

Technical Report

 Nr. TUD-CS-2012-0226

November 1st, 2012

Authors
Sven Bugiel, Stephan Heuser, Ahmad-Reza Sadeghi

myTunes:

Semantically Linked and User-Centric Fine-Grained

Privacy Control on Android

myTunes: Semantically Linked and User-Centric
Fine-Grained Privacy Control on Android

Sven Bugiel*, Stephan Heuser†,
Ahmad-Reza Sadeghi*,†,‡

*Technische Universität Darmstadt
Darmstadt, Germany

†Fraunhofer SIT
Darmstadt, Germany

‡Intel Collaborative Research Institute for Secure Computing
at Technische Universität Darmstadt, Germany

ABSTRACT
Smartphone operating systems provide designated databases
and services for user’s private information (e.g., contacts
data and SMS or location) that can be conveniently accessed
by 3rd party apps through clearly defined APIs. The popu-
lar Android OS deploys a permission framework and a refer-
ence monitor to protect the interfaces of these security and
privacy sensitive components. However, Android’s default
permissions are too coarse-grained and inflexible to provide
sufficient protection of users’ privacy as recent privacy vi-
olation incidents show. Recently several privacy-protection
solutions on Android have been proposed. However, all of
these solutions regulate access to sensitive information on a
binary all-or-nothing basis.
In this paper, we present the design and implementation of

a user-centric fine-grained privacy control on Android’s sys-
tem ContentProviders and Services. Our solution tackles the
challenge of providing a per-data and per-app access control
to private information. This allows the user to intuitively
adjust his privacy settings (by means of a Privacy Control
App) with respect to both his need to share and protect pri-
vate information. Moreover, a particular contribution of our
work is establishing semantic links between the access con-
trol rules in different system components to prevent inferring
of sensitive information from deputy databases or services.
We successfully evaluate the effectiveness and efficiency of
our solution based on popular social networking apps.

1. INTRODUCTION
Smart Devices such as Smartphones and Tablets have be-

come an integral part of our daily life and communication.
The most important factor for the success of Smart Devices
is the extremely convenient way in which even technical non-
savvy end-users are able to fully utilize the power and fea-
tures of these devices. The foundation for this success is
the ecosystem that has evolved around Smart Devices: end-
users can choose from a plethora of apps provided on App
Markets/Stores, interconnect their devices for synchroniza-
tion and service sharing, or connect to a diversity of Cloud-
based services.
As a drawback of this evolution, also malware (or spyware)

authors have discovered Smart Devices as appealing targets
for attacks. Researchers have shown that end-user mobile
devices are vulnerable to a number of different attacks –

ranging from malicious over-privileged apps [22] and nosy
advertisement libraries [18, 14] extracting sensitive private
information, like contacts, SMS/MMS or the current loca-
tion, to botnet-like behavior [31] utilizing root exploits [3,
4]. In particular the Android Operating System (referred
to as AOSP) has been the most favorite target of indus-
trial and academic research due to its open source character
that allows modifications at all layers of the software stack.
This research has thoroughly scrutinized Android’s security
mechanisms and disclosed a number of vulnerabilities and
shortcomings.
User-centric filtering of information. In this paper,

we focus on enabling a more fine-grained filtering of private
information that can be retrieved from information stores
(ContentProviders) and system Services on Android.
Android’s design facilitates clearly designed interfaces to

store and retrieve sensitive information. For instance, re-
trieving the physical location of the mobile device, polling
the motion sensor data, or getting the IMEI number are
performed by means of remote procedure calls to the corre-
sponding system Service like LocationManager, SensorMan-
ager, or TelephonyManager, respectively.
A ContentProvider, on the other hand, is an abstraction of

an information storage, such as an SQLite Database, which
provides common interfaces for inserting, updating, delet-
ing, and querying data to and from the underlying infor-
mation storage. ContentProviders are the primary means
for apps to organize and share data on Android. Popular
providers on a stock Android installation storing sensitive
private information are, for example, the ContactsProvider
or the MMSProvider (which also handles SMS).
Since the system Services and ContentProviders handle

security and privacy sensitive data, read and write access to
them is regulated based on permissions (e.g., READ_CONTACTS
and WRITE_CONTACTS or ACCESS_FINE_LOCATION). As usual
on Android these permissions must be requested by 3rd
party applications. The user has to confirm them during app
installation and cannot selectively disable or revoke them
on stock Android. These permissions regulate the overall
access to ContentProviders and Services in a binary “all-or-
nothing” policy decision.
This rather limited flexibility and coarse-grained access

control has been in the focus of recent privacy incidents.
For instance, it was shown that advertisement libraries fre-
quently included in 3rd party apps on Android leverage the

2

permissions of their host app to gather information about
the user [18]. They also relate to controversial discussions
about the popular WhatsApp [7, 6] Path [5], and Face-
book [2] apps, which have been alleged to clearly overstep
the necessary boundaries of their access to user’s private
data, violating the user’s privacy. These incidents moti-
vate the need for configurable, user-centric least-privilege
and fine-grained access control for apps to privacy sensitive
data provided by system ContentProviders and Services.
Fine-grained acccess to private information. Re-

lated work on Android’s security mechanisms has acknowl-
edged these privacy problems and presents solutions, e.g.,
to gracefully revoke apps’ permissions to access a Content-
Provider or prevent this data from being exfiltrated [32, 20,
25, 12, 10]; to establish per-data access control based on del-
egable policies for DRM [26]; or to inline a reference monitor
in 3rd party application code for privacy control [30, 9]. In
fact, some of those ideas have been adopted in popular com-
munity mods like CyanogenMod1 or commercial products
like Whisper Systems [8] and 3LM [1]. However, while these
solutions provide revocable access to private data, the access
control still remains binary—either an app can access and
use all data provided by a ContentProvider/Service or no
(benign) data at all. Although this essentially protects the
privacy of the user, it also seriously impedes the user-desired
functionality of apps. For instance, if WhatsApp could no
longer access the user’s contacts’ names and phone numbers,
it would be completely incapacitated and would not pro-
vide any add-value to the user. Thus, a practical solution
requires rather a fine-grained per-data than a per-interface
access control. Controlling 3rd party apps access to sensitive
information on a per-data basis is essential for empowering
the user to adjust his privacy settings with respect to both
his desire to protect his data and simultaneously his need
to share his data. A binary all-or-nothing control, as cur-
rently provided by default Android or related work, cannot
address both needs. Moreover, in case of system Content-
Providers, access to information is not necessarily restricted
to a particular designated ContentProvider, but could also
be retrieved indirectly from another provider. For exam-
ple, retrieving the call log of the user, mining the phone
numbers in the SMS database or collecting the email ad-
dresses from the EmailProvider discloses information about
the user’s contacts (e.g., their numbers, names and email
addresses). Such semantic links between different provid-
ers have, to the best of our knowledge, not been considered
previously.
Our contribution. In this work, we extend the default

system ContentProviders and Services on Android with a
per-data access control and empower the user of the device
to adjust at runtime to which specific data a 3rd party app
should have access. This selection can be based on, e.g.,
data types such as mimetypes. We extend Android’s sys-
tem Services with a per-data access control in comparison
to the default permissions and present for ContentProviders
a new design pattern for access control, which is based on
SQL Views within the databases. A particular benefit of
this approach is, that the access control dynamically auto-
configures itself to new data types at runtime and thus al-
ways provides the most recent and fine-grained access con-
trol configuration. The access control can be configured by
1Cf. Section “Permission Management” at http://www.
cyanogenmod.com/about

the user by means of a dedicated Privacy Control App, which
is responsible for managing and deploying the access control
rules and presenting them in an intuitive way to the user.
Self-contained access control within the ContentProviders
and Services ensures that only this trusted front-end app
(i.e. the user) can configure the access control rules.
Our second contribution concerns semantic links among

the stock system ContentProviders and Services, i.e., where
data from one provider can be indirectly retrieved through
a deputy provider or service. We implement in our solu-
tion a mechanism for implicit semantically-linked access con-
trol that reflects access control decisions by the user for one
provider in the access control rules of other, linked provid-
ers. For instance, if the user denies an app access to his
“work” contacts, access to SMS and call log entries related
to this contacts group is denied automatically as well.
Lastly, we successfully verified the effectiveness and prac-

ticability of our solution with popular social networking apps,
such as Facebook and WhatsApp. Further, our tests confirm
the above stated problems of related work.
Although we present and evaluate in this paper a stand-

alone implementation of our per-data access control frame-
work, it can be easily integrated or combined with related
work to achieve more dynamic and flexible policy enforce-
ment (e.g., considering the system state and phone context).
To this end, we plan to release the code of our implementa-
tion and hope that it will contribute in the future to the se-
curity and privacy-protecting features of community ROMs
such as CyanogenMod or even of AOSP.

