
A Privacy-Protecting Multi-Coupon Scheme

with Stronger Protection against Splitting

Liqun Chen1, Alberto N. Escalante B.2, Hans Löhr2,
Mark Manulis2, and Ahmad-Reza Sadeghi2

1 HP Laboratories, liqun.chen@hp.com
2 Horst Görtz Institute, Ruhr-University of Bochum, Germany,
{eban|hloehr|sadeghi}@crypto.rub.de, mark.manulis@rub.de

Abstract. A multi-coupon (MC) represents a collection of k coupons
that a user can redeem to a vendor in exchange for some goods or ser-
vices. Nguyen (FC 2006), deepening the ideas of Chen et al. (FC 2005),
introduced an unforgeable privacy-protecting MC system with constant
complexity for issuing and redemption of MCs, that discourages sharing
of coupons through a property called weak unsplittability, where shar-
ing of a single coupon implies sharing of the whole multi-coupon (all-or-
nothing sharing). Both schemes still lack some features required by many
applications in practice, and also stronger forms of unsplittability are de-
sirable. In this paper, we propose a new security model for MC systems
with stronger definitions, followed by a concrete realization where single
coupons within a MC may represent different goods or services, have in-
dependent validity periods, and must be redeemed sequentially ensuring
a stronger version of unsplittability compared to all-or-nothing sharing.
The complexity of the proposed scheme is linear in k for the generation
of multi-coupons and constant for each redeemed single coupon.
Keywords: Coupon, privacy, unsplittability, unlinkability, loyalty.

1 Introduction

Paper-based coupon schemes are successfully used by enterprises for various mar-
keting purposes like providing discounts, increasing sales within a period of time
(via coupons with some specified validity period), setting up prepayment mod-
els, attracting new customers, and establishing long-term relationships (loyalty)
with them. From an abstract point of view, a coupon is some information that
gives a customer the right to claim a good or service from a vendor.

The procedure in which a vendor provides a customer with a new coupon
is called issue. The procedure in which the customer pays using the obtained
coupon is called redeem. Here, the vendor verifies that the coupon is valid and
authentic, and provides the customer with the specified good or service. Coupons
can be used only once. In the following, we denote by object the good or service
implied by a coupon. Any item that can be bought may become an object in
practice, e.g. cloths, songs, books, videos, medicines, tickets, and even immaterial
services: discounts, access to computer resources or facilities, etc.

In contrast to widely used paper-based coupon schemes, electronic coupons
(e-coupons) have gained acceptance relatively slowly [14], and are still waiting
for their breakthrough. One of the reasons for this development is insufficient
security of available schemes. A multi-coupon (MC) [7, 11] denotes a collection
of e-coupons that is handled as a single unit.

In this paper we consider a multi-coupon scheme (MCS) that protects the
privacy of the customers, and encourages loyalty of clients by providing unsplit-
tability [7], i.e., two users cannot redeem coupons from the same MC separately
and independently. Consider prepaid-goods, where a vendor, hoping for a long-
term client relation, sells many goods at once at a cheaper price compared to that
of separately sold goods. In this case sharing would allow a group of users to buy
a single MC , and obtain goods at a subsided price, but without giving loyalty
in return. We focus on a basic MC framework where the only involved parties
are many customers (users) and a single vendor. Note that other frameworks are
imaginable, e.g., with several cooperating vendors.

From the security point of view, threats in MC systems are different from
those in paper-based coupon systems. First, it is very easy to create a per-
fect (digital) copy of an electronic MC , whereas copying a paper-based booklet
requires much higher effort. Second, when dealing with a MCS we must also
consider attacks in which different users collude and attempt to cheat the ven-
dor. Moreover, in the digital world privacy and anonymity of customers becomes
more important since the vendor may try to infer and store additional informa-
tion about them including purchase habits, gender, age, etc. This would harm
privacy and allow client profiling and price discrimination [13], e.g., different cus-
tomers are offered the same goods by the same vendor, but at different prices.

1.1 Desired Security Properties

We focus on unforgeability, unlinkability, and unsplittability because, as pointed
out in [6, 7, 11], these are the essential properties of a MCS .

Unforgeability. There is an intrinsic monetary value associated to any
coupon, explicitly or implicitly. Therefore, vendors want their multi-coupons to
be unforgeable, in the sense that no coalition of users should be able to redeem
more coupons than it has been rightfully allowed.

