Taming “Trusted Platforms” by Operating
System Design

Ahmad-Reza Sadeghi' and Christian Stiible?

! Ruhr-University Bochum,

Institute for Information and Communication Security,
44780 Bochum, Germany
sadeghi@crypto.rub.de

2 Saarland University,
Security and Cryptography Group,
66041 Saarbriicken, Germany
stueble@acm.org

Abstract. Experiences of the past have shown that common computing
platforms lack security due to architectural problems and complexity. In
this context, Microsoft Palladium (Pd) and TCPA are announced to
be the next-generation computing platforms, and claimed to improve
users’ security. However, people are concerned about those capabilities
of TCPA/Pd that may allow content providers to gain too much power
and control over the use of digital content and users’ private information.
In this paper, we argue that TCPA/Pd can increase the security of com-
puting platforms by faithfully designing the operating system. Moreover,
we discuss how interferences between digital rights management capabil-
ities and end-user security can be prevented. Our results are based on
the fact that even with TCPA/Pd platforms the operating system has
enough control over the platform to prevent misuse by both content
providers and end-users.

We argue that such a trustworthy operating system, that is secure in
the sense of multilateral security, can be developed without much effort
by efficiently combining the ideas of security kernels and state of the
art of operating system technology. We propose a new architecture for
a trustworthy security platform that uses TCPA/Pd hardware features
in conjunction with an open-source security kernel we have developed.
Our security kernel provides backward-compatibility to the Linux oper-
ating system. The layered design and its lightweightness allows an easy
migration to other hardware platforms like PDAs, mobile phones, and
embedded systems.

1 Introduction

The advent of e-commerce and the rapid expansion of world-wide connectivity
demands end-user systems that can guarantee authenticity, integrity, privacy,
anonymity, and availability. While cryptographic and security research commu-
nities have provided solutions to a variety of security related problems, all these
solutions depend upon the security of the underlying computing platform.

K. Chae and M. Yung (Eds.): WISA 2003, LNCS 2908, pp. 286-[302], 2004.
© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Taming “Trusted Platforms” by Operating System Design 287

Existing computing platforms, in particular common operating systems, nei-
ther offer appropriate mechanisms to enforce adequate security policies, nor can
they be maintained by non-experts. Additionally, they suffer from several vul-
nerabilities in hardware and software: beside architectural security problems
and the inherent vulnerabilities resulting from complexity [31], common operat-
ing systems require careful and competent system administration and will still
not effectively protect individuals from executing malicious code. This situa-
tion brings about the need for developing a new generation of secure computing
platforms.
A lot has been reported about Microsoft’s Next-Generation Secure Com-
puting Base for Windows (NGSCB, former Palladium or Pd) [1Ul1ﬂ and the
specification proposed by the Trusted Computing Platform Alliancd!] (TCPA)
[36/35]. The stated goal of these systems is to improve security and trustworthi-
ness of computing platforms [1327/31180]. However, since their announcement,
there is an ongoing public debate about the negative economical, social and
technical consequences of these platforms [B[7/32]. There are many concerns
regarding their capabilities, in particular, in conjunction with Digital Rights
Management (DRM). People are worried about the potential negative conse-
quences of TCPA/Pd and believe that these platforms may give vendors and
content providers too much control over personal systems and users’ private
information: they may allow commercial censorshipE7 political censorship, or de-
stroy innovation Especially, the open-source community seems to resist against
TCPA/Pd, mainly because they are more sensitive regarding user security and
privacy issues.
To clarify this situation, we briefly recapitulate requirements of secure end-
user computing platforms and evaluate on a technical level to what extend
common hardware architectures like PCs satisfy them. After a short review on
TCPA /Pd based on available technical documentations, we analyze whether and
how they can be used to improve end-user security of existing computing plat-
forms. In this context, we argue that the functionalities provided by TCPA and
Pd are completely under control of the operating system. As a consequence,
users can benefit from the security features of TCPA/Pd, as long as their op-
erating system is trustworthy. Although this statement seems to be obvious at
first glance, the trustworthiness of existing and future operating systems is ques-
tionable.
Therefore, we propose a new architecture of a trustworthy security platform
that uses TCPA/Pd hardware features in conjunction with an open-source se-
curity kernel [28] we have developed. Our proposed architecture demonstrates
the following important issues. On the one hand, one can build highly secure
! www.trustedcomputing.org
2 Microsoft, as the vendor of Palladium, is able to remotely delete documents that are
locally stored on a Pd-machine.

3 For instance, word could encrypt all documents using keys only known to Microsoft,
making it impossible for rival products (e.g., OpenOffice or StarOffice) to be com-
patible or undermine the General Public License (GPL).

288 A.-R. Sadeghi and C. Stiible

systems based on TCPA /Pd hardware without much effort. On the other hand,
the security concerns mentioned above can effectively be prevented by a careful
operating system design.

Furthermore, we propose design criteria to provide DRM features on our se-
curity platform that avoid conflicts between DRM policies and end-user security
(privacy). In this way, the proposed trustworthy DRM platform fulfills secu-
rity requirements of end-users and content providers in the sense of multilateral
security.