2. ANDROID
Android is an open source software stack for mobile de-

vices, such as smartphones or tablets. It comprises of a
modified Linux kernel, the Android middleware, and an ap-
plication layer. While the Linux kernel provides basic fa-
cilities such as memory management, process scheduling,
device drivers, and a file system, the middleware layer con-
sists of native system libraries, the Android runtime envi-
ronment including the Dalvik virtual machine and an ap-
plication framework. The Android application framework
consists of system applications implemented in C/C++ or
Java, such as system ContentProviders and Services. These
provide the basic functionalities and the essential services of
the platform, for instance, the Contacts app, the Clipboard,
the SystemSettings, the AudioManager, the WifiManager or
the LocationManager.
In the following we selectively provide the necessary back-

ground information on Android for the understanding of our
problem description and solution. In particular, we elabo-
rate in more detail on the available mechanisms for organiz-
ing the user’s data and how this data is accessed and shared
between different applications. We further explain the re-
lated specifics of Android’s security mechanisms to provide
basic access control to this data.

2.1 Security Mechanisms
Android implements a number of security mechanisms,

most prominently application sandboxing and a permission
framework that enforces access control on inter-app com-
munication and on the access to core functionalities. In the
following, we provide a brief summary of these mechanisms
and refer to [15] for a more detailed discussion.
Android applications are signed using a private key bound

3

http://www.cyanogenmod.com/about
http://www.cyanogenmod.com/about

to the developer by means of a (usually) self-signed certifi-
cate. During installation, apps are assigned a unique Linux
user identifier (UID) which is used to provide an app-private
storage directory and to sandbox the app process at runtime.
Multiple apps signed by the same key can share a UID.
At runtime, Android enforces access control on inter-app

communication. The access control mechanism is based on
Permissions [16] which an application must request from
the user during installation. The user has to grant all re-
quested permissions in order to allow the app installation or
alternatively deny the installation. Permissions cannot be
selectively granted or denied. Since technically permissions
are bound to UIDs, apps sharing a UID also share their
granted permissions. Android already contains a set of pre-
defined permissions for access to system resources [16], but
applications can also define new, custom permissions to re-
strict access to their own interfaces. A reference monitor in
the Android middleware checks if an application holds the
necessary permissions to perform a certain protected action,
for instance, to bind to a protected service or to start a pro-
tected other application. Permissions controlling access to
kernel-level ressources, such as the ability to open sockets,
are mapped to Linux group identifiers (GIDs) assigned to an
app during installation and checked at runtime by reference
monitors in the modified Linux kernel.

2.2 ContentProviders
ContentProviders are the primary means to organize and

share data between applications in a secure way [17].

System ContentProvider

SQL Command
Factory App

SQLite Database

R
EA

D
 A

P
I

W
R

ITE A
P

I
Content
Resolver

Query, insert,
update, delete

Insert, updated,
delete

Query

SQL Command

SQL Driver

Cursor

Cursor

Figure 1: ContentProvider workflow

Structure and workflow. ContentProviders encapsu-
late a structured set of data, for instance stored in back-end
storage, and provide clearly defined interfaces to other appli-
cations to access this data (cf. Figure 1). The exact back-end
storage can vary, however, the most common and for sys-
tem ContentProviders default option is an SQLite database
back-end. The provider’s interface resembles an SQL-like in-
terface, i.e., it provides query, insert, update, and delete
functions to manage the data. Usually, each of those func-
tions requires a fixed set of parameters (e.g., selection cri-
teria or sort order for queried data), which are used by a
provider-internal command factory to assemble the actual
SQL command that is issued to the back-end database.
The default mechanism to connect to a ContentProvider is

the so called ContentResolver class. Each ContentProvider
can be addressed by an URI-like, system-unique address,
the Content URI, e.g., content://contacts for the system
ContactsProvider. This URI can also refer explicitly to ta-

bles or entries in the providers database. When an app
issues a command to a ContentProvider, the ContentRe-
solver resolves the URI of this command to the correspond-
ing provider and relays the command and its reply between
provider and app. Data returned to apps upon queries is
presented in form of so called Cursor data structures, which
represent the results in a table according to the function
parameters (e.g., selection or ordering).
ContentProvider Security. To access the system Con-

tentProviders, for example the ContactsProvider or the SM-
SProvider, permissions are required by default. For Con-
tentProviders, Android generally distinguishes between per-
missions for read access (e.g., READ_CONTACTS) and write ac-
cess (e.g., WRITE_CONTACTS).
In addition, Android provides the URI Permission mech-

anism for ContentProviders. It allows a ContentProvider or
its client app to dynamically delegate the permission to ac-
cess a specific data (identified by the URI) to another app
at runtime. For instance, this mechanism is useful when an
email app wants to provide access to an email’s attachment
(e.g., a photo) to an auxiliary app (e.g., picture viewer app),
without requiring the auxiliary app to hold the permission
to access the entire ContentProvider data set.

2.3 Services
Services are usually background processes, which provide

remotely (i.e., inter-process) callable function that are spe-
cific to each Service.

System Service

Service Logic

HW Resource
(GSM, Accelerometer,…)

Low-level
function

App

P
ro

xy

Remote Procedure Call A
P

I

Figure 2: System Service workflow

Structure and workflow. System services in particular
encapsulate specific hardware resources or devices. Promi-
nent system Services are, for instance, the LocationManager
that provides functions to retrieve the device’s physical lo-
cation from the GPS module, the SensorManager that pro-
vides functions to poll the on-board motion sensors, or the
TelephonyManager that communicates with the SIM Card
and GSM module.
The API that a Service exposes must be defined by means

of the Android Interface Definition Language (AIDL). Callers
to this API retrieve from the Service a Binder IPC proxy
object, which provides the API and is responsible for wrap-
ping and forwarding calls and responses of API calls between
caller and Service.
Service Security. Similar to system ContentProviders,

permissions are required to access system Services, for ex-
ample, ACCESS_FINE_LOCATION to retrieve the GPS coordi-
nates of the device or READ_PHONE_STATE to get the IMEI
number. While the permission can be assigned to a Service
component as a whole (the caller must hold the permission
independently of the called function), it is more common to

4

assign different security levels to the exposed functions and
thus perform the permission check (with possibly different
permissions) at the granularity of functions. For instance,
the TelephonyManager requires either the READ_PHONE_STATE,
ACCESS_COARSE/FINE_LOCATION, or no permission from the
caller, depending on the called function.

3. PROBLEM DESCRIPTION
In this section we describe the conceptual privacy problem

of Android that we address in our solution (cf. Section 3.1)
and the technical challenges to be tackled (cf. Section 3.2).

3.1 Privacy Problems
Smart devices store and process a high number of private

information. On Android, two crucial problems must be
addressed to provide an efficient and effective protection of
the user’s privacy.
Coarse-grained and irrevocable default permissions.

