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ABSTRACT
In this paper, we introduce a security framework for practical
and lightweight domain isolation on Android to mitigate
unauthorized data access and communication among appli-
cations of different trust levels (e.g., private and corporate).
We present the design and implementation of our framework,
TrustDroid , which in contrast to existing solutions enables
isolation at different layers of the Android software stack:
(1) at the middleware layer to prevent inter-domain applica-
tion communication and data access, (2) at the kernel layer
to enforce mandatory access control on the file system and on
Inter-Process Communication (IPC) channels, and (3) at the
network layer to mediate network traffic. For instance, (3)
allows network data to be only read by a particular domain,
or enables basic context-based policies such as preventing
Internet access by untrusted applications while an employee
is connected to the company’s network.

Our approach accurately addresses the demands of the
business world, namely to isolate data and applications of
different trust levels in a practical and lightweight way. More-
over, our solution is the first leveraging mandatory access
control with TOMOYO Linux on a real Android device
(Nexus One). Our evaluation demonstrates that TrustDroid
only adds a negligible overhead, and in contrast to contempo-
rary full virtualization, only minimally affects the battery’s
life-time.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security

1. INTRODUCTION
The market penetration of modern smartphones is high and

sophisticated mobile devices are becoming an integral part
of our daily life. Remarkably, smartphones are increasingly
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deployed in business transactions: They provide employees
a means to remain connected to the company’s network
thereby enabling on the road access to company’s data. In
particular, they allow employees to read and send e-mails,
synchronize calendars, organize meetings, attend telephone
and video conferences, obtain news, and much more. On the
other hand, mobile platforms have also become an appealing
target for attacks threatening not only private/personal data
but also corporate data.

Until today, the Blackberry OS is the most popular op-
erating system used in the business world. However, recent
statistics manifest that Google Android is rapidly expanding
its market share1, also in the business world, where it is
currently the third-most used mobile operating system after
Blackberry and iOS [6].

Security Deficiencies of Android. The core security
mechanisms of the (open source) Google Android OS [21] are
application sandboxing and a permission framework. How-
ever, recent attacks show that Android’s security architecture
is vulnerable to malware of many kinds. First, uploading ma-
licious applications on the official Android market is straight-
forward, since anyone can become an Android developer by
simply paying a fee of $25. Second, Google does not per-
form code inspection. Recent reports underline that these
two design decisions have led to the spread of a number of
malicious applications on the official Android Market in the
past [29, 19, 25, 4]. Further, another attack technique against
Android is privilege escalation. Basically, these attacks allow
an adversary to perform unauthorized actions by breaking
out of the application’s sandbox. This can be achieved by
exploiting a vulnerable deputy [15, 10, 17], or by malicious
colluding applications [37, 5]. In particular, privilege esca-
lation attacks have been utilized to send unauthorized text
messages [10], to trigger malicious downloads [24, 29], to
change the WiFi settings [17], or to perform context-aware
voice recording [37]. Finally, approaches that rely on An-
droid’s permission framework to separate private applications
and data from corporate ones (such as enterproid [1]) will
likely fail due to the above-mentioned attacks. Moreover,
any attack on the kernel-level will allow the adversary to
circumvent such solutions.

Domain Isolation with Default Android. In the light
of recent attacks, the Android OS cannot meet the security re-
quirements of the business world. These requirements mainly
comprise the security of a heterogeneous company network

1At the time of writing, Android has 36% market share
and belongs to the most popular mobile operating systems
worldwide [18].



to which smartphones connect along with the protection of
corporate data and applications (on the phone). In partic-
ular, Android lacks data isolation: For instance, standard
Android only provides single database instances for SMS,
Calendar, and Contacts. Hence, corporate and private data
are stored in the same databases and any application allowed
to read/write the database has direct access to any stored
information. Apart from application sandboxing, Android
provides no means to isolate corporate applications from
private user applications in a system-centric way. Hence, an
adversary could get unauthorized access to the company’s
network by utilizing privilege escalation attack techniques.
Finally, Android fails to enforce isolation at the network-level
which would enable the deployment of basic context-aware
policy rules. For instance, there is no means to deny Inter-
net access for untrusted applications while the employee is
connected to the company’s network.

To summarize, default Android has no means to group
applications and data into domains, where in our context
a domain compromises a set of applications and data be-
longing to one trust level (e.g., private, academic, enterprise,
department, institution, etc.)

Existing Security Extensions to Android. Recently,
a number of security extensions for Android have been pro-
posed, the closest to our work being [32, 14, 31, 28, 5].
However, as we will elaborate in detail in related work (see
Section 7), all of these solutions focus on a specific layer of
the Android software stack (mainly Android’s middleware)
and fail if the attack occurs on a different layer, e.g., at the
network layer by mounting a privilege escalation attack over
socket connections [10]). Specifically, they do not address
kernel-level attacks [30, 24] that allow an adversary to access
the entire file system. Having said that, attacks on the kernel-
level can be mitigated by enabling SELinux on Android [40].
However, SELinux only targets the kernel-level, and misses
high-level semantics of Android’s middleware.

In particular, we are not aware of any security extension
providing efficient and scalable application and data isolation
on different layers of the Android software stack, which is
essential for deploying Android in the business world.

On the other hand, several virtualization-based approaches
aim at providing isolation between private and corporate
domains on Android [33, 3]. However, contemporary mobile
virtualization solutions suffer from practical deficiencies (see
Section 7): (1) they do not scale well on resource-constrained
smartphone platforms which allow only a limited number of
virtual machines to be executed simultaneously; (2) more
importantly, virtualization highly reduces the battery life-
time, because it duplicates the whole Android operating
system. This raises a severe usability problem.

Our Contribution. In this paper, we present a novel se-
curity architecture, called TrustDroid , that enables practical
and lightweight domain isolation on each layer of the Android
software stack. Specifically, TrustDroid provides application
and data isolation by controlling the main communication
channels in Android, namely IPC (Inter-Process Communi-
cation), files, databases, and socket connections. TrustDroid
is lightweight, because it has a low computational overhead,
and requires no duplication of Android’s middleware and
kernel, which is typically a must for virtualization-based
approaches [33, 3]. As a benefit, TrustDroid offers a good
scalability in terms of the number of parallel existing domains.
In particular, TrustDroid exploits coloring of separate and

distinguishable components (this approach has its origins in
information-flow theory [36]). We color applications and user
data (stored in shared databases) based on a (lightweight)
certification scheme which can be easily integrated (as we
shall show) into Android. Based on the applications colors,
TrustDroid organizes applications along with their data into
logical domains. At runtime, TrustDroid monitors all appli-
cation communications, access to common shared databases,
as well as file-system and network access, and denies any
data exchange or application communication between dif-
ferent domains. In particular, our framework provides the
following features:

• Mediating IPC: We extend the Android middleware
and the underlying Linux kernel to deny IPC among
applications belonging to different domains. More-
over, TrustDroid enforces data filtering on standard
databases (e.g., Contacts, SMS, etc.) so that applica-
tions have access only to the data subset of the their
respective domains.