2 The Need for Secure Hardware

In the conventional sense, secure platforms are systems that enforce user-defined
security policies to protect them against attacks from inside and outside of the
platform, e.g., against other users, remote adversaries and malicious applications
such as a virus or worm.

Traditional security targets of secure platforms are authenticity, integrity,
privacy, anonymity, and availability. In general, the measures applied to achieve
them are information flow control and access control mechanisms [12]. For a
secure realization of these mechanisms, the underlying platform has to fulfill
appropriate security requirements.

It is sometimes stated that these security requirements can be fulfilled based
on common hardware architectures. However, this is not true, since in the era of
smartphones, notebooks and PDAs the untrusted environment does not physi-
cally protect the device anymore. However, untrusted adversarial environments
require tamper evidence or tamper resistance, which is not provided by common
hardware architectures. Even the certain degree of tamper-resistance provided
by smartcards (e.g., to protect unauthorized access to cryptographic keys) do
not help here, since they cannot offer other important security features such as
trusted pathll (see below).

2.1 Types of Threads

We informally distinguish between two types of threats, called Adv; and Adv,.

— In Adwvy, adversaries cannot gain physical access to the device. Thus, attacks
can only be performed remotely, e.g., via remote shell, Trojan horse or virus.
Further, it is assumed that users do not break their own security polic.
An example of Adv; is a desktop computer that is connected to the Internet
but physically protected by the environment, e.g., a locked room.

— In Advs, adversaries have physical access to the device, which requires tam-
per evidence or tamper resistance to protect its integrity. As in Adwy, it is
assumed that users do not break their own security policy.

4 This is the reason why smartcard applications based on insecure operating systems
can easily be broken.
5 Nevertheless, inexperienced users may break their security policy by mistake.

Taming “Trusted Platforms” by Operating System Design 289

2.2 Problems of Common Hardware

Since the functional security requirements to be fulfilled by a secure platform
are well known (see, e.g., [I711228]), the following discussion focuses on their
technical feasibility based on common hardware architectures:

Trustworthiness (R1): The most important requirement is the trustworthiness
of all components that can break the security policy. These components are
generally called the trusted computing base (TCB). The size and complexity
of security-critical implementations directly influences their reliability and thus
the trustworthiness of TCBs. As stated in [31] a typical Unix or Windows sys-
tem (including major applications) consists of about 100 Million lines of code
(MLOC). An analysis of a common Linux distribution using sloc [39] counts
about 55 MLOC and that the TCB counts more than 5 MLOCY. According to
[B1]), several studies have shown that typical software consists of about one secu-
rity critical bug per 1000 lines of code. Thus, we have to assume that more than
5000 security critical bugs are part of the TCB of a typical Linux distribution.

Further methods to increase the trustworthiness of critical components is the
evaluation according to the common criteria [12] and to make source code and
design decisions publicly available [3,29].

Confidentiality and integrity of application code and data (R2): This requirement
should hold during the execution and during the storage.

The former is required to prevent concurrent processes from accessing con-
fidential information. Unfortunately, with common hardware architectures it is
very difficult to prevent untrusted components from accessing data. For example,
an untrusted process must never be allowed to control DMA-enabled devicedT.
As long as common hardware architectures contain these difficulties, the only
solution is to put critical code (e.g., every device driver) into the TCB.

The latter requirement (protection during storage) can be realized in Adv,
based on existing hardware architectures using cryptographic primitives. How-
ever, for this to be realized under the adversary model Advs more effort is re-
quired. In theory, it would suffice to have a complete tamper-resistant platform
including the whole TCB, but the reality shows that this is a strong assumption
[BI2]. Thus, common solutions are to encrypt critical data and to protect the
master encryption key either by entering it at system startup, or by protecting
it by tamper-resistant components.

5 The Linux kernel 2.4 contains about 2.4 MLOC, but any application that is executed
with root rights and libraries used by this applications can directly manipulate the
kernel and are therefore part of the TCB. For example, alone the XServer extends
the size of the TCB by about 1.3 MLOC.

" DMA (Direct Memory Access) allows peripheral hardware, e.g., the video adapter or
the sound card, to directly access physical memory circumventing memory protection
mechanisms. Thus, malicious modules which control DMA-enabled hardware (e.g.,
a device driver), can bypass policy enforcing mechanisms.

290 A.-R. Sadeghi and C. Stiible

Integrity of the TCB (R3): The enforcement of security policies can only be
guaranteed as long as the TCB is not manipulated. Since existing hardware
architectures does not provide mechanisms to protect the integrity of critical
components, adversaries can easily manipulate software components of the TCB,
e.g., by exploiting design and implementation failures like /dev/kmem or buffer
overflows. An important aspect in this context is a secure bootstrap architecture
to prevent adversaries from manipulating the TCB when it is inactive. If the
adversary has no physical access (Advy), a secure bootstrap architecture can
for instance be provided by using a read-only boot medium, e.g., a CD-ROM.
Obviously, this is impossible under Adv,. Another important issue in this context
is to provide users with a mechanism to securely verify the results of the integrity
check [1].