It has been shown, that Android’s default permission model
defines too coarse-grained permissions to efficiently protect
user’s privacy. For instance, apps holding the READ_CONTACTS
permission have access to all contact data including the data
irrelevant for the apps’ correct functioning. Moreover, once
granted by the user, permissions are irrevocable until the
app is uninstalled. In light of recent news regarding users’
privacy violations [7, 6], it is thus highly desirable to provide
users with a fine-grained and adjustable access control over
their private information.
Least-privilege. The problem of coarse-grained and ir-

revocable permissions has been identified previously and, as
we explain in detail in related work (cf. Section 7), differ-
ent approaches aim at addressing this issue [32, 30, 9, 21,
10, 11, 26, 13, 20, 25, 12, 27, 23]. These approaches provide
additional access control to information sources such as (sys-
tem) ContentProviders or (system) Services, which can be
adjusted at runtime, or provide a so-called data shadowing
mechanism that returns fake data on access to information
stores. However, these mechanisms do not provide a least-
privilege access to private data, but rather regulate access
to entire information stores on an all-or-nothing basis and
thus seriously impede an app’s user-desired functionality.
For instance, preventing a WhatsApp-like messenger from
accessing or exfiltrating any contact data surely protects the
user’s privacy, but also blocks the app from building a list of
contacts with whom the user can exchange instant messages
and hence prevents the app from providing the user-desired
messaging service.
Semantic links between information stores. More-

over, related mechanisms as described above ignore the fact
that lots of information can be indirectly retrieved from
other information stores, thus rendering their provided ac-
cess control ineffective. Extending the previous example,
the WhatsApp-like app could retrieve required phone num-
bers from the CallLog or SMS database (if it holds the cor-
responding permission) instead of directly from the Con-
tactsProvider. CallLog and SMS provider effectively act as
deputies in this scenario.
Thus, in practice it is desirable to have an per-data access

control to private information, which empowers the user to
adjust his privacy settings with respect to both his need
to protect his data and simultaneously his need to share
his data. Unfortunately, default Android and related work
currently do not provide such a mechanism. Additionally,

this mechanism should exploit the static relations between
(system) ContentProviders to semantically link access con-
trol between different providers (e.g., an app that can read
business contacts, should simultaneously not be able to read
those contact’s SMS messages).

3.2 Technical Challenges
To provide an efficient and effective solution to the above

described privacy problems, certain technical challenges must
be solved.
Fine-grained access control. The access control mech-

anism has to be fine-grained enough to support rules on a
per-data basis. Android ContentProviders structure data in
SQLite tables. The granularity of the access control should
be per row, column, or cell of the table. For instance,
our WhatsApp-like example app should only retrieve the
columns containing the phone number and name of con-
tacts. If additionally the user requests that this app should
only access contacts in the group Friends, all data rows not
belonging to Friends contacts must be inaccessible to this
app or removed from query responses to this app.
User-centric configuration. A particular challenge for

a user-centric configuration of the access control is how the
access control rules can be presented to the user for intuitive
configuration.
Low performance impact. Despite access control on

a per-data basis and potentially big databases, the perfor-
mance impact should be minimal. Thus, the access control
mechanism should be ideally placed in the database to lever-
age its native speed.

4. FINE-GRAINED PRIVACY CONTROL
In this section, we present the design of our solution. We

give a high-level overview of our architecture in Section 4.1,
explain the access control mechanisms in our architecture in
Section 4.2, discuss alternative policy deployment 4.3, and
present the semantic links between different access control
rules in Section 4.4.

4.1 Overview
The goal of our architecture is to facilitate a per-data

instead of a per-interface access control to privacy sensi-
tive information provided by system ContentProviders (e.g.,
contacts, SMS/MMS, call log) and Services (e.g., location,
IMEI, sensor data). Providing a per-data access control al-
lows the user to resolve the conflict between his need to
share private data and his need to protect his privacy ac-
cording to his own privacy requirements by configuring a
least-necessary access to his data. For instance, consider
the case of a WhatsApp-like messenger, which clearly has
to upload the user’s contacts’ phone numbers to a server to
retrieve the list of contacts numbers which are also using
this messenger service. Additionally, the app should be able
to access the contacts’ names to display the user’s messen-
ger contacts by name and not only by number. However,
there is no necessity for this app to infer the user’s relation
to his contacts (e.g., friends, family, work colleagues) or to
retrieve further sensitive information such as the contacts’
postal addresses or email addresses.
An overview of our architecture to establish such fine-

grained access control on user’s private information is de-
picted in Figure 3. The user can configure the least-necessary
access of apps to his data by means of a Privacy Control App,

5

which then deploys the corresponding access control rules to
a new enforcement system in the system ContentProviders
and Services. These enforcement points are responsible for
controlling 3rd party apps’ access to privacy sensitive infor-
mation provided by information stores, such as databases,
or hardware resources, such as GPS or accelerometer, on a
per-data basis.
Conceptually, when comparing our high-level design to

established access control frameworks such as SELinux [24],
our Privacy Control App performs the role of a Security
Server (i.e., policy decision point) and our filtering points
the role of Object Managers (i.e., object-specific policy en-
forcement points). However, in contrast to those systems,
our policies are static enough to be deployed directly at
the enforcement points after configuration/initialization in
the Privacy Control App, thus benefiting the overall perfor-
mance of our system.

System Content
Provider System Service

3rd Party
App

Privacy
Control App

Enforcement
Point

Enforcement
Point

3rd Party
App

User

Database
(e.g., Contacts, SMS)

HW Resource
(e.g., GPS)

Configure AC

Update rules Update rules

Package
Manager

Notify new
package

Deploy initial
AC rules

Deploy initial
AC rules

API API

Figure 3: Overview architecture

4.2 Access Control
In this section, we explain how the access control rules in

our system are formatted and initialized, as well as config-
ured by the user and eventually enforced.

4.2.1 Rules Format
Our policy rules express a subject-object access matrix of

the form
S×O 7→ 0/1

where S is the set of all subjects in the system (i.e., 3rd
party apps), O is the set of all objects in the system (i.e.,
data), and the mapping is the access control decision, i.e.,
either deny (0) or allow (1). An access control rule r in
this matrix is of the form rs,o := s × o 7→ 0/1, which de-
scribes that a specific subject s has (1)/has not (0) access
to a specific object o. We build one access matrix for each
enforcement point, i.e., content provider or service. For in-
stance, in case of the ContactsProvider, S is the set of all
3rd party apps holding the default permission to access the
provider (READ_CONTACTS / WRITE_CONTACTS) and O is the
available data in the content provider differentiated by, e.g.,
mimetype, group-membership, or account. Access control is
then of the form

AC(s, o) 7→ 0/1
where s ∈ S, o ∈ O, and AC is a look-up function which
returns the access control decision for rs,o from the set of

access control rules or a default value ⊥= 0/1 otherwise.
In our system, we set ⊥= 1, meaning we allow access by
default. This is motivated purely by usability reasons to not
affect 3rd party apps in case of misconfiguration, however,
we note that ⊥ could be easily set to 0 if privacy concerns
outweigh usability concerns.

4.2.2 Initial Access Control Rules
Since the set of 3rd party apps, which will be installed

later, cannot be known a priori, our architecture requires
a mechanism to initialize the access control rules for newly
installed 3rd party apps at runtime.
In our architecture, we leverage the default Android Pack-

ageManager to detect newly installed applications (cf. Fig-
ure 3). The PackageManager is responsible for (un-)installing
apps and broadcasts after a successful (un-)installation a
notification to inform other packages about this event. Our
Privacy Control App registers itself as a receiver for this
broadcast message. Upon installation of a new app, the
Privacy Control App inquires from the PackageManager the
set of permissions which the new app has been granted and
determines from these permissions which system Content-
Providers and Services this app has access to. Providers
and services that are not protected by a permission are as-
sumed implicitly as being accessible.
To each provider and service that is accessible by the new

app, the Privacy Control App deploys new set R of access
control rules Rs,O = s×O 7→⊥ specific to the app, i.e., the
subject s of each rule is the UID of the new app and the set
of objects O of each rule are the distinct data types man-
aged by the provider or service (e.g., contacts information
or location data). Initially, each rule has the default value
⊥ as access control decision, until adjusted by the user via
the Privacy Control App. Performing this deployment di-
rectly upon receiving the broadcasted notification, ensures
that the access control rules are deployed before the app
contacts the provider/service the first time and thus that
all access is correctly controlled.