• Filtering Network Traffic: We modified the stan-
dard Android kernel firewall to enable network filtering
and socket control. This allows us to isolate network
traffic among domains and enables the deployment of
basic context-based policies for the network traffic.

• File-System Control: We extend the current An-
droid Linux kernel with TOMOYO Linux based manda-
tory access control and corresponding TOMOYO poli-
cies to enforce domain isolation at the file-system level.
This allows us to constrain the access to world-wide
readable files to one specific domain. To the best of
our knowledge, TOMOYO has never been applied on
a real Android device (e.g., Nexus One) before.

• Integration in Trusted Infrastructures: Our de-
sign includes essential properties and building blocks
for integrating Android OS based smartphones into
sophisticated trusted infrastructures, such as Trusted
Virtual Domains [12].

We have tested TrustDroid with Android Market appli-
cations and show that it induces only a negligible runtime
overhead and minimally impacts the battery life-time.

Outline. The remainder of this paper is organized as fol-
lows: In Section 2 we briefly recall the Android architecture
and in Section 3 we provide a problem description, present
our adversary model, and elaborate on our requirements and
objectives. We present the architecture of TrustDroid in
Section 4 and describe its implementation in Section 5. Our
results are evaluated and discussed in Section 6. We summa-
rize related work in Section 7 and conclude in Section 8.

2. ANDROID
In the following we briefly provide background information

on Android. We explain the Android software stack, the
types of communications present in the system and elaborate
on the specifics of Android’s security mechanisms.

2.1 Software Stack
Android is an open source software stack for mobile de-

vices, such as smartphones or tablets. It comprises of a Linux
kernel, the Android middleware, and an application layer
(as depicted in Figure 1). The Linux kernel provides basic
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Figure 1: Android architecture

facilities such as memory management, process scheduling,
device drivers, and a file system. On top of the Linux kernel
is the middleware layer, which consists of native libraries,
the Android runtime environment and the application frame-
work. The native libraries provide certain core functionalities,
e.g., graphics processing. The Android runtime environment
is composed of core Java libraries and the Dalvik Virtual
Machine, which is tailored for the specific requirements of
resource constrained mobile devices.

The Android application framework consists of system
applications written in C/C++ or Java, such as System
Content Providers and System Services. These provide the
basic functionalities and the essential services of the plat-
form, for instance, the Contacts app, the Clipboard, the
System Settings, the AudioManager, the WifiManager or
the LocationManager. While System Content Providers are
essential databases, System Services provide the necessary
high-level functions to control the device’s hardware and to
get information about the platform state, e.g., location or
network status.

At the top of the software stack is the application layer,
which contains a set of built-in core applications (e.g., Con-
tacts or Web-browser) and third party applications installed
by the user (e.g., from the Android MarketStore2). Applica-
tions are written in Java, but for performance reasons may
include native code (C/C++) which is called through the
Java Native Interface (JNI). In general, Android applica-
tions consist of certain components: Activities (user inter-
faces), Services (background processes), Content Providers
(SQL-like databases), and Broadcast Receivers (mailboxes
for broadcast messages).

2.2 Communication
Android provides several means for application communica-

tion. First, it implements a Binder-based3 lightweight Inter-
Process Communication (IPC), which is based on shared
memory. This is the primary IPC mechanism for the commu-

2https://market.android.com/
3Binder in Android is a reduced and custom implementation
of OpenBinder[34]

nication between the application components. This mecha-
nism has been denoted as Inter-Component Communication
(ICC) in [16] and since then this term has been well es-
tablished. For ICC, a special definition language (Android
Interface Definition Language – AIDL) is used to define the
methods and fields available to a remote caller. An example
of ICC calls is the binding to a remote service, thus calling
remote procedures exposed by this service. Further, explicit
actions on a different application can be triggered by means
of an Intent, a message with an URL-like target address,
holding an abstract description of the task to perform (e.g.,
starting an Activity). Second, the Linux kernel provides
the standard IPC mechanisms, e.g., based on Unix domain
sockets. Third, applications with the Internet permission are
allowed to create Internet sockets. Thus, they are not only
able to communicate with remote hosts but also connect to
other local applications.

2.3 Security Mechanisms
Android implements a number of security mechanisms,

most prominently application sandboxing and a permission
framework that enforces mandatory access control (MAC)
on ICC calls and on the access to core functionalities. In the
following, we provide a brief summary of these mechanisms
and refer to [16] for a more detailed discussion.

Sandboxing. In Android every installed application is
sandboxed by assigning a unique user identifier (UID). Based
on this UID the Linux kernel enforces discretionary access
control (DAC) on low-level resources, such as files. For in-
stance, each application has a private directory not accessible
by other applications. Moreover, each application runs in
its own instance of the Dalvik Virtual Machine under the
assigned UID. This sandboxing mechanism also applies to
native code contained in applications. However, applications
from the same vendor (identified by the signature of the ap-
plication package) can request a shared UID, thus basically
sharing the sandbox.

Access Control. Figure 2 depicts the possible commu-
nication channels and their respective access control in An-
droid. At runtime, Android enforces mandatory access con-
trol (MAC) on ICC calls between applications. The MAC
mechanism is based on Permissions [20] which an applica-
tion must request from the user and/or the system during
installation. Android already contains a set of pre-defined
permissions for the system services [20], but applications can
also define new, custom permissions to protect their own
interfaces. A reference monitor in the Android middleware
checks if an application holds the necessary permissions to
perform a certain protected action, for instance, to bind to a
protected service or to start a protected activity of another
application.

On the file system, apps can decide if their files are stored
in their private directory, and are thus not accessible by any
other application, or in a system-wide read-/writable location.
Default Linux Inter-Process Communication, for instance,
Unix domain sockets or pipes, can be created with certain
modes that make them accessible by other processes. The
creator of such sockets/pipes decides on the mode. Thus,
both file system and default IPC are under discretionary
access control.