Unlinkability. It must be infeasible for a vendor to link a redeem procedure
for a customer to the corresponding issue procedure, or to link two different re-
deem procedures with the same customer. This implies anonymity of customers.

Unsplittability. Weak unsplittability (WU) [7], also known as all-or-nothing
sharing, intuitively, requires that whenever a user intends to share a single
coupon with a second user, she has to provide her with all the secret infor-
mation related to the involved MC . This, however, would make possible the
complete redemption of the MC by the second user. Thus, in case that both
users do not trust each other, WU discourages sharing.

A stronger version, called (ordinary) unsplittability, requires that it is infea-
sible for an adversary to produce more autonomous redemption algorithms than
the number of multi-coupons he has rightfully obtained, where by autonomous

we mean that such algorithms do not share any information gained during the
redemption. In other words, if a user gives a single coupon to another user,
then that second user has to send back some information to the first user af-
ter redeeming; otherwise the first user cannot spend further coupons from that
multi-coupon. Hence, sharing is more cumbersome with this stronger version of
unsplittability than with weak unsplittability because it requires a trust rela-
tionship and additional interaction between the users.

Contribution and Organization. We start in Section 2 with the descrip-
tion of related work on multi-coupon schemes, and give a brief overview of our
construction in Section 3. In Section 4, we define the syntax and correctness of
a MCS , and propose a more precise security model for MCS s that includes a
stronger form of unsplittability without relying on all-or-nothing sharing. There-
after, we propose in Section 5 a construction of a privacy-protecting MCS which
satisfies our stronger requirements and provides additional features for practi-
cal applications, e.g., different objects for individual coupons within one multi-
coupon and validity periods thereof. Redeem complexity (both computation and
communication) is constant w.r.t. the size k of the multi-coupon (i.e., the number
of coupons it contains), and complexity of the protocol for issuing multi-coupons
is linear in k, which is the best we can get when each coupon has individual at-
tributes. Additionally, we prove the security of our scheme w.r.t. the proposed
security model. Finally, we provide in Section 6 some insights into possible im-
provements and future work.

2 Related Work

Syverson et al. [17] introduced the concept of unsplittability in the context of
unlinkable serial transactions to discourage sharing, and suggested an extension
of their scheme to implement coupon books. Later, Chen et al. [7] described
the properties that a privacy-protecting multi-coupon system must provide, jus-
tified the use of unsplittability over other means to discourage sharing (e.g.,
hiding credit card numbers in the multi-coupons), and proposed an unforgeable,
unlinkable, and weakly unsplittable scheme. However, their construction is less
practical because of an expensive proof of knowledge used in the redemption,
whose complexity is linear in k (i.e., the number of coupons in the multi-coupon).

More recently, Nguyen [11] addressed some disadvantages of [7], and defined
a security model for MCS s, followed by an efficient construction based on a ver-
ifiable pseudorandom function and bilinear groups. Its issue and redeem com-
plexity is constant w.r.t. k, it offers the same security properties as in [7], and
adds a new feature to revoke multi-coupons. It is arguable whether revocation is
indeed necessary for a MCS , since in real life it is unusual that a vendor revokes
issued coupon booklets, and this operation might be costly.

One drawback of both above mentioned schemes is that every issued multi-
coupon must contain the same number of coupons, i.e., k is a system parameter
fixed for all multi-coupons. This limitation, as pointed out in [11], can be over-
come in both schemes by extending the issue protocol. However, this extension

is impractical, i.e., for [11] a term k−m′ is added to the complexity of the issue
protocol, where m′ (0 < m′ < k) is the number of issued single coupons. An-
other drawback of these schemes is that there is no concept of coupon’s object
(or coupon’s type [6]). Hence, all coupons are valid for the same purpose.

As previously explained in [7, 11], most related schemes (e.g., e-cash, digital
credentials) cannot be employed as privacy-protecting unsplittable MCS s be-
cause they have different usage patterns [15, 1], are inefficient in this setup [12],
or lack at least one of the required properties [3], in particular unsplittability.
Some e-cash systems can be used as unlinkable or at least anonymous MCS s
(e.g. [4, 6]). However, they are (unintentionally) at most weakly unsplittable.

3 Short Overview of our Construction

In our scheme, each single redeemable coupon (id , ob, sq , σ, σ′) is specified by a
coupon identifier id , a coupon sequence number sq , a coupon’s object ob (i.e.,
the good or service represented by the coupon3), a signature σ on the tuple
(id , ob, sq), and a signature σ′ on sq . A coupon is not redeemable if it lacks σ′.

