJ
o) Q O
o @]
< S - e > ™ (=) >
Application Data o k=] %
i 5|65
-
—
p N
| Network |(Trusted Softwarg Layer
q) Compartment
N Grid Management_||€VM () | Management | ||
D Service

submit () Service] ctore Potentially Insecure
4‘ getID () Channel

< Attestation load ()
attest () @ Service
certify-|

Storage Service|

D ——

A
unseal () A S ch |
createKey () Key() wite 05 Eread 0 ecure Channel
e :)
f N

Hardware |

\ 2
. [TPM@ PCRl] [Hard Dis%
(raM) Com) [[PCRO
N

~—— - J

CRTM

Fig. 1. Components of the Trusted Grid Architecture

modifyingU’s job. Both the user and provider may require confidentiality, i.e., they may require their
sensitive data be guarded against unauthorized disclasunay utilize confidential data as part of

J, and demand that this data not be disclosed to any party othegthaxecution environment.
Similarly, P may want to ensure that a malicious grid job cannot collect secrets storesiatform
(such as signature keys) and forward therti to

3 A Trusted Grid Architecture

Figure 1 shows the abstract building blocks of our Trusted Grid Architecture (TGA). The hardware
platform provides a TPM and untrusted storage. The Trusted Software Layer (TSL) consists of
the attestation, grid management, compartment management, and storage management components.
The TSL provides both security functionalities and virtualization of the hardware. The TCB consists
of the TSL and the trusted hardware components. Security policies have to be enforced by the TCB,
but a detailed treatment of policy enforcement is outside the scope of this paper. Other works, such
as [10] and [11], have examined some necessary properties of policy engines. Proper design of a
minimum set of trusted services can help to achieve a TCB with the highest possible resistance to
attacks. Additional guarantees about runtime behavior and state (e.g., [12]) may be provided by a
dedicated service or as an extension to our attestation service.

We now provide an overview of the TGA components; more details can be found in [13].

Hardware: The core hardware component is a TPM as specified by the TCG, providing cryp-
tographic functions such as encryption and signing. Each TPM possesses a humber of platform
configuration registers (PCRs), at least 16 as of version 1.2 of the specification [14]. During sys-
tem boot, the main software components (BIOS, bootloader, OS kernel, etereasared. The
measurement procedure involves computing a configuratat, i.e., the cryptographic hash of
the software components, and securely storing the hash in the TPM. For the TGA, we use four
TPM operations: secure key generation, measurement, certification, and sealing. The TPM features
a hardware random-number generator and implements generation of RSA kel paifs k, sx)-
For these key pairs, usage limitations can be defined, in partiseging, which marks the private

key as not being migratable and usable only when a specified subset of the PCRs contain the same
values as were present during key generation. It is possible to obtain a certificate stating which usage
conditions apply to a key pair (as represented by its publicikgyfrom the TPM, signed by one

of its Attestation Identity Keys (AIKs; generated by the TPM). The private key of an AIK cannot be
extracted from the TPM, i.e., it is non-migratable, and it cannot be used to certify migratable keys.
AlKs can be certified by a Certification Authority (CA), or they can be proved to be valid AlKs
anonymously by means of Direct Anonymous Attestation (DAA) [15]. Such a certificate or proof is
denoted asertca (patx)-

The TPM can report the platform configuration to other parties by signing the values of the
PCRs with an AIK, which guarantees that the TPM generated the signed structure because an AIK
cannot be used to sign arbitrary data. For our purposes, we use Eigyibdf o structures that are
considered as certificates.KeyInfo structure of a sealed key includes the selection of PCRs that
were used for sealing, their values at the time of key generation, the values of the selected PCRs
needed to use the sealed key (i.e., ¢hef of reported state’), and an indication whether a key
is migratable. We use an AIK to sign such a structure withdheifyKey operation of the TPM
and denote the resulting certificate &yrt ,1x (px). These restricted keys enalolgta sealing. Data
sealed to a certain configuration of the system is encrypted with a public key whose corresponding
private key is accessible only to a certain state and platform. If the data is successfully decrypted,
this indicates that the state the key was sealed to is the actual state of that machine.