4.2.3 Configuration
After deployment of the initial access control rules for an

app, the user can change these rules according to his privacy
needs by adjusting the access control decision value for each
rule (cf. Figure 3). The Privacy Control App takes here
on the role of a central configuration tool by displaying a
graphical representation of the access matrices in the system
to the user, where columns represent the objects, rows the
subjects, and cells contain the decision value of each rule
identified by its subject-object combination. The user can
then select and change the values of each cell. Updated
rules are propagated by the Privacy Control App to the
corresponding enforcement points.
Similarly, if an app is uninstalled, the Privacy Control

App removes all access control rules for this app from the
access matrices of the content providers and services.

4.2.4 Enforcement
Our design decision for the access control enforcement is,

that enforcement is gracefully, i.e., it does not simply revoke
the permission to access certain data at runtime and throw
an unexpected security exception back to the calling app,
but instead applies transparent data filtering or throws an
expectable exception. This is motivated by the fact, that

6

app developers usually omit redundant error handling code
(i.e., “If this code executes, it means my app was installed
and hence has been granted all requested permissions.”) and
thus throwing an unexpected security exception due to run-
time permission revocation will result (most likely) in the
3rd party app crashing. For gracefully handling such revo-
cation, we deploy two different strategies in our system:
Data-filtering. Filtering sensitive data from respons-

es/callbacks to a querying app is always possible, when the
app cannot make any presumptions about the data set size
or values it is accessing. This inherently holds for Content-
Providers, because the app cannot know if and what data
is contained in the provider, but only in which format (i.e.,
Cursor) to expect the response. The simplest form of data-
filtering is data shadowing as presented in, for instance, [20],
which simply returns an empty Cursor or a Cursor with fake
data to an app without access, thus emulating an empty or
fake data set. A more sophisticated form of filtering, based
on filtering rows, is presented in [11]. In our design, however,
we filter both rows and columns from responses. Hereby,
rows can be entirely removed [11], while for columns simply
all table cells in this column are emptied in the response
(in order to preserve the expected structure of the Cursor).
Being able to filter both rows and columns is essential for
a per-data access control, because rows represent entire en-
tries (e.g., one contact), while columns represent the data of
each entry (e.g., contact’s address, phone number, etc).
Data filtering is also applied to certain system Services,

for which a default or fake value can be safely returned. For
instance, when polling the accelerometer data, a flat value
can be returned to emulate motionlessness and thus effec-
tively revoking the caller’s permission to access this data.
Similarly, location data or the IMEI can be filtered.
Expectable exceptions. Throwing an exception, which

the app must be able to handle, because it is a potential
event when calling a particular remote function, is applica-
ble for gracefully controlling access to Services. For instance,
when calling the LocationManager for high resolution loca-
tion data, an exception is thrown if the device has no GPS
capability. Thus, the calling app must be able to handle
this exception. Throwing such an exception is hence also a
means to gracefully revoke the app’s permission to access the
GPS location data even if there is a GPS module available.

4.3 Profile Server
Correctly configuring access control rules usually requires

a certain expertise and awareness by the user. Since such
prerequisites are seldom fulfilled by the common end-user,
we provide in our architecture the means to import the ac-
cess control rules for a specific app from an external source.
In our setup, we leverage a Policy Server, to which users (or
external experts) can upload privacy profiles for apps and
from which end-users can download and deploy these poli-
cies to their phone. A reasonable alternative approach would
be to allow app developers to ship their applications with a
preconfigured privacy profile for their app, which is then au-
tomatically loaded during installation. This could encourage
app developers to perform some form of self-control (possi-
bly detecting unnecessarily requested permissions [28]) and
could increase the end-user’s trust in such apps.

4.4 Semantical Linking Filtering
Besides the problem of coarse-grained and irrevocable per-

missions, a second observation of how privacy sensitive user
data can leak are semantic links between different provid-
ers/services. This means, that sensitive information can be
retrieved from deputy providers or services instead of the
provider/service responsible for management of this infor-
mation.

3rd Party
App

System
MMS/SMS

Provider

System Contacts
Provider

1. Query SMS list

3rd Party
App

a. Query Call Log

2. Get Contact info
for SMS senders

3. SMS and
Contact info

b. Call Log with
Contacts info

Figure 4: Semantic links between system
SMS/MMS and ContactsProvider that allow
inferring sensitive contacts information.

An actual example on a stock Android OS are the re-
lations between the system SMS/MMS ContentProvider or
CallLog provider and the system ContactsProvider (illus-
trated in Figure 4), through which a 3rd party app can infer
sensitive contacts information – even if it has no direct ac-
cess to the contacts information. In the first case (steps
1 to 3), an app with access to the SMS/MMS provider can
query a list of sent and received SMS messages and their cor-
responding sender/receiver numbers. Thus, although this
app might not have the permission to access the contacts
provider directly (or the user prohibits this app to query con-
tacts’ phone numbers), it can infer from this result the user’s
contacts’ phone numbers2 and with more message parsing
even information such as names or relation to the user (i.e.,
work, friend, etc.). Similarly, an app could retrieve the user’s
call log (steps a and b in Figure 4) and infer from it con-
tacts’ phone numbers. The CallLogProvider is actually part
of the ContactsProvider app, but is addressed with a differ-
ent URI (cf. Section 2.2) and requires a different permission
(READ_CALL_LOG).
In our system, we address this issue by establishing auto-

matic mappings between the access control rules of different
providers/services, which reflect the semantic links between
those providers/services. Figure 5 illustrates this mecha-
nism with respect to the example in Figure 4. If the user
configures in the Privacy Control App that an app, here
GO Contacts, has no access to contacts phone numbers in
the ContactsProvider, this decision is reflected in the access
control rules of the MMS/SMS Provider by automatically
prohibiting this app to access the SMS sender/receiver num-
bers. In our design, the Privacy Control App, since being
in charge of the policy configuration and deployment, is re-
sponsible for applying this semantic links between the access
matrices of different providers/services.
Technically, this semantic linking SL1,2 of access control

rules is a mapping

SL1,2(s, o1, d1) =⇒ s×O2 7→ d2

2We assume that users most likely exchange SMS with peo-
ple that they have in their address book.

7

Data
App

eMail Phone …

WhatsApp 0 1 …

GO Contacts 0 0 …

…

…

…

…

Data
App

Phone Text …

WhatsApp 0 1 …

GO Contacts 0 1 …

…

…

…

…

Privacy Tuning App Access Control ContactsProvider Access Control SMS Provider

Direct mapping Semantic link

Figure 5: Mapping between policy configuration GUI and access matrix for ContactsProvider as well as
semantic linking in case of ContactsProvider and SMSProvider (grey fields).

where s is the subject (i.e., app), o1 is the object in the
first provider/service, d1 is the decision value in the first
provider/service, O2 are the objects in the second provider/ser-
vice, d2 is the new decision value in the second provider/ser-
vice, and =⇒ denotes the operation to automatically deploy
the right-hand side set of rules in the second provider/ser-
vice.
In our architecture, we focus on the relations between

system ContentProviders and Services, which are static for
a particular version of the Android OS and in our expe-
rience usually also static across OS versions. Thus, these
rules can be hardcoded in the Privacy Control App. Ex-
tending this mechanism to privileged 3rd party app pro-
viders and services, which also can act as deputies (e.g., if
they export public interfaces to their internal information
stores, in which they store sensitive information retrieved
from the system providers/services) is more technical in-
volved. It would require, for instance, instrumentation of
those 3rd party apps [30] or taint-based access control on
data flows [20] and we refer to future work for providing
an efficient solution against this kind of confused deputy at-
tack [19].