Enforcing least privilege (R4): Many security flaws concerning viruses and Tro-
jan horses result from the fact that common operating systems do not enforce the
concept of least privileges. The underlying access control mechanisms, originally
designed to separate different users from each other, are based on access con-
trol lists (ACL). As a result, every application has all privileges of the invoking
user, which makes it very easy for malicious software to bypass confidentiality
or integrity policies.

Trusted path to user (R5): A trusted path prevents unauthorized applications
from accessing passwords entered by the ordinary user. Further, it is a prereqg-
uisite for application authentication to prevent faked dialogs [37/9]. Application
authentication also requires a secure application manager that provides the nec-
essary information about the applications, e.g., a unique, user-defined application
name.

Secure channel to devices and between applications (R6): Integrity, confidential-
ity and authenticity of inter-application communication is required to prevent
malicious applications from deceiving honest applications, e.g., by faked pro-
cess numbers. Further, it has to be ensured that unauthorized components can
neither read nor write to buffers of peripheral devices.

Secure Random Numbers (R7): To be able to use cryptographic primitives, a se-
cure generation of random numbers is required to generate secure cryptographic
keys. With existing deterministic computer architectures the generation of secure
random numbers is very difficult, if not impossible [15,19].

As a bottom line of this section, we can stress that the development of a
secure system based on existing hardware architectures under Adv; is difficult,
but possible. Research results in operating system security have shown that this
is also possible in practice [28134/21]. Under threat type Advs a secure system can
by no means be developed without hardware extensions, since tamper-resistance
or at least tamper-evidence is required. As we have already stated above, Adwvs
is important whenever the system cannot be protected by the environment, e.g.,

Taming “Trusted Platforms” by Operating System Design 291

PDAs, mobile phones, notebooks, embedded systems or pervasive computing.
Thus, we require hardware architectures that under Advy offer features which
can be deployed to fulfill the above mentioned requirements.

Next, we consider the TCPA and Palladium and briefly discuss what features
they provide to overcome some of the shortcomings of the conventional hardware
architectures.

3 TCPA and Palladium

Since NGSCB and TCPA are announced to improve user’s security, this sections
discusses on a more technical level to what extend TCPA/Pd can keep their
promises. We review only the architecture of TCPA and briefly outline known
differences to Pd. The reasons are that TCPA and Pd provide similar function-
ality (on technical level) and that only the full TCPA specification is publicly
available.

Figure [[J outlines the components of a TCPA-compatible PC platform [35].
Beside the conventional hardware, TCPA consists of two tamper-resistant mod-
ules called TPM (Trusted Platform Modulef§ and CRTM (Core Root Trust
Module). The operating system supporting these modules is not part of the
TCPA specification.

TCPA Palladium

Common Applications T'EpF;)? Common Applications Agents
TCPA Common N
Operating System Operating System Bds
Hardware | Hardware
———— cRM | TPM |
TPM/SSC
D Existing components D New components

Fig. 1. Comparison between the TCPA and the Palladium architectures. Palladium
allows a common operating system to be executed in parallel but requires more changes
to hardware components to prevent the common operating system to bypass security
policies.

The TCPA specification [36/35] extends the PC architecture by the following
functionalities:

— System configuration authentication (attestation): The TPM con-
tains a certified and unique signature key that can sign the current system

8 Some documents on Palladium call it the Security Support Component (SSC).

292 A.-R. Sadeghi and C. Stiible

configuration H stored in protected TPM registers h; ... h,. H is determined
by the bootstrap process using a SHA-1 hash function. When the CRTM is
invoked on system startup, it determines the BIOS configuration, writes the
result into h; and invokes the system BIOS which itself determines the con-
figuration of the boot sector, writes it to hs, invokes the boot loader and so
on [40]. This procedure is continued until the operating system is loaded fi

— Sealing: The integrity preserving mechanism of TCPA does not protect the
TCB directly, but ensures that data that was encrypted under a configura-
tion H cannot be revealed under another configuration H’. This is realized
by cryptographically binding relevant information (e.g., the system config-
uration and the identifier of the invoking application) to the data to be
encrypted. Note that the TPM cannot distinguish between different appli-
cations. Thus, the application identifier (e.g., a hash value of the application
code) has to be provided by the operating system.

— Protection of cryptographic keys: The identifying signature key and the
keys used to seal data are protected by the TPM which they never leave.
Instead, the TPM itself provides cryptographic functions to operate on the
cryptographic keys.

— Secure random numbers: Beside cryptographic functions used to deter-
mine and sign the system configuration and to seal data, the TPM contains
a secure random generator to generate secure cryptographic keys.

As we will discuss in Section these features can be deployed to satisfy
some of the main requirements on secure hardware we listed in Section 2.2

From the existing (non-technical) descriptions on Palladium [TTJT4)33] one
may derive an architecture as outlined in Figure [In contrast to TCPA, Pal-
ladium allows an existing operating system to be executed in parallel to a new
kernel called nemus, which itself executes critical applications called agents.
The architecture allows the conventional operating system to be executed with-
out the nexus, and that the nexus can be loaded later. Therefore, determining
the system configuration in Palladium is simpler, since agents only depend on
the nexus kernel and the underlying hardware. Compared to TCPA, Pd requires
more hardware changes than TCPA: first, a new CPU is required which allows
the nexus to be executed. Second, to prevent interferences between the con-
ventional operating system and the nexus, nearly every hardware device has to
support Palladium by providing a “nexus-mode”.