Attestation Service (AS): The AS provides metrics about the stateto remote parties by
means of arattestation token 7 := (parx, Pk, certca (pamx), certamx (px)). Fromconf (contained
in certark (pk)), the uselU is able to distinguish a trusted statéfrom an untrusted one because
the values uniquely identify a set of programs that have been loaded since booting the platform, and
possibly also the state of certain critical configuration files. The certificate 41x (px) identifies
the keyK as being sealed toonf and gives the assurance that the private &egan be used only
in the reported state’. The usery can make its trust decision “offline” by examining thenf
contained inr. If conf is indicative of a trusted state/, sx will be accessible to the provideronly
if P still is in the same configuration. As the token does not change over time, it can be distributed
to other parties. If the state of P ever changed; would automatically become invalid, although
an explicit revocation might still be beneficial. Further details of this attestation mechanism and its
security will be discussed in Section 4.

Compartment Management Service (CMS)This component createsrtual machines (VMs;
also calleccompartments), which run on top of the TCB, and keeps track of the identity of compart-
ments by assigning a unique identifi@éd) to each of them. The VMs are isolated from each other
and can only communicate over well-defined interfaces. The CMS only manages VMs locally and
does not address migration or delegation in the grid.

Storage Service (SS)The storage component provides trustworthy and non-volatile storage
based on an untrusted hard disk. In particular, data stored by one compartment in one configura-
tion is retrievable only by that compartment in the same configuration — even if the machine has
entered an untrusted state in the meantime. To achieve this property, all data is encrypted and MAC-
authenticated by a sealed key.

Grid Management Service (GMS): The GMS handles the actual grid job submission. It is
responsible for receiving jobs, checking their access, and instantiating them. It will use the CMS to
create a private compartment for each job. The GMS does any special pre-processing that the job
needs before it is ready for execution. Once such pre-processing has been done, a VM image has
been created from, which can then be booted by the CMS. Furthermore, the GMS takes the policy
of the user and notifies an enforcement component (not shown in Figure 1) of the restrictions and

@ 1. U verifies certca (pax), certax (pxk), and

Provider P |« User U conf € goody.
@ @ o Upon verificationU randomly chooses noncés
@ @ andN’, and a session key.
- U sendsency, (k) andenc, (N) toP.
TPM ® 2. P forwardsenc,, (x) to TPM.
o 3. TPM decryptsx if o = ¢/, and returnsz to P.
)) 4. P decryptsN and sendenc,. (N, goods) t0 U.
Common input: attestation token 5. U verifiesN and whethegoodr C goody; upon
7 = (Paxe, x, ceTton (Park), certark (px)) verification,U sendsenc,, (N, J) to P
U'sinput: job J and the accept sgbody ' T '
P'sinput. accept sejoods 6. P decryptsN’ andJ, and send$l’ to U.
TPM'sinput: (sk,o7,), current stater U verifiesN’.

Fig. 2. Submission Protocalubmit ()

rights declared therein. It also handles the freshness verification of the attestation token a
job is submitted (described in Section 4).

4 A Protocol for Scalable Offline Attestation

Attestation is the process of securely reporting the configuration of a party to a remote challenger.
The most commonly discussed type of attestation requires a remote challenger to provide a random
nonceN, which is then signed (together with a hash over a subset of the current PCR values) by
the TPM using ariIK. As freshness is achieved by means of a random nonce, each interaction
necessitates a new attestation (and thus, a new TPM-generated signature). However, TPM signature
generation is slow, and TPM commands generally cannot be parallelized. In addition, without appro-
priate countermeasures, this technique could potentially be vulnerable to a race between a successful
attestation and a change of state prior to further interactions depending on the trusted state. If the
state of the system changes after attestation has concluded, but before any further interactions take
place, this change would not be noticed by the remote party. Also, without connecting attestation
to a PKI identity, an attestation challenge could be relayed to a trusted platform by an attacker (by
forwarding the trusted platform’s reply to the verifier).