5. IMPLEMENTATION
We implemented our architecture for per-data access con-

trol for contacts and SMS/MMS data on both Android 2.2
(Froyo) and Android 4.1 (JellyBean).

5.1 Privacy Control App
Figure 6 depicts our Privacy Control App on Android 4.1

for configuring per-data access control to contact informa-
tion. Figure 6(a) shows the list of all 3rd party apps in the
system that hold the READ_CONTACTS permission and Fig-
ure 6(b) shows the access control configuration based on the
mimetype of contacts data and the contacts groups. In this
scenario, for instance, the app has access to all mimetypes
of contacts that are members of the Home or Private group.
Figure 5 contains a screenshot of the Privacy Control App
on Android 2.2 and shows the mimetype-based access con-
trol for two 3rd party apps.
The Privacy Control App implements a broadcast receiver

for the PACKAGE_ADDED and PACKAGE_REMOVED system broad-
casts, upon which it initializes or removes, respectively, the
access control rules for the added/removed app (cf. Sec-
tion 4.2). For deploying new access control rules, we ex-
tend the system ContentProviders and Services with a cor-

(a) (b)

Figure 6: Screenshots of the Privacy Control
App for configuring access control to the Contact-
sProvider: (a) list of installed 3rd party apps with
READ_CONTACTS permission; (b) configuration of access
control rules for a selected app based on mimetype
(upper half) or groups (bottom half).

responding interface (as we explain in the subsequent Sec-
tions 5.2 and 5.3).

5.2 Filtering ContentProviders
To efficiently implement access control and filtering of

private data stored in SQL tables in ContentProviders, we
leverage mechanisms of the underlying SQL database.
Initialization. We store the access matrix as a new

SQL table within the database for which we apply access
control. This is a natural representation of access matri-
ces, where each row represents one access control rule as
defined in Section 4.2, containing the UID of a 3rd party
app (i.e., the subject), the data mimetype and optionally
an auxiliary value to further refine the mimetype (i.e., the
object), and the access control decision (i.e., allow or deny).
To add new access control rules for an app, identified by
its sandbox’ UID, the ContentProvider offers a new URI

8

Contact_id Mimetype Value

23 phone 1234

42 phone 56789

23 email 23@m.com

42 email 42@m.com

UID Mimetype Decision

10042 phone 0

10042 email 1

Data Table Access Control Table

Contact_id Mimetype Value

23 email 23@m.com

42 email 42@m.com

Data View for UID 10042

SELECT * FROM DATA WHERE DATA.MIMETYPE IN
(SELECT MIMETYPE FROM ACCESS_CONTROL WHERE UID=10042 AND DECISION=1)

Figure 7: Example for combining an access control
table and data table to construct an UID-specific
View of the data table.

Listing 1: Concrete example for creation of SQL
View for the Data table in Contacts Content-
Provider

1 CREATE VIEW view_data_10043 AS SELECT ∗ FROM
2 (SELECT ∗ FROM view_data WHERE raw_contact_id IN
3 (SELECT raw_contact_id FROM view_data WHERE

mimetype_id=11 AND data1 IN
4 (SELECT access_value FROM access_control WHERE

app_uid=10043 AND mimetype_id=11))
5 OR raw_contact_id IN
6 (SELECT _id FROM raw_contacts WHERE _id NOT IN
7 (SELECT raw_contact_id FROM data WHERE

mimetype_id=11)))
8 WHERE mimetype_id IN
9 (SELECT mimetype_id FROM access_control WHERE

mimetype_id <> 11 AND
10 app_uid=10043 AND access_value=1) OR mimetype_id=11

content://AUTHORITY/access_control with authority, e.g.,
being contacts for the ContactsProvider. Upon access to
this URI, the ContentProvider verifies with the help of Binder
and the PackageManager that the caller is the trusted Pri-
vacy Control App or aborts operation otherwise. Through
this interface, the Privacy Control App inserts the UID of
the new app and the default decision value. Our new ac-
cess control logic in the ContentProvider then inserts one
new row for each available mimetype with the UID and the
default permission value into the access control table.
Enforcement. Using SQL Views, we can efficiently es-

tablish representations of SQL tables, which realize data
filtering. An SQL View is a virtual table, whose content is
derived from queries to another table (or other View) and
which can be used in SQL commands at all places a nor-
mal table can be used. In our system, we create one SQL
View per app and per data table for which we want to re-
alize access control. The SQL query to derive each View
is constructed such, that it combines the data table and
access control table by selecting from the data table only
those rows, which are allowed according to the access con-
trol table. Figure 7 illustrates this mechanism and Listing 1
gives a concrete example for creating an SQL View for the

Listing 2: Concrete example for creation of an SQL
Trigger to synchronize the access control table with
the mimetypes table

1 CREATE TRIGGER mimetypes_aclinsert
2 AFTER INSERT ON mimetypes
3 WHEN NEW.mimetype<>

"vnd.android.cursor.item/group_membership"
4 BEGIN
5 INSERT INTO access_control (app_uid, mimetype_id,

access_value)
6 SELECT DISTINCT app_uid, NEW._id, 1
7 FROM access_control;
8 END

Data table in the ContentProvider for mimetype-based and
group-based filtering of data for an app with UID 10043.
To actually apply filtering, all queries by 3rd party apps
are redirected to the corresponding SQL View for the app’s
UID, or to the default unfiltered table in case of queries by
trusted system apps.
Updates. The new access control URI of the Content-

Provider is further used by the Privacy Control App to query
the current content of the access control table, e.g., in or-
der to display it to the user, and also to update the access
control table if the user performed any configuration.
Moreover, since the filtering is based on mimetypes and

groups, the access control rules in the ContactsProvider
must be kept in synchronization with the types and groups
available. For instance, if a new group is added, a new ac-
cess control rule must be created for all 3rd party apps and
this new group, initially with the configured default value
⊥. Similarly, if a group or mimetype is removed, all obso-
lete access control rules referring to this type/group must be
deleted. To efficiently keep our access control table in sync
with the available mimetypes and groups, we rely on SQL
Triggers. Triggers execute specific SQL commands when
particular events transpire on selected tables. In our sys-
tem, we define Triggers on the mimetypes (cf. Listing 2)
and groups tables of the ContactsProvider to perform the
necessary synchronization operations.

5.3 Filtering Services
We extend system Services with new logic to perform ac-

cess control enforcement of the form presented in Section 4.2.
Hooks in the API functions that expose sensitive informa-
tion redirect the control flow to this new access control logic.
There, a per-data filtering is performed or an expectable ex-
ception is thrown, respectively. The underlying access con-
trol rules are stored in a local access vector cache.
To facilitate management (e.g., insertion, deletion, up-

date) of access control rules in Services by the Privacy Con-
trol App, this new access control logic provides a new API
function. This function is protected such, that only the
trusted Privacy Control App or Android’s SystemServer have
permission to use it.
Initialization. For initializing the access control for a

newly installed app, the Privacy Control App inserts the
UID and the default decision value into the corresponding
services. The access control logic then creates rules with
this UID and decision value for each object (i.e., data) it
manages. For instance, the LocationManager creates two

9

rules to regulate access to the coarse- and to the fine-grained
location data.
Updates. To display the current access matrix of a ser-

vice to the user, the Privacy Control App queries the current
rules from the service. When the user adjusts the decision
value of a rule, the updated rule is propagated back to the
service.
Enforcement. Services implement different mechanisms,

that allow an app to retrieve sensitive information. First,
services offer API functions, that apps can explicitly call to
get information (e.g., get last known or current location).
As described above, we redirect the control flow of these
functions to our access control logic and which filters data
the calling app has no access to or throws an exception, re-
spectively. Additionally, Services allow an app to receive
sensitive information also via broadcast messages triggered
by certain events (e.g., receipt of an SMS), through reg-
istered event listeners (e.g., change of location), or tokens
(i.e., PendingIntent). Thus, to achieve correct coverage of
our access control, we instrument the Service functions for
callbacks to registered listeners and for sending Pending-
Intents to either filter data from responses or to suppress
the response as a whole. To filter broadcast messages, we
instrumented the broadcast subsystem of the ActivityMan-
agerService similar to the approaches presented in [27, 11],
however, basing the filtering on the access control rules re-
trieved from the sending service and any semantically linked
service/provider.