A major benefit of Palladium is an extension of the mainboard chipset that
allows the nexus to control DMA cycles [I1J33] (see Section[2). Since TCPA does

 The functionality of the bootstrap process is similar to those described in [8].

10 This is done by adding a new mode of operation that allows the nexus to protect
itself (and applications for which the nexus acts as the operating system) against
the conventional operating system. A possible implementation of the extension is to
add another CPU protection ring, e.g. 7—1 below protection ring 7o [6] and give it
capabilities to hide memory pages and process structures to protect itself and critical
applications from code executed on ro or above (the conventional operating system).

Taming “Trusted Platforms” by Operating System Design 293

not contain such a functionality, appropriate drivers and hardware devices have
to be part of the TCB which enormously increases its size and complexity.

As a result, we can outline that the functionality provided by TCPA and Pd
is completely under the control of the operating system. This moves the question,
whether end-users can trust TCPA /Pd platforms or not, to the question, whether
they can trust their operating systems. Therefore, the next section proposes
an architecture of a security platform that uses the features of TCPA/Pd to
increase the overall operating system security without allowing to realize those
capabilities of TCPA/Pd people are concerned about.

4 Towards Personal-Secure Systems

As we have discussed in Section[2], many requirements to build secure computing
platforms are difficult to fulfill using existing hardware architectures, especially,
if the adversary has physical access to the system’s hardware (Advs). Moreover,
we discussed that TCPA /Pd offer prospective properties to build secure systems
as long as the underlying operating system can be trusted by the user. In this
section we propose an architecture for a secure computing platform in the sense
of Advs using TCPA/Pd in conjunction with a security kernel called PERSEUS
we have developed. First, we shortly explain the architecture of this security
kernel.

4.1 The PERSEUS Security Architecture

PERSEUYH] [28] is a minimal open-source security kernel providing all operating
system services required to protect security critical applications executed on top
of it. The main idea is to let common operating systems run as applications on
the top of the security kernel, since the past has shown that secure operating
system architectures live in the shadow if they are incompatible to a common
operating system. Therefore, a tamed 3 operating system (Client OS) provides
users with a common user interface and a backward-compatible interface to reuse
all uncritical standard applications and services.

One main design goal of the PERSEUS security architecture was the real-
ization of a minimal and therefore manageable, stable and evaluable security
kernel for conventional hardware platforms such as IBM-PC and mobile devices
like PDA’s and smartphones. This requirement was fulfilled by extracting only
security-critical operations and data to the security kernel. The Client OS still
provides all uncritical operating system services like a filesystem, network sup-
port, ete[d Our decision to use this hybrid architecture is motivated, among
others, by the following two facts: Firstly, the development of a completely new

1 www.perseus-os.org

12 Currently, a slightly modified user-space Linux adapted to the L4 microkernel, L4-
Linux [20], is used.

13 The hardware access used to provide this high-level services is controlled by low-level
services of PERSEUS.

294 A.-R. Sadeghi and C. Stiible

secure operating system that provides backward-compatibility is too costly. Sec-
ondly, improving the existing operating systems, e.g., like SE-Linux [26], are too
inﬂexibl. The high-level PERSEUS architecture is illustrated in Figure 2|

Secure
Conventional Operating System Applications
(e.g. L4-Linux)

Application “Application Application !

Operating System Environment :

~ Operating System Kernel

green
line

PERSEUS Security Kernel

Hardware

D Existing components D New components

Fig. 2. An overview over the PERSEUS architecture. The green line indicates the
border between trusted and untrusted components.

The PERSEUS security kernel is based on the efficient L4 microkernel [25/]18]
that provides (i) a hardware abstraction, (ii) elementary mechanisms, and (iii)
flexible policies that are required to control and protect critical system services,
device drivers and resource managers as separated user-space processes (a so-
called multi-server system). This prevents that errors of one component can
affect others, ensures that only authorized processes can access the hardware
and guarantees that only the microkernel itself is executed in the supervisor
mode of the CPU.

Also security-critical applications and the conventional operating system are
implemented as separated user-space processes which can only communicate to
each other or to the underlying hardware using services provided by the secure
kernel. This allows PERSEUS to enforce its own user-defined security policy
independent of the conventional operating system.

The PERSEUS security kernel currently consists of the following components
(see Figure [):

— Microkernel. The only component that is executed in supervisor mode. It
contains about 7100 lines of code (LOC) and provides basic process, inter-
process communication (IPC), thread, memory and exception support. Fur-
thermore, capabilities to processes, interrupts and I/O ports and a process-
level access control mechanism [2422] is provided.

4 On the one hand, it is questionable whether, e.g., a trusted path can be provided
without many changes to core components. On the other hand, these improvements
do not decrease the complexity.

Taming “Trusted Platforms” by Operating System Design 295

green
line

‘Trustworthy User Interfacel‘ Application Manager

‘ Resource Manager I‘ Memory Manager

‘ Device Drivers I‘ Storage Manager I

‘ Microkernel (L4)

Hardware

Fig. 3. A more detailed illustration of the PERSEUS security kernel. Again, the green
line indicates the border between application layer and trusted computing base.