A multi-coupon M of size k is a list of k single coupons with consecutive
sequence numbers, where at least the first coupon must be redeemable. In the
issue protocol, the user obtains a multi-coupon where the coupon identifiers are
kept private by the user, and all other attributes are known to both user and
vendor. After the issue procedure, only the first coupon is redeemable, but every
coupon has a valid signature σi, for 0 ≤ i < k. During the redemption of the
i-th single coupon with sequence number sq i, the user obtains a signature σ′

i+1

on the sequence number sq i + 1, and hence the next coupon in the list becomes
redeemable. In order to redeem a coupon, the user must prove that the coupon
has never been used before (by disclosing id), and that it is indeed redeemable
(by proving that σ is a valid signature on id , ob and sq , and that σ′ is a valid
signature on sq).

Informally, the vendor’s knowledge about elements of a single coupon depends
on the actual procedure, i.e., id is hidden during the issue protocol, and disclosed
to the vendor during redemption; sq , σ, σ′ are known to the vendor during issuing,
but hidden during the redeem protocol; ob is known to the vendor during both
the issue and the redeem protocols.

Our scheme utilizes a digital signature scheme with efficient protocols that
allows to obtain a signature on a (partially) blinded tuple (i.e., some elements
of the tuple are disclosed, while others are only committed to), and to prove the
knowledge of a signature on a (partially) blinded tuple without disclosing any
useful information, other than the fact that the signature is valid.

4 Security Framework for Multi-Coupon Schemes

Notation. For a finite set S, s ∈R S denotes the assignment to the variable
s of an element uniformly sampled from S. Let A be a probabilistic algorithm.

3 The vendor must publish an official coding of coupon’s objects as integers.

By outA ← A(inA) we denote that the variable outA is assigned the output
of A’s execution on input inA. We denote by (A(inA), B(inB)) a pair of in-
teractive algorithms with private inputs inA and inB , respectively, and write
(outA, outB) ← (A(inA), B(inB)) to denote the assignment of A’s and B’s pri-
vate outputs after their interaction to the variables outA and outB , respectively.

4.1 General Multi-Coupon Schemes

We consider a basic framework where the participants are a single vendor V
and a collection of users Ui. The following definition is general in that it does
not account for specific coupon features such as revocation, coupon objects, or
validity periods. We will refer to any particular user simply by U .

Definition 1 (Multi-Coupon Scheme). A multi-coupon scheme (MCS) con-
sists of a set of protocols: {Setup, Issue, and Redeem}, which are specified by
the following algorithms.

Setup algorithm. (PK ,SK) ← Setup(1κ) is the initialization algorithm
executed by the vendor once to generate one instance of the multi-coupon scheme.
It takes as input the security parameter κ, and outputs a public key PK (which
from now on we assume to include the security parameter κ coded in unary, and
a system parameter kmax representing the maximum allowed number of coupons
per MC), and a secret key SK (which might include PK).

Issue protocol. In order to obtain a MC with k coupons, U performs the
following protocol with V: ((resu, M), resv) ← (Issueu(k,PK), Issuev(k,SK)),
where, from now on, the subindices u and v denote user and vendor algorithms,
respectively. The output flags resu, resv ∈ {acc, rej} indicate success or failure
according to the user or vendor, resp. Issueu outputs the flag resu and a multi-
coupon M , whereas Issuev only outputs the flag resv.

Redeem protocol. After U has obtained the multi-coupon M she redeems
it to V by performing the protocol ((resu,M ′), (resv, ς

′)) ← (Redeemu(M ,PK),
Redeemv(ς,SK)). Redeemu outputs an updated multi-coupon M ′, and a flag resu

just like in issue, and Redeemv outputs a new vendor’s internal state ς ′, which
is initially set to the empty string, and a flag resv.

The correctness requirement states that an honest user who obtains a MC
from a fresh honest vendor must be able to redeem all the coupons it contains.

Definition 2 (Correctness). A multi-coupon scheme is correct if the following
experiment returns true with overwhelming probability (for any k ∈ [1, kmax]),
where resIs and resRe are the output flags of the issue and redeem algorithms,
respectively, and ςi is the vendor’s state, which is updated after each redemption.