Scalable offline attestation is intended to enhance some aspects of current attestation systems.
Having anattestation token that can be distributed freely within the VO as an informational item is
advantageous, because this token states the current configuration of a prowithout requiring
the prospective user to interact with that provider right away. The user can collect such tokens
over time, and select the most appropriate configuration offline. As such a token cannot guarantee
freshness, some verification has to occur when the user contacts the provider of his choice. We
propose aealed key approach, in which the provider's TPM allows usage of the private key only if
the provider is in the same state as the key was stored in. The approach partitions the verification of
P’s state into two phases: token creation and freshness verification.

A providerP creates an attestation token together with its TPM. The attestation service instructs
the TPM to create a non-migratable key sealed to a collection of PCRs. Then, the attestation service
uses the TPM’sertifyKey operation to create a certificatert y1x (px) with an AIK. The attestation
service then constructs the attestation tokefinrom the public keypy, the certificate of this key,
certark (px), the public part of the AlKp,x, and a certificate of the AlKcertca (parx). The
private keysy is accessible only in the provider's state at the time of token generatipbgcause
the certification is done using the TPM-internal AIK, which cannot be misused, even by the platform

owner. The attestation service then publishes the token. Publication of the attestationito&fect
becomes an advertisement stating that a certain statéll be maintained aPp.

The protocol shown in Figure 2 includes the actual submission of the job and addresses freshness
verification. If theconf contained in the token is considered good by the UsénenU generates
a symmetric session keyand encrypts the key using. The session key can be decrypted by the
provider’s TPM only if its state still matches the state at the time’sfcreation, i.e.P’s reported
states’. Verification ofP’s ability to accessy is sufficient to ensure thatis actually in the state that
was advertised byonf. The rationale for including the session key is twofold. First, asymmetric
cryptography is by orders of magnitude slower than symmetric methods. Second, the key’s inclusion
reduces the necessary TPM operations from the signature generation (in traditional schemes) to a
single asymmetric decryption.

The submission protocol further guaranté@ssitive trust. As the job gets delegated from one
provider to other providers, it is assured that each party that is entrusted with the job’s data will
satisfy the original submitter’s requirements. This is done by ensuring that each platfahat
gains control of the usér's job J must satisfy the conditiomood x C goody.

Extensions. In contrast to protocols like DAA [15], our proposed protocol does not feature any
privacy guarantees. As the platform has to reveal its actual configuration, it is in effect exposing
potentially sensitive information to another party. Integrating privacy guarantees into our proposal
could be an interesting aspect for future research. To address some privacy issues and other well-
known limitations of binary attestation, property-based attestation and sealing schemes (e.g., [16])
could be integrated into our TGA.

5 Security Analysis

Security of Offline Attestation. The offline attestation mechanism proposed in Section 4 is secure
against man-in-the-middle attacks. If a uSeseals a job to a trustworthy attestation tokeronly

the platform in possession of the private part of kegan unseal the job, and only if it is in the
state indicated by. An adversary cannot decrypt the job, even if it is running on the platform with
the TPM that holds the private key,dbnf (corresponding to the platform’s current stafedoes

not matchconf’ contained inr (corresponding to the platform’s reported stat@. Conventional
techniques need to include additional verification (such as tying an AlK to a PKI identity) to achieve
the same assurance as ours.

Delegation with transitive trust ensures that every providirat gets a joly can only access
if the provider is in a state that is trusted by the original submittéri.e.,conf € goody (where
conf corresponds te). Transitive trust is achieved during delegation without communication with
the submitter because the provider that wishes to transfer a job attests other providers offline prior
to transmitting the job. The delegating provider acts as user of the new provider and verifies
that goodps C goodp1, Which immediately implies thajoodrs C goody. Hence, the policy of
the new provideP;, is also acceptable to the original user. Moreover, offline attestation is secure
against replay attacks, under the assumption that state changes can only occur between protocol
runs. Replaying of old, trustworthy attestation tokens does not help an adversary: the TPM will not
allow decryption if the current PCR values do not match the values the key was sealed against.