Some permissions are mapped to Linux kernel group IDs,
e.g., the Internet permission, thereby relying on Linux to
prevent unprivileged applications from performing privileged
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actions (e.g., creating Internet sockets, accessing sensitive
information stored on external storage). However, since
every application gets this permission granted (or not) at
install time and the Android system henceforth enforces this
decision, this falls under mandatory access control.

3. PROBLEM DESCRIPTION AND MODEL
We consider a corporate scenario which involves the fol-

lowing parties: (i) an enterprise (a company), (ii) a device
(a smartphone), and (iii) an employee (the smartphone user).
The enterprise issues mobile devices to its employees. The
employees use their device for business related tasks, e.g.,
accessing the corporate network, loading and storing con-
fidential documents, or organizing business contacts in an
address book. To perform these tasks, the enterprise ei-
ther deploys proprietary software, e.g., a custom VPN client
including the necessary authentication credentials, on the
device or provides a company-internal service, e.g., enterprise
app market, from which employees can download and install
those apps.

In this scenario, the enterprise is an additional stakeholder
on the employees’ devices and requires the protection of its
delivered assets (software and data). Corporate assets may be
compromised, e.g., when the user installs applications from
untrusted public sources. Moreover, the employee accesses
the enterprise internal network from his device and thus
malware can potentially spread from the device into the
corporate network.

A straightforward solution would be to prohibit any non-
corporate app on the device (as proposed by, e.g., [11]).
However, this is counter-intuitive to the idea of a smartphone
and might even tempt employees to circumvent or disable this
too restrictive security policy, e.g., by rooting the device. The
default Android security mechanisms and recent extensions,
on the other hand, are insufficient to provide enough isolation
of untrusted applications and thus to protect the enterprise’s
assets. Virtualization can provide strong isolation between
trusted and untrusted domains, but noticeably use up the
battery life of the device, because major parts of the software
stack are duplicated and executed in parallel in currently
available virtualization solutions.

Consequently, an isolation solution is required, which pre-
serves the battery life by minimizing the computational over-
head and still provides isolation of corporate assets from
untrusted applications.

3.1 Adversary and Trust Model
We consider software attacks launched by the adversary on

the device at different layers of the Android software stack.

The adversary’s goal is to get access to corporate assets,
e.g., to steal confidential data, to compromise corporate
applications or to infiltrate the corporate network. The
adversary can penetrate the system by injecting malware
(e.g., by spreading it through the Android Market) or by
exploiting vulnerabilities of benign applications. Malicious
applications may either be granted by the user the privileges
to access sensitive resources (see Gemini [25]) or try to extend
their privileges by launching privilege escalation attacks [10,
37, 24, 19, 29, 30, 4].

We assume that the enterprise is trusted, and that the
employee is not malicious, i.e., he does not intendedly leak the
assets stored on his device. However, he is prone to security-
critical errors, such as installing malware or disabling security
features of his device.

The device is generally untrusted, but has a trusted com-
puting base (TCB) which is responsible for security enforce-
ment on the platform. The TCB is trusted by the enterprise.

3.2 Objectives and Requirements
We require the integrity and confidentiality of the cor-

porate assets on the device, while preserving the usability.
Furthermore, we require that the integrity of the corporate
network will be preserved even if malware infiltrated employ-
ees’ devices. With respect to these objectives, we define the
following requirements:

• Isolation. Corporate assets must be isolated in a sep-
arate domain from untrusted data and software, and
any communication between different domains must be
prevented. In particular, the following communication
channels must be considered: IPC channels, the file
system and socket connections. In addition, poten-
tial malware on the device must be prevented from
accessing the corporate network.

• Access control. Access of applications to assets stored
on the device must be controlled by the enterprise by
means of access control rules defined in a security policy,
e.g., a new application can be installed in the corporate
domain only if the policy states that it is trusted.

• Legacy and Transparency. To preserve the smart-
phone’s functionality, we require our solution to be
compatible to the default Android OS and to 3rd party
applications. Further, it should be transparent to the
employee.

• Low overhead. With respect to the constrained re-
sources of smartphones, in particular, the battery-life,
our solution has to be lightweight.

3.3 Assumptions
We consider the underlying Linux kernel and the Android

middleware as Trusted Computing Base (TCB), and assume
that they have not been maliciously designed. Moreover, we
assume the availability of mechanisms on the platform to
guarantee integrity of the TCB (i.e., OS and firmware) on
the device. For instance, this can be achieved with secure
boot which is a feature of off-the-shelf hardware (e.g., M-
Shield [41] and ARM TustZone [2]) or software security
extensions for embedded devices (e.g., a Mobile Trusted
Module (MTM) [42]).



TCB 

Apps 

Middle-
ware 

Kernel 

Apps 

Domain A Domain B 

Apps 

Middle-
ware 

Kernel 

Middle-
ware 

Apps 

Domain B Domain A Apps 

Middle-
ware 

Kernel 

Apps 

Middle-
ware 

Kernel 

Hypervisor/VMM 

Domain A Domain B 

(a)

TCB 

Apps 

Middle-
ware 

Kernel 

Apps 

Domain A Domain B 

Apps 

Middle-
ware 

Kernel 

Middle-
ware 

Apps 

Domain B Domain A Apps 

Middle-
ware 

Kernel 

Apps 

Middle-
ware 

Kernel 

Hypervisor/VMM 

Domain A Domain B 

(b)

TCB 

Apps 

Middle-
ware 

Kernel 

Apps 

Domain A Domain B 

Apps 

Middle-
ware 

Kernel 

Middle-
ware 

Apps 

Domain B Domain A Apps 

Middle-
ware 

Kernel 

Apps 

Middle-
ware 

Kernel 

Hypervisor/VMM 

Domain A Domain B 

(c)

Figure 3: Approaches to isolation: (a) TrustDroid ;
(b) OS-level virtualization; (c) Hypervisor/VMM

4. DESIGN OF TRUSTDROID
In this section we describe the design and architecture

of TrustDroid . The main idea is to group applications in
isolated domains. With isolation we mean that applications
in different domains are prevented from communicating with
each other via ICC, Linux IPC, the file system, or a local
network connection. Figure 3 illustrates different approaches
to achieve isolation: (a) the approach taken by TrustDroid ,
which extends Android’s middleware and kernel with manda-
tory access control; (b) OS-level virtualization, where each
domain has its own middleware; (c) isolation enforced via a
hypervisor and virtual machines, where each domain contains
the full Android software stack. Comparing these approaches,
TrustDroid has on the one hand the largest TCB, but on the
other hand it is the most lightweight one, since it does not
duplicate the Android software stack, and still provides good
isolation, as we will argue in the remainder of this paper.