— Resource Manager. The resource manager enforces security policies on
low-level hardware resources like interrupts, processes and I/O ports. It con-
sists of about 5600 LOC.

— Memory Manager. This module ensures that different services and ap-
plications do not share memory pages. The size of the implementation is
currently about 654 LOC.

— Device Drivers. Because of the security problems with DMA-enabled de-
vices discussed in Section 2] every device driver that accesses DM A-enabled
devices (or at least the critical parts) has to be isolated in the secure envi-
ronment to be protected against malicious modifications. The size depends
on the size of the original drivers[1

— Trustworthy User Interface. The trustworthy user interface provides a
trusted path by controlling the hardware of input devices (keyboard and
mouse) and the video adapter. The implementation ensures that only the
active application receives user input and exclusively controls a small region
of the output device used for application authentication. For larger screen
resolutions (e.g., PC’s), a minimal implementation of a secure window man-
ager is provided. The current implementation has a size of about 5400 LOC.

— Application Manager. The application manager controls installation and
removal of security critical applications based on code signing. It enforces
user-defined installation policies and assigns predefined sets of permissions to
new applications. The implementation is currently in beta-state; we expect
an overall size of about 5000 LOC.

— Storage Manager. This module encrypts/decrypts memory pages of other
applications/services and persistently stores them using the filesystem of the
Client OS. Its size is currently about 500 LOC.

— Secure Booting. Because of lack of hardware support, secure booting is
currently only provided marginally. The storage manager uses cryptographic

!5 This is especially a problem of common PCs, because they can have a huge amount
of DMA-enabled devices which enormously increases the size and complexity of the
TCB. For mobile devices like PDAs; this is not so important, since they have a
relatively fixed hardware architecture.

296 A.-R. Sadeghi and C. Stiible

TCPA Palladium

Secure
Conventional Operating System Applications

- (e.g. L4-Linux) m /VM
Application i Application | | Application Conventional Operating System

- B (e.g. Linux or MS Windows)
Operafihg System Envirorlment Application : : Application :: Application
Operating System Kernel Operating System Environment

Secure
Agents

PERSEUS Opgrating System Kelfnel PERSEUS
|
Hardware Hardware Pd-CPU |
CRTM TPM TPM/SSC

[Existing components [] New components

Fig. 4. When the PERSEUS architecture is combined with TCPA or Pd hardware,
the resulting architectures are somewhat similar. The Pd approach allows the reuse of
every conventional operating system, but requires more changes to the hardware.

key derived from a passphrase entered by the user at system startup. Ad-
ditionally, all critical components can be stored onto a read-only medium,
e.g., a CD-ROM.

— DGP. DGP is a PERSEUS application that provides users compatibility
to PGP [I]. Security-critical data, e.g., cryptographic keys, never leave
the PERSEUS application, since also security-critical operations are per-
formed by the PERSEUS service. Additionally, DGP provides a trusted
viewer /editor to verify, e.g., information to be signed, and to enter confi-
dential data.

For more information on PERSEUS and to download the current source code,
see the PERSEUS homepage@.

4.2 Improving Security with TCPA /Pd

To obtain a secure platform in the sense of Adv; and Adve, we can extend
the PERSEUS security kernel to support TCPA and Pd. The latter, however,
requires that Microsoft publishes technical specification about Pd, as promised
[14]. Since PERSEUS separates critical from uncritical components, the resulting
architectures look very similar (see Figure [4]).

The only difference is that Pd allows the trusted kernel to control the con-
ventional operating system by extending the CPU hardware, while the TCPA
approach reuses exiting protection mechanisms but requires the conventional
operating system to be modified.

16 WWW.perseus-0s.0rg

Taming “Trusted Platforms” by Operating System Design 297

Table 1. Fulfilling security requirements by the functions of the proposed architecture

R1|R2|R3|R4|R5|R6|R7
Random Generator X | x X
Sealing X | X
Attestation X
CPU X | X
Microkernel X X X
PERSEUS X X

4.3 How Existing Security Problems Are Solved

The combination of the security functions provided by a minimal, highly secure
operating system kernel and those provided by TCPA/Pd hardware allows us
to offer a security platform that fulfills all security requirements that have been
demanded in Section 2.2 Table [[] outlines which properties resp. functions of
the proposed architecture are deployed to fulfill the corresponding requirement.

The trustworthiness of the proposed architecture is improved, since the reuse
of an existing operating system allows us to keep the size and the complexity of
the TCB very small (currently, about 25.000 LOC). Moreover, the attestation
functionality of the underlying TCPA /Pd hardware allows also external systems
to trust our architecture. Application code and data is protected during runtime
by existing CPU memory protection mechanisms (e.g., virtual address spaces).
Persistently stored data is protected by the extended Storage Manager that
uses sealing to ensure that users cannot bypass security mechanisms by boot-
ing another operating system. The same mechanism is used by the bootstrap
architecture to protect the integrity of the TCB. To allow reusing of existing de-
vice driver implementations, DMA has to be tamed as, e.g., proposed in [23//T6].
Obviously, the proposed architecture cannot directly solve security problems of
viruses, since viruses exploit security flaws on the application layer (e.g., a Word
macro-viruses). Nevertheless, the proposed architecture reduces the potential
damage caused by such attacks by enforcing its own security policy and sepa-
rating code and data of different applications from each other. For example, the
Client OS cannot access data of another PERSEUS application. A trusted path
is provided by the TCB that controls a subset of the user interface and prevents
Trojan horses attacks. Since secure IPC is the only communication mechanisms
of the underlying microkernel a secure channel to devices and between applica-
tions can be provided. Finally, the random generator of the TCPA /Pd hardware
is used to securely create cryptographic keys.