6. EVALUATION
In this section, we provide the evaluation results for the

performance and effectiveness of our implementation.

6.1 Performance
To evaluate the performance impact of our access con-

trol, we performed synthesized benchmark tests that emu-
late common access patterns to the system ContactsProvider
and for SMS system notifications. Our test platform was
a Samsung Galaxy Nexus (Maguro) with Android 4.1.1-r3
with and without our modifications.

6.1.1 System ContactsProvider
To evaluate the performance impact of our per-data ac-

cess control to Contacts information, we deploy a Contacts
database with 500 random Contacts, each Contact assigned
random information such as name, instant messenger, phone
number, or email address (in total 13 different data types
per contact). These contacts are organized in six different,
distinct groups (Group 1: 95 contacts; Group 2: 75 con-
tacts; Group 3: 77 contacts; Group 4: 88 contacts; Group 5:
78 contacts; Group 6: 90 contacts). We devise the following
test cases for our benchmark:
NumGroups: The benchmark app queries the number

of existing groups by retrieving the _id column from the
Groups URI. This tests the filtering for the Groups View.
NumContacts: The benchmark app queries the number

of existing contacts by retrieving the _id column from the
Contacts URI. This tests the group-based filtering of the
Contacts View.
NumRawContacts: The benchmark app queries the

number of existing raw contacts by retrieving the _id col-
umn from the RawContacts URI. This tests the group-based
filtering of the RawContacts View.

RandomContactData: The benchmark app queries all
data rows and columns for a randomly selected raw con-
tact (the selection process is excluded from the measure-
ment) from the Data URI. This tests the group-based and
mimetype-based filtering of the Data View.
NumRandomGroup: The benchmark app queries the

number of existing contacts that belong to a specific, ran-
domly selected group by retrieving the contact_id column
from the Data URI where the group membership value equals
the selected group ID. This tests the group-based and mimetype-
based filtering of the Data View.
Each test case is performed 1000 times in each of the

following group filter settings for our benchmark app: All
Groups (500 contacts available), Only Group 1 (95 contacts
available), Only Groups 1, 4, and 6 (273 contacts available),
and Plain Android (500 contacts available).
While usually all mimetypes were allowed, the test case

RandomContactData was additionally performed with only
the Name mimetype allowed for each group filter setting.
This is motivated by the fact that this is the only test, where
the mimetype-based filtering effectively influenced the per-
formance, while all other tests purely rely on the speed of
the group-based filtering.
Table 1 lists our performance measurements and Appendix A

presents the corresponding Cumulative Frequency Distri-
bution histograms. Relatively to the default Android, our
nested SELECT statements in the filter Views impose a clear
performance degradation. However, in absolute numbers,
the overhead is still in a reasonable range when considering
the usual frequency of queries and compared to the required
time to process the query results on the caller side. Consid-
ering this, we argue that the performance impact does not
negatively affect the user experience, even if several queries
are performed subsequently.

6.1.2 SMS Notification
We further evaluate the performance impact of filtering

system broadcast message about newly received SMS mes-
sages. The filtering is based on the phone number of the
sender and whether the broadcast receivers have access to
contacts phone numbers or the contacts group to which this
numbers belongs. In 20 measurements, the average per-
formance of creating the filtered receivers list with access
control was 0.931ms. In default Android, we measured an
average of 0.893ms for creating the receivers list, thus our
access control add a negligible overhead of approximately
4%. However, after access control initialization/configura-
tion, our architecture required a one-time overhead of 30ms
on average to propagate the rules to the enforcement point in
the Broadcast subsystem (cf. Semantic Link in Section 4.4).

6.2 Contacts Database Size
In our performance evaluation of the Contacts filtering,

the contacts database containing 500 contacts, 13 data mime-
types, and 6 groups measured 2146304 bytes without any fil-
tering views and 2150400 bytes with the views for one app.
Thus, the filter views for one app adds 4096 bytes. This
overhead depends purely on the number of defined mime-
types and groups for contacts data.

6.3 Effectiveness
To evaluate the effectiveness of our solution, we inserted

the contact information of five real persons, who are also

10

Filtering All Groups Allowed
Test t̄ (ms) σ (ms)
NumGroups 6.302 7.594
NumContacts 32.705 9.080
NumRawContacts 26.719 7.445
RandomContactData 44.763 / 44.104 11.464 / 10.684
NumRandomGroup 28.036 7.035

Filtering Only Group 1 Allowed
Test t̄ (ms) σ (ms)
NumGroups 5.912 7.391
NumContacts 12.172 7.446
NumRawContacts 11.651 7.366
RandomContactData 30.926 / 30.216 12.208 / 11.184
NumRandomGroup 16.207 7.327

Filtering Only Groups 1, 4, 6 Allowed
Test t̄ (ms) σ (ms)
NumGroups 6.240 7.716
NumContacts 21.690 7.793
NumRawContacts 18.586 9.024
RandomContactData 38.576 / 38.090 10.657 / 11.847
NumRandomGroup 22.348 7.629

Default Android
Test t̄ (ms) σ (ms)
NumGroups 5.133 7.429
NumContacts 9.069 8.433
NumRawContacts 7.550 7.360
RandomContactData 17.888 9.244
NumRandomGroup 9.510 8.532

Table 1: Performance results for Contacts Content-
Provider with average execution time (t̄) and stan-
dard deviation (σ) in ms from 1000 executions each.
For RandomContactData the first values represents
filtering with all 13 mimetypes allowed and the sec-
ond value with only the Name mimetype allowed.

WhatsApp users, into the contacts database. We success-
fully verified the effectiveness of our access control with
WhatsApp v2.8.4313 (retrieved from the developer’s web-
site), GO Contacts v.146, Facebook app v1.9.1, and a syn-
thesized test app for contacts management. The former two
apps were chosen not only because of their popularity, but
also because any filtering shows immediate effect. That is,
when denying WhatsApp access to contacts phone numbers
or all contacts groups, the app informs us about the fact,
that none of our contacts is using the service. Similarly, GO
Contacts presents only filtered data to which it has access.
In all cases, the mimetype-based and group-based filtering
of contacts data was successful and did not lead to an ap-
plication crash.
As a side-effect of our tests, we could verify that the enu-

meration attack for WhatsApp presented in [29] is still ap-
plicable, since some of our randomly generated and unknown
contacts where listed as our WhatsApp friends, indicating
that the random phone number indeed belongs to a real per-
son using WhatsApp. Moreover, we observed that the GO
Contacts developers are aware of the logic in the Contact-
sProvider’s SQL Command Factory (cf. Section 2.2) and de-
signed their projection arguments to the Contacts Provider
such, that they are able to embed custom subqueries into the
default queries. We had to address this issue by implement-
ing an additional sanity check on the arguments supplied by
apps in order to also redirect the embedded subquery to the
filtered SQL Views.

An open problem for future research are URI Permissions
(c.f. Section 2.2). These could potentially be handled by
creating ad-hoc access control rules based on additional user
input by means of a popup dialog.