Our extensions to the Android OS are presented in Figure 4.
The middleware extensions consist of several components:
Policy Manager, Firewall Manager, Kernel MAC Manager,
an additional MAC for Inter Component Communication
(ICC), and finally a modified Package Installer. The Policy
Manager is responsible for determining the color for each
installed application, for issuing the corresponding policies to
enforce the isolation between different colors, and to enforce
these policies on any kind of ICC. The Firewall Manager
and the kernel-level MAC Manager are instructed by the
Policy Manager to apply the corresponding rules to enforce
the isolation on the network layer and the kernel layer. To
enforce the latter, TrustDroid relies on default features of the
Linux kernel, which can also be activated in Android’s Linux
kernel: a firewall (FW) and a Kernel-level MAC mechanism.
Since we modified the Android middleware a company which
wants to make use of TrustDroid has to roll out a customized
version of Android to their employees’ smartphones.

In the subsequent sections, we elaborate in more detail on
the components of TrustDroid that enforce domain isolation.

4.1 Policy Manager
In this section we explain the Policy Manager component

of TrustDroid and elaborate in more detail on how it colors
applications and enforces domain isolation in the middleware.

4.1.1 Application Coloring
The fundamental step in our architecture to isolate apps

is to assign each app a trust level, i.e., to color them. In
TrustDroid , we assume three trust levels for applications:
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1) pre-installed system apps, which include System Content
Providers and Services (cf. Section 2); 2) trusted third party
apps provided by the enterprise; 3) untrusted third party
apps, which are retrieved from public sources such as the
Android Market. While trusted and untrusted apps must be
isolated from each other, system applications usually have to
be accessible by all installed applications in order to preserve
correct functionality of those applications and sustain both
transparency and legacy compliance of our solution.

In TrustDroid , system apps (i.e., pre-installed apps) are
already colored during platform setup in accordance with
the enterprise’s security policies. Additionally installed third
party apps are colored upon installation, before any code
of the app is executed. In Android, the PackageManager
is responsible for the installation of new applications and
in TrustDroid we extended it to interface with the Policy
Manager, such that the Policy Manager can determine the
color of the new app, issue the necessary rules for its isolation
in the middleware, and instruct the Firewall Manager and
Kernel MAC Manager to enforce the corresponding policies
on the lower levels.

Determining the color of an app can be based on various
mechanisms. For instance, it can be based on a list of ap-
plication hashes for each color or based on the information
available about the new app, such as developer signature
or requested permissions. For TrustDroid we opted for a
certification based approach. The Policy Manager recognizes
a special certificate (issued by the enterprise), which is op-
tionally contained in the application package of apps. Based
on this certificate, TrustDroid ’s PolicyManager verifies the
authenticity and integrity of the new app. Moreover, the
certificate may define a platform state, (e.g., the already
installed applications), in which the certificate is only valid.
A trusted service on the device is responsible for verifying
these certificates. This service also measures the platform
state, provides secure storage for the certificate verification
keys, and maintains the verification key hierarchy such that
only the enterprise can issue valid certificates. We use a
Mobile Trusted Module (MTM) and as certificate format
Remote Integrity Metrics (RIM) certificates, both defined



by the Trusted Computing Group (TCG) [42]. We refer to
Section 5 for more details on how we use and implement
those.

If such a RIM certificate is present, it must be successfully
verified to continue the installation, i.e., the certificate must
have been issued by the enterprise, the application package’s
integrity must be verified, and the platform state defined in
the certificate must be fulfilled. Otherwise, the installation
is aborted. In case of a successful verification, the certificate
determines the color of the new app. In our corporate sce-
nario with only two domains, successfully verified apps are
in the trusted corporate domain. If no certificate is found,
the app is by default colored as untrusted. This applies, for
example, to all Android Market apps.

Alternatively, the certificates can already be pre-installed
on the phone and the Policy Manager checks for a pre-
installed certificate corresponding to the new app.

Generating the RIM certificates for applications requires
a corresponding PKI inside the company. However, almost
all companies today have integrated a PKI into their IT
infrastructure. For the initial setup of the mobile devices
the certificates are generated and integrated once for every
pre-installed trusted application. By integrating the deploy-
ment of RIM certificates into a mobile device management
solution or a company internal app market the process of app-
certification can be automated for updates or applications
installed later.

4.1.2 Inter Component Communication
As described in Section 2.2, Android uses Inter Component

Communication as the primary method of communication
between apps. Although ICC is technically based on IPC
at the kernel level, it can be seen as a logical connection
in the middleware. Thus, enforcement of isolation in the
middleware has to be implemented based on access control
on ICC.

In general, one can distinguish different kinds of ICC which
can be used by apps for communication.

Direct ICC. The most obvious way for apps to communi-
cate via ICC is to establish direct communication links. For
instance, an app could send an Intent to another app, connect
to its service, or query the content provider of another app.
The TrustDroid MAC on ICC detects this communication
and prevents it in case the sender and receiver app of the ICC
have different colors. It thereby acts as an additional MAC
besides the default access control of Android. As mentioned
in Section 4.1, system apps form an exception and direct
ICC is not prohibited if either sender or receiver of the ICC
is a system app.

If two applications depend on each other, it is the respon-
sibility of the certificate issuer, i.e, the enterprise in our
scenario, to take care that these applications are in the same
domain and to resolve any conflict in case the applications
should have different trust levels according to the issuer’s
security policy.

Broadcast Intents. Besides the obvious direct ICC,
apps are also able to send broadcast Intents, which are
delivered to all registered receivers. Similar to the approaches
taken in [32] and [5], TrustDroid filters out all receivers of
a broadcast which have a different color than the sender
before the broadcast is delivered. Again, system apps are an
exception and are not filtered from the receivers list.

System Content Providers. A mechanism for apps
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from different domains to communicate indirectly is to share
data in System Content Providers, such as the Contacts
database, the Clipboard, or the Calendar. The ICC call to
read data from such a provider does not give any information
on the origin of the data, i.e., who wrote the data to the
provider. We achieve domain isolation for System Providers
as depicted in Figure 5. TrustDroid extends the System
Content Providers such that all data is colored with the color
of its originator app (Step (1) in Figure 5). Upon read access
to a provider, all data colored differently than the reader app
is filtered from the response (Step (2) in Figure 5).