Our protocol has the following drawbacks. Like conventional attestation, our protocol is vul-
nerable to TPM compromises. A compromised TPM can expose the secret key to an adversary,
which enables the adversary to attest to arbitrary states. Revocation of AlKs is necessary to limit the
potential damage such attacks may cause. As with conventional attestation, another risk of offline
attestation is corruption of the running TCB. If an adversary can corrupt the TCB while the system
is running, it could change the system’s stateithout changing the PCRs. Thuswould deviate
from o', but the TPM would still allow the sealed key to be used.

I ntegrity Protection. Because we can establish a secure (confidential and integrity-protected) chan-
nel from useru to providerP using standard tools such as TLS, we need not consider in-transit
modifications. Thus, for the purpose of this analy8igeceives an unaltered joh We need to
consider two kinds of integrity requirements for that image: before being instantiated and while exe-
cuting. As results are reported directly, their integrity can again be achieved by established solutions.
If job execution is delayed by the GMS, the job image and policy are stored in trusted storage. The
key of the storage service is stored sealed, which guarantees that access to it is granted only to the
same job in the same system state. In an untrusted state, no access is granted. Therefore, if a piece
of dataX in the storage service is altered, the signature of that data item cannot be updated, and
the modification is detected the next time the data is retrieved from the storage service. While job
J is executing, the isolation properties of our system guarantee that no untrusted application can
gain access to the memory regions assignefl #nd hence, integrity is guaranteed. Circumvent-

ing such barriers would require breaching the TCB, which would contradict our assumption. As the
TCB is based on a virtualization layer, even attack scenarios like “blue pill” [17] are ineffective,
because such rootkits can only virtualize conventional systems that do not use virtualization tech-
nigues themselves. However, even if such a system were able to virtualize a virtualization layer, it
would either need to compromise the TCB, or it would have to be loaded before the TGA (and thus,
be measured in the boot process).

Confidentiality Protection. The two mechanisms employed for protecting the integrity of stored
data and in-memory data also protect confidentiality. The CMS enforces isolation between the VMs
and foilsin-memory eavesdropping, i.e., one process accessing data inside the virtual memory of an-
other process. Sealing prevents untrusted configurations from decrypting data stored in non-volatile
storage. Violating confidentiality implies breaching the TCB for the in-memory scenario, as the
TCB enforces virtualization and therefore, limits each application to its own VM, whereas decrypt-
ing stored data outside of a trusted state would necessitate breaking the encryption scheme used,
which we likewise consider infeasible.

6 Discussion

I ntegration of Legacy Systems. To maintain interoperability with legacy systems, we aim to provide
the means to continue using applications designed for existing grid toolkits (such as Globus [1]),
without giving up the advantages our architecture offers. One possible way for such an integration
would be to provide an executable image for each toolkit supported. Whenever an invocation for a
service using that toolkit is received, it is instantiated, and the request forwarded to that instance.
However, the grid toolkit must be part of the TCB. After all, a malicious provider might use a good
base configuration, and put all its attack code into a modified toolkit image. The attestation token
7 should contain measurements of all execution environments available as “default installations”
on the platform. Thus, the benefits of our proposal become applicable without forcing the user to
significantly change its use of the grid. Alternatively, a grid job may consist of a full, bootable VM.
While this is a radically different approach from traditional grid methods, it does not imply further
trusted code, which is desirable to keep the TCB small and of low complexity.

Implementation. We have started implementing the core components of the TGA architecture in
the PERSEUS framework [18], which is based on a micro-kernel with paravirtualized Linux. The
framework’s design allows its porting to other systems (such as Xen), and features a strong sep-
aration of responsibilities even among the TCB (by running services as separate compartments),
which significantly simplifies verification. Prototypes of the core TGA components have already
been demonstrated in the context of the ongoing OpenTC [19] and European Multilaterally Secure
Computing Base [20] projects.