(PK ,SK)← Setup(1κ); ς1 ← ε;
((resIsu,M1), resIsv)← (Issueu(k,PK), Issuev(k,SK));
for i = 1 to k do:

((resRei
u,Mi+1), (resRei

v, ςi+1))← (Redeemu(Mi,PK), Redeemv(ςi,SK));
if (resIsu, resIsv, resRe1

u, resRe1
v, . . . , resRek

u, resRek
v) = (acc, . . . , acc)

return true; else return false;

4.2 Adversarial Model and Security Requirements

In this section we present a solid security framework that covers a wide range of
adversarial actions. We begin by defining the queries available to the adversary,
and then we define the security requirements.

An adversary is a p.p.t. algorithm A, which can play the role of, either, a
vendor and a group of users, or only of a group of users. A can interact with
the other participants through a set of queries, which cannot be interleaved.4

Wlog we let the adversary be specified by a sequence of algorithms (e.g. A :=
(A1, A2, A3)). Honest parties are assumed to communicate over secure channels.

Depending on the degree of independence from the adversary, we consider
two types of users: scheduled and corrupted users. Users belonging to the set of
scheduled users (SU) execute honest algorithms if requested by the adversary,
but remain honest otherwise. The adversary has full control over the corrupted
users, grouped in the set CU , and is provided with their previous protocol views.
Additionally, the adversary might act as a group of malicious users.

Similar to [9], we allow the adversary to interact with the system through
a set of queries handled by an interface, which partially simulates the MCS ,
executes protocols with the adversary, and records certain user’s or vendor’s
activities. The queries available to an adversary differ depending on whether he
is playing the vendor’s role or only a user coalition. We distinguish between two
types of interfaces. The first interface (I1) is employed to model a MCS facing
a collusion of users, and is used to define unforgeability, and unsplittability. The
second interface (I2) models a MCS controlled by a malicious vendor, and is
only employed to define unlinkability.

Interface 1 (I1). In this case the adversary plays a collusion of users, and
the interface plays the vendor and the honest users. I1 maintains the vendor’s
state ς , and some counters, which are updated in each query: χM : number of
non-empty multi-coupons rightfully provided to the adversary, χx

C : number of
available (used and unused) coupons given to x, and χx

R: number of coupons
redeemed by x, where x denotes one of the participants, and can be either A
to denote the adversary, or some arbitrary string U to denote a particular user.
Now we present the queries and the actions performed by the interface.

I1.GetPK. Returns the vendor’s PK to the adversary.
I1.Issuev(k). If k < 1 or k > kmax the interface aborts (halts and returns rej),

otherwise it simulates the Issuev algorithm playing the vendor, and interacts
with the adversary, who plays the user. The counters are updated as follows:
χM++, χA

C+=k (where ++ and +=k denote increment by 1 and k, resp.).
I1.Issueu(U , k). If k < 1, k > kmax, U ∈ SU , or U ∈ CU , then the interface

aborts, otherwise it simulates a protocol run between an honest user U and the
vendor. U is an arbitrary value specified by the adversary to the interface, which
allows the adversary to refer to precisely the same user later on. The user’s
view of the protocol is stored in a transcript, and the variables are updated:

4 This reflects the properties of existing schemes, and simplifies the construction.

SU ← SU ∪ {U}, χU

C ← k, χU

R ← 0. In our security model every existing user
has exactly one multi-coupon: a real world honest user with m multi-coupons
can be simulated by m users, each one having a single multi-coupon.

I1.Redeemv. The interface performs the Redeemv algorithm, enabling the ad-
versary to redeem one of his coupons. If the interaction is successful (resv = acc)
the counters are updated as follows: χA

R++, χM ← min(χM , χA
C − χA

R). (An
adversary with at most χA

C − χA
R unused coupons is not allowed to have more

than χA
C − χA

R non-empty multi-coupons.) These counters are important for the
unforgeability and unsplittability requirements.

I1.Redeemu(U). The interface simulates a Redeem protocol run between the
honest user U and the vendor (both algorithms Redeemu and Redeemv are sim-
ulated). If resv = acc the interface stores the user’s view in the transcript, and
sets χU

R++. The only information returned to the adversary is resv .
I1.Corrupt(U). The interface first verifies that U ∈ SU , otherwise it aborts.

Then it sets SU ← SU\{U}, CU ← CU∪{U}, and finally it gives to the adversary
the user’s previous protocol views, which are extracted from the transcript. The
counters are updated: χA

C+=χU

C , χA
R+=χU

R, and if χU

C > χU

R, then χM+=1.