System Service Providers. A covert method for apps
to communicate are System Service Providers, such as the Au-
dio Manager [37]. However, in our adversary model (cf. Sec-
tion 3.1), we assume that corporate apps are trusted and
not malicious and thus no sender for such a covert channel
exists in the trusted corporate domain. Nevertheless, data
might leak via System Services from the trusted to the un-
trusted domain and thus isolation should be enforced here as
well. Thus, as for the System Content Providers, TrustDroid
tags the read-/writable data values of the System Service
Providers with the color of the last app updating them, e.g.,
when setting the volume level (Step (1) in Figure 5). Read
access to these values is denied in case the colors of the
reader and the data differ (Step (3) in Figure 5). Although
this approach does not prevent this kind of covert channel
per se, it drastically reduces its bandwidth to 1-bit, because
the reader only gains information if his corresponding writer
changed the value or not.

Alternatively, TrustDroid could return a pseudo or null
value instead of denying the read access. However, in contrast
to System Content Providers, on which a read operation by
design might return an empty response, System Services are
expected to return the requested value. Thus, returning a
pseudo or null value may crash the calling app, or even cause
more severe harm to the hardware or user, for instance, if
the app reads a very low volume level when instead the real
volume level is very high.

4.2 Kernel MAC Manager
The Kernel MAC Manager is responsible for communi-

cation with and management of the MAC mechanism pro-
vided by the underlying Linux kernel. Such mechanisms,



like SELinux [26] or TOMOYO Linux [22], are already by
default features of the Linux kernel and provide mandatory
access control on various aspects of the OS, including the
file system and the Inter-Process Communication. Thus, by
employing such a MAC mechanism, TrustDroid achieves the
isolation of domains on file system and IPC level. More
explicitly, we create a MAC domain for each color and each
app is added to the domain of its color upon installation.
The Policy Manager instructs the Kernel MAC Manager
to which domain a new application has to be added and
the Kernel MAC Manager translates this instruction into
low-level rules, which are inserted into the MAC mechanism
and which define the isolation of domains at file system and
IPC level.

File System. The file system is a further communication
channel for applications. Apps are able to share files system-
wide, by writing them to a system-wide readable location.
Thus, a sending application can write such a file and a
receiving application would simply read the same file. The
mandatory access control mechanism enforces isolation on
the file system in addition to the discretionary access control
applied by default. TrustDroid applies rules, which enforce
that a system-wide readable file can be only read by a another
app of the same color as the writer. Thus, if an app declares a
file system-wide readable, it is shared only within the domain
of the writer.

Moreover, mandatory access control can, with correspond-
ing policies, even be used to constrain the superuser account.
Hence, even if a malicious application gains superuser privi-
leges, it’s file system scope could be limited to it’s domain.

Inter-Process Communication. To prevent any com-
munication of apps through Linux IPC (e.g., pipes, sockets,
messages, or shared memory), TrustDroid leverages the same
domains already established for the file system access control.
Thus, apps are not able to establish IPC with differently col-
ored apps. However, system applications form an exception,
since denial of communication to system apps renders any
application dysfunctional.

Potentially, ICC, which is based on Binder (and hence
on shared memory based IPC), can be essentially addressed
with kernel level MAC. However, in this case the policy
enforcement would be limited to direct ICC between apps
and would miss indirect communications, e.g., via Content
Providers or Broadcast Intents. In this sense, MAC on
shared memory based IPC is supplementary to the ICC
MAC, because it enforces policies even in case (malicious)
applications manage to disable the ICC MAC.

4.3 Firewall Manager
A further channel that has to be considered is Internet

networking, i.e., network sockets used for communication
via Internet protocols (such as TCP/IP). Based on these
sockets applications are able to communicate with remote
hosts, but also with other applications on the same platform.
Thus, isolation with respect to the corporate smartphone
scenario has to take both local and remote communication
into consideration. To enforce isolation, TrustDroid employs
a firewall to modify or block Internet socket based commu-
nication. Managing the firewall rules based on the policies
from the Policy Manager is the responsibility of the Firewall
Manager component.

Local Isolation. To locally enforce isolation between
domains on the platform, TrustDroid prohibits any com-

munication from a local network socket of an untrusted
application to another local network socket. Although, on
first glance, this might appear over-restrictive, it is a reason-
able enforcement, because applications residing on the same
platform usually employ lightweight ICC to communicate
instead of network channels.

Alternatively, network communication within each domain
could be allowed and only cross-domain traffic be prevented.
However, this would require that the Firewall Manager knows
which Internet socket belongs to which application and which
address has been assigned to each socket.

Remote Isolation and Context-Awareness. Enforc-
ing isolation between domains on the network traffic between
the platform and remote hosts, e.g., web-servers, is a harder
problem than local enforcement. All data that leaves the
phone is beyond the policy enforcement capabilities of Trust-
Droid . For instance, applications in different domains could
exchange data via a remote web-service. Moreover, with
respect to the corporate scenario, one must consider that
malware on the phone might spread into the corporate net-
work once the phone connects to it.

To address the former problem, TrustDroid uses a firewall
that is able to tag (color) the network traffic, e.g., VLAN. If
the network infrastructure supports the isolation of traffic,
for instance in Trusted Virtual Domains (TVDs) [12], the
policy enforcement is extended beyond the mobile platform.

To address the latter problem, TrustDroid employs context-
aware policy enforcement on outgoing traffic. The context
can be composed of various factors, for instance, the ab-
sence/presence of a user, the temperature of the device, or
the network state. In TrustDroid , the context means the
physical location of the device and the network the device is
connected to. Each context definition is associated with a
policy that defines how to proceed with the network traffic of
untrusted applications, e.g., blocking all traffic or manipulat-
ing it in a particular way. Thus, if the platform is physically
on corporate premises or connected to the corporate network,
all untrusted, non-corporate apps could be denied network
access or their traffic can be manipulated, for instance, to
reroute it to a security proxy or an isolated guest network.

5. IMPLEMENTATION AND EVALUATION

5.1 Implementation
We implemented TrustDroid based on the Android 2.2.1

sources and the Android Linux kernel version 2.6.32.
We extended the default Android ActivityManager with a

new component for the TrustDroid Policy Manager and the
additional policy enforcement on ICC. We implemented the
Firewall Manager and Kernel MAC Manager as new packages
in the system services in the middleware.