7. RELATED WORK
In the recent years, a number of security extensions to

the Android OS have been proposed [30, 9, 21, 10, 11, 26,
13, 20, 25, 12, 27, 23, 32], which address privacy aspects of
end-users.
Inlined Reference Monitors. To achieve policy en-

forcement for 3rd party apps on Android without the need
to modify the operating system or to root the phone, some
recent works leverage so-called Inlined Reference Monitors
(IRM) [30, 9, 21]. IRM places the policy enforcement code
directly in the 3rd party app instead of relying on a system
centric solution. The implementations are based on runtime
modification of the Global Offset Table (GOT) of the app
process (Aurasium) [30] or modification of the Dalvik exe-
cutable bytecode (AppGuard, Dr. Android and Mr. Hide) [9,
21].
An open problem with respect to filtering responses from

privacy sensitive sources such as ContentProviders is the
necessary statefulness of the reference monitor. To imple-
ment fine-grained filtering, it has to analyze and track the
parameters of its host app to ContentProviders in order to
correctly interpret and filter responses. For instance, if the
query to the provider has a parameter which renames and
reorders the columns of the response, the monitor has to
be aware of this parameter in order to know which data is
contained in which column of the response.
Android OS Security Extensions. The conceptually

closest related work to our solution is the TISSA [32] ar-
chitecture. In TISSA, the user can assign different trust
levels to apps through a Privacy Setting Manager. De-
pending on its trust level, an app receives benign, fake,
anonymized, or empty data when accessing privacy sensi-
tive system ContentProviders or Services. Although the au-
thors of TISSA acknowledge the problems of returning fake
or empty data (cf. Section 3), they unfortunately omit to ex-
plain how they achieve anonymization of sensitive data. In
contrast to TISSA, one design goal of solution was to explic-
itly allow per-data access control and, moreover, establishing
semantic links between different enforcement points (Sec-
tion 3.1), which otherwise might violate an access control
like in TISSA.
The authors of Porscha [26] propose a DRM mechanism

to enforce access control on specific data, such as SMS or
e-mails, that is tagged with a DRM policy. This policy is
attached to the data by the data creator. Porscha enforces
this policy on data at rest (i.e., ContentProviders) as well
as in transit (e.g., Intents) and denies non-policy-compliant
apps access to the data. In contrast to Porscha, our so-
lution focuses on user-centric policies to protect the user’s
privacy and considers a finer granularity of data (e.g., con-
tacts phone number, email address). Moreover, our solution
considers the links between providers/services over which
data might leak. Thus, our solution could benefit Porscha
by enabling a more fine-grained DRM and further prevent-
ing protected data from leaking through other system ser-
vices/providers.
Similarly, frameworks such as TaintDroid [13] and the

AppFence architecture [20], which builds on TaintDroid, track

11

the propagation of tainted data from sensible sources (in
program variables, files, and IPC) on the phone and detect
(or prevent, respectively) unauthorized leakage of this data.
AppFence, additionally, provides data shadowing features
for a variety of information sources (e.g., TelephonyMan-
ager, LocationProvider or ContactsProvider), i.e., it returns
to apps empty or fake data. This per-interface access control
can severely impede the app’s user-desired functionality as
stated in our problem description (Section 3). Both archi-
tectures could profit from our solution in order to provide
a more accurate tainting, while our solution would benefit
from taint tracking to address the confused deputy problem
described in Section 4.4.
Both APEX [25] and CRePE [12] focus on enabling/dis-

abling functionalities and enforcing runtime constraints. Both
are related to our solution in the sense that they can restrict
the capabilities of an app and protect data assets in shared
resources like ContentProviders. Compared to our solu-
tion, the enforcement described in [25, 12] is, however, per-
interface and provides only an all-or-nothing access. Similar
to Porscha, their access control could profit from our solu-
tion to achieve more fine-grained runtime constraints.

Saint [27] introduces a context-aware access control model
to enable developers to install policies to protect the inter-
faces of their applications. However, Saint only considers ap-
plication developers as stakeholders in policy definition; our
solution puts the privacy requirements of the end-user in the
foreground. Moreover, developers in Saint could adopt our
filtering mechanism for ContentProviders (cf. Section 5.2)
to achieve a more fine-grained access control to their data.
Security Domains. Other related work aims specifically

at establishing different security domains on Android [11,
10, 23] and addresses in this context (fine-grained) access
control to information such as Contacts or SMS.

SE Android [23] is a port of SELinux [24] for the An-
droid platform. It provides a kernel-level Mandatory Access
Control (MAC) mechanism and is able to regulate Binder-
based inter-process communication between apps. Thus, it
is able to deny apps access to the system Services and Con-
tentProviders. However, similar to [25, 12, 27], this is an
all-or-nothing access to Services and ContentProviders.
The TrustDroid [11] architecture establishes two strictly

isolated security domains on Android devices, one for private
and one for business purposes. Similar to Porscha, it tags
data, e.g., contacts, with a label, and filters (broadcast) In-
tents, but aims at preventing illegal data flows between the
two domains. Using our per-data access control, TrustDroid
could support more fine-grained policies.
The XManDroid [10] architecture aims at preventing con-

fused deputy and collusion attacks by applying an access
control framework similar to TrustDroid, but with more dy-
namic policies. Like TrustDroid, it could apply a more fine-
grained access control on data, when adapting our solution.

8. CONCLUSION
In this paper, we presented a security architecture for An-

droid that enables per-data and per-app access control to
the user’s private information in Android’s system Content-
Providers and Services. Due to the high resolution of our
control, the user is empowered to adjust the access con-
trol rules (by means of a Privacy Control App) according
to his individual privacy requirements and thus to satisfy
both his need to share and his desire to protect his private

information. A particular contribution of our work is the
consideration of semantic links between different Content-
Providers and Services by synchronizing the corresponding
access control rules and hence preventing information in-
ferring from deputy providers/services. In future work, we
plan to extend our architecture to more use-cases and pub-
licly release our implementation, since we believe that our
work can be efficiently combined with related work such as
taint-tracking [13] or Mandatory Access Control [23].

9. REFERENCES
[1] 3LM - Three Laws of Mobility. http://www.3lm.com.
[2] Facebook Caught Reading User SMS Messages? |

TalkAndroid.com.
http://www.talkandroid.com/94623-facebook-
caught-reading-user-sms-messages/.

[3] National Institute of Standards and Technology,
National Vulnerability Database, Vulnerability
Summary for CVE-2009-1185. http://web.nvd.nist.
gov/view/vuln/detail?vulnId=CVE-2009-1185.

[4] National Institute of Standards and Technology,
National Vulnerability Database, Vulnerability
Summary for CVE-2011-1823. http://web.nvd.nist.
gov/view/vuln/detail?vulnId=CVE-2011-1823.

[5] Path uploads your entire iPhone address book to its
servers.
http://mclov.in/2012/02/08/path-uploads-your-
entire-address-book-to-their-servers.html.

[6] WhatsApp storing messages of users up to 30 days |
Your Daily Mac.
http://www.yourdailymac.net/2012/02/whatsapp-
storing-messages-of-users-up-to-30-days/.

[7] WhatsApp took all my contacts and sent to their
servers without asking me - BlackBerry Forums at
CrackBerry.com.
http://forums.crackberry.com/blackberry-apps-
f35/whatsapp-took-all-my-contacts-sent-their-
servers-without-asking-me-649363/.

[8] Whisper Systems.
http://www.whispersys.com/permissions.html.

[9] M. Backes, S. Gerling, C. Hammer, M. Maffei, and
P. von Styp-Rekowsky. Appguard - real-time policy
enforcement for third-party applications. Technical
Report A/02/2012, Max Planck Institute for Software
Systems, 2012.

[10] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R.
Sadeghi, and B. Shastry. Towards taming
privilege-escalation attacks on android. In 19th
Annual Network & Distributed System Security
Symposium (NDSS’12), 2012.