To be able to use the security features provided by our proposed architecture,
security-critical applications have to be adapted to the interface of PERSEUS.
To achieve this efficiently, we only need to move the security-critical data and the
operations performed on this data to a compartment protected by PERSEUS.
For example, consider a signature application: the critical data to be moved to
the protected compartment is the signing key. The security critical operations are

298 A.-R. Sadeghi and C. Stiible

the generation of the signature and, to prevent attacks performed by an insecure
Client OS, the verification of the document to be signed (trusted viewer).

5 Multilateral Secure DRM Platforms

Digital technology and media offer content providers and producers many busi-
ness opportunities and users many advantages towards the realization of new
electronic marketplaces. In this context, trading digital goods over open net-
works, such as the Internet, plays an important role. However, all these techno-
logical possibilities for comfortable handling and trading digital goods face us
also with challenging problems regarding copyright protection of digital proper-
ties. Digital Rights Management (DRM) platforms are often considered as sys-
tems that should realize the appropriate environment for trading digital works
while protecting the rights of authors and copyright holders. This is what we
call a DRM policy.

To enforce DRM policies, one actually requires an ideal trusted media player,
also called trusted viewer enabling only the authorized users to “view” (watch,
listen to, edit, execute, etc.) digital workd™] while controlling the use of works
according to the specified DRM policy.

5.1 Consequences of DRM

DRM policies and (user) security policies often conflict, e.g., if the external
copyright control or system-wide censorship contradicts with a locally defined
availability requirement of a user, or if a software product can prevent the instal-
lation of competitive products. While users are interested in unrestricted use,
copying and even redistributing digital works, the providers want to protect their
digital goods against misuse to limit financial damage. However, providers are
not always the victims: they may also become the delinquents, and misuse DRM
policies against users (see also [4] and [32]).

In DRM systems, providers are capable of enforcing any kind of policy within
their specific media player. This is independent of any technical design and has
many implications: For instance, a media player can censor the documents that it
controls and a DRM-wordprocessor can encrypt its documents in such a way that
other products like open-office cannot read them. If users desire to use DRM-
enabled platforms and if they accept the underlying DRM conditions, then the
only possibility to prevent issues such as censorship is the regulation by law.

5.2 Towards Trustworthy DRM Systems

Although the potentially negative consequences of DRM platforms mentioned
above cannot be prevented on a technical level, a careful design of the TCB

17 Note that the media player can control access to information only within the plat-
form. Users may still be able to make unauthorized copies by using cameras or audio
recorders.

Taming “Trusted Platforms” by Operating System Design 299

(which now has to be trusted by users and providers) can prevent most of the
dangerous consequences regarding user security. Most functions for controlling
the system from outside, for instance a system-wide censorship, require a refer-
ence monitor located at the operating system layer or below. To enforce DRM
policies such a system-wide reference monitor under control of content providers
is not required, since the context to enforce DRM policies is only available at
the application layer (the media players).

Therefore, we propose a multilateral secure operating system based on the
PERSEUS security kernel that allows content providers to enforce DRM policies
by guaranteeing that users cannot bypass enforcement mechanisms provided by
the application layer, e.g., by patching media players. This can be provided by the
sealing mechanism offered by TCPA and Pd, but requires a TCB that cannot be
modified afterwards[l§ The enforcement of system-wide security policies, e.g.,
access control between applications and their data or the decision on which
application are to be installed, can be kept under control of local users. This is
by no means a restriction on providers, because the media player applications
have to be trusted by providers at this layer anyway. The PERSEUS kernel is
extended by services that provide sealing and attestation functions to be used
by the application layer. This prevents users from bypassing DRM policies, e.g.,
by rebooting another operating system after the system was authenticated, since
applications can still bind their contents to a specific system configuration. To
allow applications to enforce their own access control policy, the Application
Manager offers an application identification mechanism based on hash values.

This is what we call a trustworthy DRM platform. The important aspect
about trustworthy DRM platforms is that they allow users to freely decide
whether to accept or to reject applications that use DRM policies. Especially, it
allows users to remove such an application without consequences for the other
applications or system components.

The resulting architecture of a multilateral secure DRM platform is similar
to the one outlined on Figure 2 and Figure [3. The only difference is that the
TCB (all components below the green line) has to ensure that users cannot (i)
manipulate application code and (ii) access application data. For instance, the
user interface service must not allow other applications to create screenshots,
and the storage manager resp. the memory manager have to strictly separate
data of different applications. All these requirements are still fulfilled by the
existing implementation of the PERSEUS security kernel.