Related Work. Several authors have suggested methods to increase the reliability of grid computa-
tion without TC technology. For instance, task replication or the introduction of quiz tasks [21] to
detect misbehaving providers aimed at protecting the integrity of the results of grid computations.
However, these techniques are wasteful in terms of resources and often not resistant to multiple
colluding adversaries. Using virtualization to improve grid security has been proposed in numerous
works (e.g., [22]).

Sailer et al. [10, 23] investigated the possible enforcement of MAC policies at the level of the
virtualization layer. Sailer et al. [24] also proposed an integrity measurement architecture for Linux.
Such an architecture could be useful for the measurement and reporting of VM states in our TGA.
Similarly, although the proposed system of Jaeger et al. [25] focuses on improving the integrity
checking of SELinux, its underlying principles could be used for verifying the correctness of the
Trusted Software Layer of our TGA.

The Daonity (e.g., see [26]) project aims to strengthen the grid security infrastructure by in-
tegrating TC technology into the Globus toolkit. However, as Mao et al. [26] remark, the current
version of Daonity does not take the operating system into account. For instance, an administrator
could bypass the TC-based security mechanisms. To prevent such attacks, a system architecture with
virtualization on top of a security kernel, as we propose in this paper, could be used.

Recently, Cooper et al. [27] proposed a security architecture for delegation on the grid based
on TC and virtualization technologies. They describe a delegation service for enforcing local and
global delegation policies. Offline attestation techniques, such as the one we propose, may be useful
for their delegation service, whereas our solution in turn could benefit from their idea of enforcing
hierarchical policies.

Dinda [28] proposed a novel scheme to protect the assets of the grid user against a malicious
provider in order to address trust asymmetry. Similar to that proposal, encrypted computation (see,
e.g., [29]) offers interesting results for some problems. By performing computations on encrypted
data without decrypting it, some tasks can be completed without ever revealing plain text. How-
ever, these techniques have limited use outside the domain of some algebraic problems, and their
widespread adoption seems unlikely.

7 Conclusion

In this paper, we proposed a protocol for scalable offline attestation based on a grid security archi-
tecture that uses virtualization and Trusted Computing technology. Our approach allows the grid
user to choose a provider with a trustworthy configuration without interaction, by just selecting an
attestation token. The attestation token is published by the provider once and does not have to be
generated individually for every potential user. The job submission protocol then ensures that the
provider can access the job only in the state considered trustworthy by the user. Current and future
work include the implementation of job migration, the support for nodes joining and leaving the
grid, and the integration of existing grid infrastructure into the TGA.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable virtual organizations.
International Journal of Supercomputer Applicatiddg2001) 200-222

2. Foster, ., Kesselman, C., Tsudik, G., Tuecke, S.: A security architecture for computational grids. In: Proc.
5th ACM Conference on Computer and Communications Security (1998) 83-92

3. Azzedin, F., Maheswaran, M.: Towards trust-aware resource management in grid computing systems. In:
Proc. 2nd IEEE International Symposium on Cluster Computing and the Grid (2002) 452—-457

4. Hwang, K., Kwok, Y.K., Song, S., Chen, M.C.Y., Chen, Y., Zhou, R., Lou, X.: GridSec: Trusted grid
computing with security bindings and self-defense against network worms and DDoS attacks. In: Proc.

10.

11.

12.

13.

14.
15.
16.
17.
18.
19.
20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

International Workshop on Grid Computing Security and Resource Management 2005. Volume 3516 of
Lecture Notes in Computer Science (2005) 187-195

. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding code mobility. IEEE Transactions on Software Engi-

neering24 (1998) 342-361

. Mao, W., Jin, H., Martin, A.: Innovations for grid security from trusted computing. Available online at

http://wwv. hpl . hp. com per sonal / Wenbo_Mao/ r esear ch/ t cgri dsec. pdf (2005)

. Smith, M., Friese, T., Engel, M., Freisleben, B.: Countering security threats in service-oriented on-demand

grid computing using sandboxing and trusted computing techniques. Journal of Parallel and Distributed
Computing66 (2006) 1189-1204