The Policy Manager contains a minimal native MTM im-
plementation, which is loaded as a shared library and called
via the Java Native Interface (JNI). Alternatively, TrustDroid
could use more sophisticated and secure MTM implementa-
tions as proposed in [13, 44, 45]. The MTM provides the
means to verify Remote Integrity Metrics (RIM) certificates,
to measure the software state of the platform, and to securely
maintain monotonic counters.

Figure 6 illustrates the control flow for coloring a new
application during installation and mapping the policies
from the Policy Manager to the kernel and network level.
Solid lines illustrate the control flow in case the application



package contains a RIM certificate. Dashed lines show the
deviation from this flow in case no RIM certificate is included
in the package.

Application Coloring. To color new apps during instal-
lation, we extended the Android PackageManager to call
the TrustDroid Policy Manager during the early installation
procedure (step 1 in Figure 6) in order to verify the certifi-
cate potentially included in the application package (denoted
APK) and determine the color of the new app. Therefore,
the certificate is first extracted from the APK (steps 2 and
3a) and the resulting APK is verified with this certificate
(steps 4a and 5a). In case the verification fails, the instal-
lation is aborted by throwing a Security Exception back to
the PackageManager (step 6a). In case no RIM certificate
is contained in the APK, the installation proceeds normally
(step 3b). If the installation is continued and succeeds (step
7), a second remote call from the PackageManager informs
the Policy Manager of this success (step 8) and thus triggers
the issuing of corresponding policies to isolate the new app
from other apps with a different color at ICC level (steps 9a
and 9b), at file system and IPC level (steps 10a and 10b),
and the network level (step 11).

RIM Certificates and life-cycle management. As
certificate format, we chose the RIM certificates as defined in
the TCG Mobile Trusted Module (MTM) specifications [42].
In addition to the authenticity and integrity verification
provided by other certificate standards such as X.509, RIM
certificates additionally provide valuable features for a trusted
life-cycle management. RIM certificates define a platform
state in which the certificate is valid. This state is composed
of monotonic counter values of the MTM and the measured
software state. If either the counter value or software state
defined in a RIM certificate mismatches the corresponding
value of the MTM, the certificate verification fails. RIM
certificates are signed with so-called verification keys. These
verification keys form a key hierarchy, whose root key can be
exclusively controlled by a particular entity, the enterprise
in our scenario. Thus, only the enterprise is able to create
valid RIM certificates for it’s employees’ devices and thus
only successfully certified apps are considered as trusted.
Examples for MTM-based enhanced life-cycle management
of apps are the prevention of version rollback attacks based
on monotonic MTM counters, the binding of the installation
to a certain platform state, or the trustworthy reporting of
the software state, i.e., installed applications.

To certify APKs, we developed a small tool written in Java
and that makes use of the jTSS4.

Network, Default IPC, and File System Isolation.
To implement isolation at network, default Linux IPC, and
file system level, our implementation employs netfilter5 present
in the kernel and TOMOYO Linux6 v1.8 available as a ker-
nel patch. To maintain them from the Firewall Manager
and Kernel MAC Manager, respectively, we cross-compiled
and adapted the user-space tools iptables and ccs-tools. The
former is used to administrate netfilter and the latter for
TOMOYO Linux policy management.

In TrustDroid , we created two TOMOYO Linux domains
for third party apps, trusted and untrusted, and policies that
isolate these domains on file system and default Linux IPC

4http://trustedjava.sourceforge.net/
5http://www.netfilter.org/
6http://tomoyo.sourceforge.jp/

level. Upon installation of a new application, the UID of the
new application is inserted into either one of those domains
(steps 10a and 10b in Figure 6). A third domain for system
apps is accessible by both the trusted and untrusted domains.

By default, TrustDroid denies all untrusted applications
network communication to local addresses on the phone and
the Policy Manager instructs the FW Manager to enforce this
isolation also for newly installed untrusted applications (step
11 in Figure 6). Thus, any local network communication
between trusted apps is isolated from untrusted apps.

A particular technical challenge was the adaption of the
TOMOYO Linux user-space programs, in order to be able to
maintain the TOMOYO Linux policies locally on the device.
Recent documentation for TOMOYO Linux on the Android
emulator describes the policy administration from a remote
host instead of locally on the device and thus required certain
adaption for TrustDroid .

Although TOMOYO Linux in version 1.8 provides MAC
for Internet sockets as well, thus the means to exclude ap-
plications with fine-grained policies (e.g., UID, port or IP
address) from Internet access, we opted for netfilter for two
major reasons: 1) Unexpectedly denying access to sockets is
much more likely to crash affected applications, in contrast
to simply blocking the outgoing traffic and thus faking a
disabled network connection; 2) netfilter provides much more
flexibility than simply access control, e.g., manipulating or
tagging network traffic for advanced security infrastructures
such as TVDs or security proxies.

An alternative building block to TOMOYO Linux would be
SELinux, which is based on extended file attributes and thus
provides a more intuitive solution for domain isolation at the
file system level. On the other hand, it is more complex to
administer than TOMOYO Linux and requires modifications
to the default Android file system, because the default file
system does not support extended file attributes.

Context-Awareness. A context in our current imple-
mentation is simply the definition of a WiFi state and/or
location. For instance, it could be the SSID of the wireless
network, the MAC address of the access point, a certain
latitude/longitude range, or proximity to a certain location.

To implement the context-aware management of the net-
filter rules (cf. Section 4.3), the current Firewall Manager
uses two state listeners – one for changes of the WiFi state
and one for updates on the location. The former is simply a
receiver for notification broadcasts about the changed Wifi
state. The latter is an LocationListener thread registered at
the LocationManager. In case one of the two listeners is trig-
gered, the new state is compared with the installed contexts
and the policies of any matched context are activated. The
active policies of contexts that are not fulfilled anymore are
revoked.

Middleware Isolation. The implementation of the addi-
tional policy enforcement on ICC is based on the XManDroid
framework presented in [5], which provides the necessary
hooks in the Android middleware to easily implement policy
enforcement on direct ICC, broadcast Intents, and channels
via System Content Providers and Services.