As a bottom line of this section, we stress that security and DRM require-
ments are not mutually exclusive. Therefore, by strictly separating the enforce-
ment of DRM policies and (user-defined) security policies, it is possible to pro-
vide a platform that allows external providers to enforce their policies without
allowing them to misuse these mechanisms against users (privacy issues).

8 Device drivers or Linux’ kernel modules are negative examples. Microkernel systems
that provide system services by user-space processes are more promising in this
regard.

300 A.-R. Sadeghi and C. Stiible

Many potential dangers of DRM systems debated in the press (see, e.g., [3]
32]) can be efficiently avoided using the proposed architecture of a trustworthy
operating system. The proposed architecture provides only a minimal set of
operating system functions, allowing different conventional operating systems to
be developed (or ported) on top of it.

In this context, an important political and social issue to be considered is
the use of an open-source security kernel that is not under control of one (or a
few) vendors, avoiding monopolies. This may solve certain conflicts, since DRM
platforms have to be trusted by both users and content providers.

6 Conclusion

In this paper, we discuss the capabilities of Microsoft Next-generation Secure
Computing Base for Windows and TCPA based on the available documentation.
Based on common security requirements we discuss why common hardware ar-
chitectures in untrusted environments are unable to provide users with adequate
security properties if the adversary has physical access to the device. Examples
of untrusted environments are the use of mobile devices like smartphones, PDAs,
notebooks and applications in pervasive computing.

Our analysis of TCPA /Palladium shows that their hardware architectures
can be used to improve end-user security, but we also conclude that the DRM
capabilities of TCPA /Palladium can be misused against users, if the underlying
operating system does not prevent it. Therefore, we propose an open security
architecture that relies on TCPA /Palladium hardware and an open-source se-
curity platform called PERSEUS we have developed. TCPA/Pd support can
be implemented without much effort, providing the open-source community an
alternative to commercial TCPA/Pd products. With the proposed architecture
we also demonstrate that highly secure systems can profit from the features
of TCPA or Palladium. However, the border between security and censorship
is small and the community should observe further developments in this area
carefully.

Since there is a need for DRM platforms, we emphasize that a careful design
of a DRM kernel, what we call a trustworthy DRM platform, can prevent most
of the negative consequences on the operating system level. The philosophy be-
hind it is the strict separation between the enforcement of DRM policies and
personal security policies. This allows user security policies and DRM policies
to coexist and gives users the freedom to accept or reject a DRM application
without further consequences. Furthermore, we have evaluated which negative
consequences cannot be prevented on a DRM system on a technical level.

References

1. A. Alkassar and C. Stiible. Towards secure IFF — preventing mafia fraud attacks.
In Proceedings of IEEE Military Conference (MILCOM), 2002.

2. R. J. Anderson. Security Engineering — A Guide to Building Dependable Dis-
tributed Systems. John Wiley & Sons, 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Taming “Trusted Platforms” by Operating System Design 301

R. J. Anderson. Security in open versus closed systems — the dance of Boltzmann,
Coase and Moore. Technical report, Cambridge University, England, 2002.

. R. J. Anderson. The TCPA /Palladium FAQ.

http://www.cl.cam.ac.uk/“rjal4/tcpa-faq.html, 2002.

. R. J. Anderson and M. Kuhn. Tamper resistance — a cautionary note. In Proceed-

ings of the 2nd USENIX Workshop on Electronic Commerce [38], pages 1-11.

. J. L. Antonakos. The Pentium Microprocessor. Prentice Hall Inc., 1997.
. W. A. Arbaugh. Improving the TCPA specification. IEEE Computer, pages 77-79,

Aug. 2002.

. W. A. Arbaugh, D. J. Farber, and J. M. Smith. A reliable bootstrap architecture.

In Proceedings of the IEEE Symposium on Research in Security and Privacy, pages
65—71, Oakland, CA, May 1997. IEEE Computer Society, Technical Committee on
Security and Privacy, IEEE Computer Society Press.

. N. Asokan, H. Debar, M. Steiner, and M. Waidner. Authenticating public termi-

nals. Computer Networks, 31(8):861-870, May 1999.

A. Carroll, M. Juarez, J. Polk, and T. Leininger. Microsoft ” Palladium”: A business
overview. Technical report, Microsoft Content Security Business Unit, August
2002.

A. Carroll, M. Juarez, J. Polk, and T. Leininger. Microsoft “Palladium”: A busi-
ness overview — combining microsoft windows features, personal computing hard-
ware, and software applications for greater security, personal privacy and system
integrity. White paper, Microsoft Windows Trusted Platform Technologies, July
2002.

Common Criteria Project Sponsoring Organisations. Common Criteria for In-
formation Technology Security Evaluation, Aug. 1999. Version 2.1, adopted by
ISO/IEC as ISO/IEC International Standard (IS) 15408 1-3. Available from
http://csrc.ncsl.nist.gov/cc/ccv20/ccv2list.htm,

M. Corporation. Building a secure platform for trustworthy computing. White
paper, Microsoft Corporation, Dec. 2002.

M. Corporation. Microsoft ”Palladium” technical FAQ.
http://www.microsoft.com, Aug. 2002.

D. E. Eastlake, S. D. Crocker, and J. I. Schiller. Randomness requirements for
security. Internet Request for Comment RFC 1750, Internet Engineering Task
Force, Dec. 1994.