. Intel Trusted Execution Technology Website: Intel trusted execution technology.

http://wwv. i ntel.conftechnol ogy/security (2006)

. AMD Virtualization Website: Introducing AMD virtualization. http://ww. and. com

virtualization (2006)

Sailer, R., Jaeger, T., Valdez, E., Caceres, R., Perez, R., Berger, S., Griffin, J.L., van Doorn, L.: Building
a MAC-based security architecture for the Xen open-source hypervisor. In: Proc. 21st Annual Computer
Security Applications Conference, IEEE Computer Society (2005) 276—285

Nabhen, R., Jamhour, E., Maziero, C.: A policy based framework for access control. In: Proc. 5th Interna-
tional Conference on Information and Communications Security (2003) 47-59

Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A virtual machine-based platform for
trusted computing. In: Proc. 19th ACM Symposium on Operating Systems Principles (2003) 193—-206
Léhr, H., Ramasamy, H.V., Sadeghi, A.R., Schulz, S., Schunter, Mb|&tC.: Enhancing grid security
using trusted virtualization (extended versiomtt p: / / www. pr osec. r ub. de/ publ i cati ons.

ht m (2007)

TCG Website: TPM Specification version 1.2. Available online tett ps: // ww.

trust edconput i nggr oup. or g/ specs/ TPM(2006)

Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proc. ACM Conference on Com-
puter and Communications Security (2004) 132—145

Sadeghi, A.R., 8ble, C.: Property-based attestation for computing platforms: caring about properties, not
mechanisms. In: Proc. 2004 New Security Paradigms Workshop (2004) 67-77

Rutkowska, J.: Blue pill. Presented at Syscan @, p: / / t hei nvi si bl et hi ngs. bl ogspot .

coni (2006)

Pfitzmann, B., Riordan, J.,.&t¢, C., Waidner, M., Weber, A.: The PERSEUS system architecture. Tech-
nical Report RZ 3335 (#93381), IBM Research (2001)

OpenTC Website: The OpenTC projdat.t p: / / www. opent c. net (2006)

EMSCB Website: The EMSCB projedtt t p: / / www. enrscb. or g (2006)

Zhao, S., Lo, V., Gauthier-Dickey, C.: Result verification and trust-based scheduling in peer-to-peer grids.
In: Proc. 5th IEEE International Conference on P2P Computing (2005) 31-38

Cavalcanti, E., Assis, L., GaedCio, M., Cirne, W., Brasileiro, F., Novaes, R.: Sandboxing for a free-to-join
grid with support for secure site-wide storage area. In: Proc. 1st International Workshop on Virtualization
Technology in Distributed Computing (2006)

McCune, J.M., Jaeger, T., Berger, Sac€res, R., Sailer, R.: Shamon: A system for distributed mandatory
access control. In: Proc. 22nd Annual Computer Security Applications Conference (2006) 23—-32

Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of a TCG-based integrity
measurement architecture. In: Proc. Annual USENIX Security Symposium, USENIX (2004) 223—-238
Jaeger, T., Sailer, R., Shankar, U.: PRIMA: policy-reduced integrity measurement architecture. In: Proc.
11th ACM Symposium on Access Control Models and Technologies (2006) 19-28

Mao, W., Yan, F., Chen, C.: Daonity—grid security with behaviour conformity from trusted computing.
In: Proc. 1st ACM Workshop on Scalable Trusted Computing (2006)

Cooper, A., Martin, A.: Trusted delegation for grid computing (2006) Presented at: 2nd Workshop on
Advances in Trusted Computing.

Dinda, P.A.: Addressing the trust asymmetry problem in grid computing with encrypted computation. In:
Proc. 7th Workshop on Languages, Compilers, and Run-Time Support for Scalable Systems (2004) 1-7
Algesheimer, J., Cachin, C., Camenisch, J., Karjoth, G.: Cryptographic security for mobile code. Technical
Report RZ 3302 (# 93348), IBM Research (2000)