To prevent direct ICC between applications with different
colors, we wrapped the checkPermission function of the
ActivityManager, which is called every time a new ICC
channel shall be established. If the default MAC of Android
permits the new ICC, TrustDroid performs an additional
check to compare the colors of the caller and callee. On
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Figure 6: Control flow for the installation of a new application in case the installation package contains a RIM
certificate (solid lines). If no RIM certificate is included in the package, this flow deviates (dashed lines).

mismatch, the previous decision is overruled and the ICC
denied. To prevent data flow between different domains
via Broadcast Intents, our implementation is similar to [32]
and implements hooks in the broadcast management in the
ActivityManager to filter out all receivers of a broadcast that
do not have the same color as the sender. As described in
Section 4.1.2, we extended the interfaces of System Content
Providers, such as the Settings or Contacts, and of the System
Services, such as the Audio Manager, to color data upon
write access and filter data/deny access upon read access.

Moreover, the PackageManagerService allows applications
to iterate over the information of installed packages, e.g., to
find a specific application that might provide supplementary
services. In TrustDroid we extended this functionality with
additional filters, such that applications can only receive a
list of and information about applications of the same color
or about system applications.

5.2 Evaluation
We evaluated the performance overhead and memory foot-

print of our extensions to the middleware with 50 apps from
the Android Market, categorized in two domains (plus one
domain for system apps). On average our additional policy
enforcement on ICC added 0.170ms to the decision process
on whether or not an ICC is allowed (default Android re-
quires on average 0.184ms). The standard deviation in this
case was 1.910ms, caused by high system-load due to heavy
multi-threading during some measurements. The verification
of the RIM certificate during the installation of new packages
required on average 869.750ms with a standard deviation of
645.313ms. The average memory footprint of our extensions
to the Android system server was 348.2 KB with a standard
deviation of 200.8 KB, which is comparatively small to the
default footprint of approximately 2 MB.

In our prototype implementation, the policy file of TO-
MOYO consumes on average a little more than 200 KB of
memory. The policy file includes access control rules for file
system and standard IPC mechanisms e.g. communication
based on Unix domain sockets.

6. DISCUSSION
In this section we discuss the security of TrustDroid and

highlight possible extensions.

6.1 Security Considerations
The main goal of TrustDroid is to provide an efficient and

practical means to enforce domain isolation on Android. In
particular, TrustDroid isolates applications by their respec-
tive trust levels, meaning that applications have no means to
communicate with each other if their trust levels mismatch.
Our requirement of access control is achieved by including
certificates into an application package. Further, to control
as many communication channels as possible, TrustDroid
targets different layers of the Android software stack. First,
IPC traffic (in the middleware and the kernel) is completely
mediated by TrustDroid and is target to domain policies.
Hence, malicious applications cannot use interfaces of appli-
cations belonging to other domains, even if the interfaces
are exposed as public. Thereby TrustDroid prevents privi-
lege escalation attacks from affecting other domains. Second,
TrustDroid prevents unauthorized data access, by performing
fine-grained data filtering on application data and data stored
in common databases (SMS, Contacts, etc.). In particular,
this prevents malicious applications from reading data of the
corporate domain, as long as the malicious application has
not been issued by the enterprise itself, which is excluded in
our Adversary Model (cf. Section 3.1). Third, TrustDroid
successfully mitigates the impact of kernel-exploits, because
our TOMOYO policies prevent an adversary from accessing
files of another domain. Finally, communication over socket
connections are constrained to the domain boundary.

Although our approach is lightweight and practical, it does
not provide the same degree of isolation as full-virtualization
would do. In particular, TrustDroid only mitigates kernel-
level attacks by restricting access to the file-system, but in
general, it cannot prevent an adversary from compromising
the Trusted Computing Base (TCB), which for TrustDroid
includes the underlying Linux kernel and the Android mid-
dleware (see Section 3.3). In practice, static integrity of



the TCB can be insured by means of secure boot. However,
the TCB is still vulnerable to runtime attacks subsequent
to a secure boot. Solving this problem is orthogonal to the
solution presented in this paper.

The primary cause for runtime attacks on Android is the
deployment of native code (shared C/C++ libraries) [30].
Although Android applications are written in Java, a type-
safe language, the application developers may also include
(custom) native libraries via the Java Native Interface (JNI).
Moreover, many native system libraries are mapped by de-
fault to the program memory space.

A straightforward countermeasure against native code
based attacks would be to prohibit the installation of ap-
plications that include native code. However, this is rather
over-restrictive and, similar to prohibiting any non-corporate
app (cf. Section 3), contradicts the actual purpose of smart-
phones or might even tempt the phone user to break the
security mechanisms in place.

Another approach to address native code attacks is Google’s
Native Client [38], which provides an isolated sandbox for na-
tive code. However, this solution requires the recompilation
of all available applications that contain native code.

Moreover, as argued and shown in [46], mandatory access
control can also be efficiently deployed on mobile platforms to
enforce isolation for the complete Linux kernel. We consider
this as a valuable extension to TrustDroid to mitigate kernel
attacks, which could easily be integrated in TrustDroid , since
a kernel-level MAC mechanism is already a building block of
our design (see Section 4).

Finally, TrustDroid uses a separate, accessible domain for
system applications and services, which is due to the fact that
all applications require these system apps to work correctly.
If an adversary identifies a vulnerability in one of these
applications, he may potentially circumvent domain isolation
and access data not belonging to his domain. However, until
today, vulnerabilities of system applications were constrained
to confused deputy attacks and did not allow an adversary
to access sensitive data [17]. Protecting system applications
and services from being exploited is orthogonal to harden
the kernel, and we aim to consider this in our future work.
Alternatively, one could deploy apps in the trusted domain
which offer the functionality of certain system apps (e.g.,
business contacts app or enterprise browser; cf. [1]) and
isolate the now redundant system apps by classifying them
as untrusted.

6.2 Trusted Computing
Our TrustDroid design leans towards possible extensions

with Trusted Computing functionality.
Currently, we leverage a Mobile Trusted Module (MTM)

to validate application installation packages and to determine
their color. The features of the employed RIM certificates in
contrast to established certification standards such as X.509
provide the means for an enhanced life-cycle management
based on monotonic counters and the platform state, e.g.,
version rollback prevention. The current implementation of
our MTM is simple, but more sophisticated approaches may
be integrated into our current design [13, 44, 45].

Moreover, our design includes the fundamentals for the
integration of Trusted Computing Group (TCG) mechanisms
such as the attestation of the domains [28], e.g., in the context
of Trusted Network Connect [43], or the isolation of network
traffic for infrastructures like Trusted Virtual Domains [12].

7. RELATED WORK
In this section we provide an overview of related work

with respect to the establishment of domains and policy
enforcement on Android.