L. Fraim. SCOMP: A solution to the multilevel security problem. In IEEE Com-
puter, pages 26-34, July 1983.

M. Gasser. Building a Secure Computer System. Van Nostrand Reinhold Co., New
York, USA, 1988.

A. Gefflaut, T. Jaeger, Y. Park, J. Liedke, K. J. Elphistone, V. Uhlig, J. E. Tidswell,
L. Deller, and L. Reuter. The SawMill multiserver approach. ACM SIGOPS
European Workshop, Sept. 2000.

P. Gutmann. Software generation of practically strong random numbers. In Pro-
ceedings of the 7Tth USENIX Security Symposium, San Antonio, Texas, USA, Jan.
1998. USENIX.

H. Hartig, M. Hohmuth, and J. Wolter. Taming linux. In Proceedings of PART’98.
TU Dresden, 1998.

H. Hartig, O. Kowalski, and W. Kiithnhauser. The BirliX security architecture.
Journal of Computer Security, 2(1):5-21, 1993.

T. Jaeger, K. Elphinstone, J. Liedtke, V. Panteleenko, and Y. Park. Flexible access
control using IPC redirection. In Hot Topics in Operating Systems (HotOS VII),
pages 191-196, Rio Rico, AZ, Mar. 1999.

http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html
http://csrc.ncsl.nist.gov/cc/ccv20/ccv2list.htm

302

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

A.-R. Sadeghi and C. Stiible

B. Leslie and G. Heiser. Towards untrusted device drivers. Technical Report
UNSW-CSE-TR-0303, School of Computer Science and Engineering, Mar. 2003.
J. Liedke. Clans and Chiefs. a new kernel level concept for operating systems.
Working paper, GMD, 1991.

J. Liedke. Towards real micro-kernels. Communications of the ACM, 39(9), 1996.
P. Loscocco and S. Smalley. Integrating flexible support for security policies into the
Linux operating system. Technical report, U.S. National Security Agency (NSA),
Feb. 2001.

C. Mundie, P. de Vries, P. Haynes, and M. Corwine. Microsoft whitepaper on
trustworthy computing. Technical report, Microsoft Corporation, Oct. 2002.

B. Pfitzmann, J. Riordan, C. Stiible, M. Waidner, and A. Weber. The PERSEUS
system architecture. Technical Report RZ 3335 (#93381), IBM Research Division,
Zurich Laboratory, Apr. 2001.

E. S. Raymond. The cathedral and the bazaar.
http://www.openresources.com/documents/cathedral-bazaar/, August 1998.
D. Safford. Clarifying misinformation on TCPA. White paper, IBM Research, Oct.
2002.

D. Safford. The need for TCPA. White paper, IBM Research, Oct. 2002.

B. Schneier. Palladium and the TCPA.
http://www.counterpane.com/crypto-gram-0208.htm1\#1,

S. Schoen. Palladium details.
http://www.activewin.com/articles/2002/pd.shtml, 2002.

J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast capability system.
In Proceedings of the 17th ACM Symposium on Operating Systems Principles
(SOSP’99), pages 170-185. Kiawah Island Resort, near Charleston, Sout Carolina,
Dec. 1999. Appeared as ACM Operating Systems Review 33.5.

Trusted Computing Platform Alliance (TCPA). TCPA PC specific implementation
specification, Sept. 2001. Version 1.00.

Trusted Computing Platform Alliance (TCPA). Main specification, Feb. 2002.
Version 1.1b.

J. D. Tygar and A. Whitten. WWW electronic commerce and Java Trojan horses.
In Proceedings of the 2nd USENIX Workshop on Electronic Commerce [38], pages
243-250.

USENIX. Proceedings of the 2nd USENIX Workshop on Electronic Commerce,
Oakland, California, Nov. 1996.

D. A. Wheeler. More than a gigabuck: Estimating GNU /Linux’s size.
http://www.dwheeler.com/sloc/, June 2001.

Wintermute. TCPA and Palladium technical analysis.
http://wintermute.homelinux.org/miscelanea/TCPASecurity.txt| Dec. 2002.
P. Zimmerman. The Official PGP User’s Guide. prz@acm.org, 1994. The MIT
Press In press. More in
http://www.pegasus.esprit.ec.org/people/arne/pgp.html.

http://www.openresources.com/documents/cathedral-bazaar/
http://www.counterpane.com/crypto-gram-0208.html#1
http://www.activewin.com/articles/2002/pd.shtml
http://www.dwheeler.com/sloc/
http://wintermute.homelinux.org/miscelanea/TCPA Security.txt
http://www.pegasus.esprit.ec.org/people/arne/pgp.html

	Introduction
	The Need for Secure Hardware
	Types of Threads
	Problems of Common Hardware

	TCPA and Palladium
	Towards Personal-Secure Systems
	The PERSEUS Security Architecture
	Improving Security with TCPA/Pd
	How Existing Security Problems Are Solved

	Multilateral Secure DRM Platforms
	Consequences of DRM
	Towards Trustworthy DRM Systems

	Conclusion