[11] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R.
Sadeghi, and B. Shastry. Practical and lightweight
domain isolation on android. In 1st ACM CCS
Workshop on Security and Privacy in Mobile Devices
(SPSM’11). ACM, 2011.

[12] M. Conti, V. T. N. Nguyen, and B. Crispo. CRePE:
Context-related policy enforcement for Android. In
13th Information Security Conference (ISC’10), 2010.

[13] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In 9th USENIX

12

http://www.3lm.com
http://www.talkandroid.com/94623-facebook-caught-reading-user-sms-messages/
http://www.talkandroid.com/94623-facebook-caught-reading-user-sms-messages/
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-1185
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-1185
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-1823
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2011-1823
http://mclov.in/2012/02/08/path-uploads-your-entire-address-book-to-their-servers.html
http://mclov.in/2012/02/08/path-uploads-your-entire-address-book-to-their-servers.html
http://www.yourdailymac.net/2012/02/whatsapp-storing-messages-of-users-up-to-30-days/
http://www.yourdailymac.net/2012/02/whatsapp-storing-messages-of-users-up-to-30-days/
http://forums.crackberry.com/blackberry-apps-f35/whatsapp-took-all-my-contacts-sent-their-servers-without-asking-me-649363/
http://forums.crackberry.com/blackberry-apps-f35/whatsapp-took-all-my-contacts-sent-their-servers-without-asking-me-649363/
http://forums.crackberry.com/blackberry-apps-f35/whatsapp-took-all-my-contacts-sent-their-servers-without-asking-me-649363/
http://www.whispersys.com/permissions.html

Symposium on Operating Systems Design and
Implementation (OSDI’10), 2010.

[14] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri.
A study of Android application security. In 20th
USENIX Security Symposium, 2011.

[15] W. Enck, M. Ongtang, and P. McDaniel.
Understanding Android security. IEEE Security and
Privacy Magazine, 2009.

[16] Google. The Android developer’s guide - Android
Manifest permissions. http://developer.android.
com/reference/android/Manifest.permission.html,
2012.

[17] Google. Content providers.
http://developer.android.com/guide/topics/
providers/content-providers.html, 2012.

[18] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi.
Unsafe exposure analysis of mobile in-app
advertisements. In 5th ACM conference on Security
and Privacy in Wireless and Mobile Networks
(WISEC’12). ACM, 2012.

[19] N. Hardy. The confused deputy: (or why capabilities
might have been invented). SIGOPS Oper. Syst. Rev.,
22(4):36–38, Oct. 1988.

[20] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall. These aren’t the droids you’re looking
for: retrofitting android to protect data from
imperious applications. In 18th ACM conference on
Computer and communications security (CCS’11).
ACM, 2011.

[21] J. Jeon, K. K. Micinski, J. A. Vaughan, N. Reddy,
Y. Zhu, J. S. Foster, and T. Millstein. Dr. android and
mr. hide: Fine-grained security policies on unmodified
android. Technical Report CS-TR-5006, University of
Maryland, Department of Computer Science, 2012.

[22] Lookout Mobile Security. Security alert: Geinimi,
sophisticated new Android Trojan found in wild.
http:
//blog.mylookout.com/2010/12/geinimi_trojan/,
2010.

[23] National Security Agency. Security Enhanced
Android.
http://selinuxproject.org/page/SEAndroid.

[24] National Security Agency. Security-Enhanced Linux.
http://www.nsa.gov/research/selinux.

[25] M. Nauman, S. Khan, and X. Zhang. Apex:
Extending Android permission model and enforcement
with user-defined runtime constraints. In 5th ACM
Symposium on Information, Computer and
Communications Security (ASIACCS’10), 2010.

[26] M. Ongtang, K. Butler, and P. McDaniel. Porscha:
Policy oriented secure content handling in Android. In
26th Annual Computer Security Applications
Conference (ACSAC’10), 2010.

[27] M. Ongtang, S. McLaughlin, W. Enck, and
P. McDaniel. Semantically rich application-centric
security in Android. In 25th Annual Computer
Security Applications Conference (ACSAC’09), 2009.

[28] A. Porter Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android permissions demystified. In 18th
ACM conference on Computer and communications
security (CCS’18). ACM, 2011.

[29] S. Schrittwieser, P. Frühwirt, P. Kieseberg,
M. Leithner, M. Mulazzani, M. Huber, and E. Weippl.
Guess Who’s Texting You? Evaluating the Security of
Smartphone Messaging Applications. In 19th Annual
Network & Distributed System Security Symposium
(NDSS’12), 2012.

[30] R. Xu, H. Saïdi, and R. Anderson. Aurasium:
Practical policy enforcement for android applications.
In 21st USENIX Security Symposium. USENIX, 2012.

[31] Y. Zhou and X. Jiang. Dissecting android malware:
Characterization and evolution. In Security and
Privacy (SP), 2012 IEEE Symposium on, pages 95
–109, may 2012.

[32] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh.
Taming information-stealing smartphone applications
(on android). In 4th international conference on Trust
and trustworthy computing (TRUST’11).
Springer-Verlag, 2011.

APPENDIX
A. CUMULATIVE FREQUENCY DISTRIBU-

TION FOR CONTACTS BENCHMARK
TESTS

For better readability, all histograms show only the time
thresholds for which the cumulative frequency of each test
is 99.90%.

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

C
u

m
u

la
ti

ve
 %

Time (ms)

Test: numGroups

Plain Android

Filtering Only Group 1

Filtering Only Groups 1,4, and 6

Filtering All Groups

Figure 8: Cumulative Frequency Distribution of test
NumGroups.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

C
u

m
u

la
ti

ve
 %

Time (ms)

Test: numContacts

Plain Android

Filtering Only Group 1

Filtering Only Groups 1,4, and 6

Filtering All Groups

Figure 9: Cumulative Frequency Distribution of test
NumContacts.

13

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://developer.android.com/guide/topics/providers/content-providers.html
http://blog.mylookout.com/2010/12/geinimi_trojan/
http://blog.mylookout.com/2010/12/geinimi_trojan/
http://selinuxproject.org/page/SEAndroid
http://www.nsa.gov/research/selinux

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

C
u

m
u

la
ti

ve
 %

Time (ms)

Test: numRawContacts

Plain Android

Filtering Only Group 1

Filtering Only Groups 1, 4, and 6

Filtering All Groups

Figure 10: Cumulative Frequency Distribution of
test NumRawContacts.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

C
u

m
u

la
ti

ve
 %

Time (ms)

Test: randomContactsData

Plain Android

Filtering Only Group 1 (All mimetypes)

Filtering Only Group 1 (Only Name mimetype)

Filtering Only Groups 1, 4, and 6 (All mimetypes)

Filtering Only Groups 1, 4, and 6 (Only name
mimetype)
Filtering All Groups (All mimetypes)

Filtering All Groups (Only name mimetype)

Figure 11: Cumulative Frequency Distribution of
test RandomContactsData.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

C
u

m
u

la
ti

ve
 %

Time (ms)

Test: numRandomGroup

Plain Android

Filtering Only Group 1

Filtering Only Groups 1,4, and 6

Filtering All Groups

Figure 12: Cumulative Frequency Distribution of
test NumRandomGroup.

14

	Introduction
	Android
	Security Mechanisms
	ContentProviders
	Services

	Problem Description
	Privacy Problems
	Technical Challenges

	Fine-grained Privacy Control
	Overview
	Access Control
	Rules Format
	Initial Access Control Rules
	Configuration
	Enforcement

	Profile Server
	Semantical Linking Filtering

	Implementation
	Privacy Control App
	Filtering ContentProviders
	Filtering Services

	Evaluation
	Performance
	System ContactsProvider
	SMS Notification

	Contacts Database Size
	Effectiveness

	Related Work
	Conclusion
	References
	Cumulative Frequency Distribution for Contacts Benchmark Tests