7.1 Virtualization
A “classical” approach from the desktop/server area to

establish isolated domains on the same platform is based on
virtualization technologies. This approach has been ported to
the mobile area [33, 3, 39]. Although virtualization provides
strong isolation, it duplicates the entire Android software
stack, which renders those approaches quite heavy-weight
in consideration of the scarce battery life of smartphones.
Possible approaches to mitigate this problem could be the
automatic hibernation of VMs currently not displayed to the
user or the application of a just-enough-OS/Middleware to
minimize the resident memory footprint of domains. How-
ever, currently available mobile virtualization technology
does not provide these features. In contrast, our solution is
more lightweight, since the creation of a new domain simply
requires the definition of a new string value and deployment
of a new MTM verification key. Moreover, from our past
experience with mobile virtualization technology [9], we con-
clude that our solution is more practical in the sense that
it is more portable to new hardware, because we can re-use
the provided proprietary hardware drivers, while virtualiza-
tion requires new (re-implemented) drivers or an additional
driver-domain that multiplexes the hardware between the
VMs (e.g., dom0 in Xen [23]).

7.2 Kernel-level Mandatory Access Control
Another well established mechanism, that is now being

ported to the Android platform, is kernel-level mandatory ac-
cess control like SELinux or TOMOYO Linux [40, 8]. These
mechanisms allow, e.g., policy enforcement on processes, the
file system, sockets, or IPC. In SEIP [46], SELinux was used
to establish trusted and untrusted domains on the LiMo
platform in order to protect the platform integrity against
malicious third party software. The work further shows how
unique features of mobile devices can be leveraged to identify
the borderline between trusted/untrusted domains and to
simplify the policy specification, while maintaining a high
level of platform integrity. The authors of [35] show how poli-
cies in the context of multiple mobile platform stakeholders
can be created dynamically and present a prototype based
on SELinux. Low-level mandatory access control is an essen-
tial building block in our design (see Section 4). However,
it is insufficient for isolating domains because it does not
consider the Android middleware system components, such
as System Content Providers/Services or Broadcast Intents,
as communication channels between domains (see Section 3).
Without high-level policy enforcement in the middleware,
low-level MAC mechanisms can only grant/deny applications
the access to System Content Providers and Services as a
whole. However, generally denying an app access to system
components most likely crashes this app or at least renders it
dysfunctional. Moreover, although these mechanisms allow
to some extend fine-grained access control policies on the
network, they do not support the manipulation of network
packets like netfilter does (cf. Section 4.3). Nevertheless, the
approach of [46] could enhance the integrity protection of
our TCB (see Section 6).



7.3 Android Security Extensions
In the last few years, a number of security extensions to the

Android security mechanisms have been introduced [7, 27,
31, 15, 14, 5]. Based on very similar incentives to TrustDroid ,
Porscha proposes a DRM mechanism to enforce access control
on specifically tagged data, such as SMS, on the phone.
However, this approach is limited to isolate data assets, but
is not suitable to isolate particular (sets of) apps.

Similarly, the sophisticated framework TaintDroid [14]
tracks the propagation of tainted data from sensible sources
(in program variables, files, and IPC) on the phone and
detects unauthorized leakage of this data. However, it is
limited to tracking data flows and does not consider control
flows. Moreover, it does not enforce policies to prevent
illegal data flows, but notifies the user in case an illegal flow
was discovered. Nevertheless, TaintDroid could form a very
valuable building block in our TrustDroid design to isolate
data assets, if it would be extended with policy enforcement.

Both APEX [27] and CRePE [7] focus on enabling/dis-
abling functionalities and enforcing runtime constraints. While
APEX provides the user with the means to selectively choose
the permissions and runtime constraints (e.g., limited num-
ber of text messages per day) each application has, CRePE
enables the enforcement of context-related policies of the
user or a third party (e.g., disabling bluetooth discovery).
In this sense, both are related to our design goal to isolate
untrusted applications based on the context (cf. Section 4.3)
or protect data assets in shared resources like System Con-
tent Providers. However, the enforcement described in [27]
and [7] is too coarse-grained. For instance, networking would
be disabled for all applications, not just particular ones, or
not only the access to certain data but to the entire Content
Provider would be denied to selected applications.

Saint [32] introduces a fine-grained, context-aware access
control model to enable developers to install policies to pro-
tect the interfaces of their apps. Although Saint could, with
a corresponding system centric policy, provide the isolation of
apps on direct and broadcast ICC, it can not prevent indirect
communication via System Components (see Section 4.1.2).

XManDroid [5] addresses the problem of ICC-based privi-
lege escalation by colluding apps and is also able to enforce
policies on ICC channels via System Components. The
XManDroid framework formed the basis for our TrustDroid
implementation, but had to be extended to enable applica-
tion coloring and mapping of policies for domain isolation
from the middleware onto the network and kernel level.

In general, none of these extensions provides any policy
enforcement on the file system, IPC, or local Internet socket
connections in order to enforce isolation of domains. However,
TaintDroid with its data flow tracking mechanism has the
potential to implement fine-grained policy enforcement.

8. CONCLUSION
Existing smartphone operating systems, such as Google

Android, provide no data and application isolation between
domains of different trust levels. In particular, there exists no
efficient solution to isolate corporate and private applications
and data on Android: the existing security extensions for
Android only focus on one specific layer of the Android
software stack, and hence, do not provide a general and
system-wide solution for isolation.

In this paper we present TrustDroid , a framework which

provides practical and lightweight domain isolation on An-
droid, i.e., it does not affect the battery life-time significantly,
requires no duplication of Android’s software stack, and sup-
ports a large number of domains. In contrast to existing
security extensions, TrustDroid enforces isolation on many
abstraction layers: (1) in the middleware and kernel layer to
constrain IPC traffic to a single domain, and to enforce data
filtering for common databases such as Contacts, (2) at the
kernel layer by enforcing mandatory access control on the
file system, and (3) at the network layer to regulate network
traffic, e.g., denying Internet access by untrusted applications
while the employee is connected to the corporate network.
Our evaluation results demonstrate that our solution adds
a negligible runtime overhead, and in contrast to contempo-
rary virtualization-based approaches [33, 3], only minimally
affects the battery’s life-time.

We also provide a detailed discussion on the design of
TrustDroid and argue that TrustDroid can be used as a
foundation for Trusted Computing enhanced concepts such
as Trusted Virtual Domains (TVD), a distributed isolation
concept known from the desktop world. In our future work,
we aim to adopt domain isolation on the underlying Linux
kernel so that an adversary can no longer exploit kernel
vulnerabilities to circumvent domain isolation.
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