Interface 2 (I2). This interface is capable of simulating a collection of honest
users scheduled by the adversary, who plays the vendor. Again we use SU and
CU to denote sets of scheduled and corrupted users resp., and the counters χx

C

and χx
R with the same meaning as in I1. The following queries are provided:

I2.GetPK-SK. The interface gives the pair (PK ,SK) to the adversary.
I2.Issueu(U , k). If k ∈ [1, kmax] and U /∈ SU ∪ CU the interface executes the

Issueu algorithm (otherwise it aborts). Then, interface sets SU ← SU ∪ {U},
χU

C ← k, χU

R ← 0, and appends its protocol view to the transcript.
I2.Redeemu(U). If U /∈ SU or χU

C = χU

R, then the interface aborts (the second
condition prevents the interface from trying to overuse a multi-coupon). Then it
executes the Redeemu algorithm simulating the honest user U . The vendor stores
the user’s view in the transcript, and sets χU

R++.
I2.Corrupt(U). This query is handled exactly as in I1.

4.3 Unforgeability

Informally, unforgeability means that no group of users (controlled by A), with
χA

C coupons in total (comprised in, say, m multi-coupons), should be able to
redeem χA

R > χA
C coupons. More formally, this property is defined as follows.

Definition 3 (Unforgeable MCS). A multi-coupon scheme is unforgeable if
there is no p.p.t adversary A := (A1, A2) that can win the forgeability game in
Fig. 1 (ForgeGame(A, κ) = broken) with non-negligible probability (in κ).

An adversary A first interacts with the interface I1 (i.e., queries GetPK,
Issuev(·), Issueu(·, ·), Redeemv, Redeemu(·), and Corrupt(·)). A wins if he is
able to redeem an additional coupon after having redeemed the same number
of coupons he has rightfully obtained. Note that any adversary A′ who achieves
χA

R > χA
C , can be transformed into an adversary A, who wins the ForgeGame

at the expense of at most a polynomial factor in the success probability.

ForgeGame(A, κ): SplitGame(A, κ):
(PK , SK)← Setup(1κ); (PK , SK)← Setup(1κ);

σ ← A
I1
1

(1κ); (σ0, . . . , σχM
)← A

I1
1

(1κ)
if (χA

C 6= χA
R) then return unbroken; for i = 0 to χM do:

(resA, resv)← (A2(σ), I1.Redeemv); (resi
A, resi

v)← (A2(σi), I1.Redeemv);
if (resv = acc) then return broken; if (res0

v = acc ∧ . . . ∧ res
χM
v = acc) then

else return unbroken; return broken; else return unbroken;

Fig. 1. Forgeability and Splittability Games.

4.4 Unsplittability

Informally, a MCS is unsplittable if it is infeasible for an adversary A rightfully
holding at most χM non-empty MC s to generate χM + 1 shares σ0, . . . , σχM

,
which can be used each to autonomously redeem at least one coupon. This must
hold, even though A might have χA

C − χA
R ≥ χM unused coupons.

Definition 4 (Unsplittability). A multi-coupon scheme is unsplittable if there
is no p.p.t. adversary A := (A1, A2) capable of winning the splittability game in
Fig. 1 (SplitGame(A, κ) = broken) with non-negligible probability (in κ).

In the splittability game the adversary first interacts with the interface I1,
and outputs χM + 1 indexed states (shares) σ0, . . . , σχM

. Then he sequentially
executes χM + 1 redemption algorithms A2(σi), for 0 ≤ i ≤ χM . The adversary
wins if each one of the χM + 1 redemption algorithms succeeds.

We remark that, inside the “for loop” in Fig. 1, A2(σi) does not depend on
the information obtained in the execution of A2(σj) with i 6= j. The adversary’s
only input is a state σi (for some i); this ensures the autonomous redemption.
In contrast, the interface I1 implicitly updates the vendor’s state.

4.5 Unlinkability

Informally speaking, unlinkability means that an adversary playing the role of
the vendor cannot recognize (significantly better than by a random guess) which
honest user redeems a coupon when such a user is randomly selected from a pair
of users of his choice (equivalently with MC s instead of users).

In [6] a simple definition of unlinkability is proposed. However, the adversary
cannot further interact with the users after the challenge took place.

The number of unused coupons left in the selected pair of MC s can be easily
used by the adversary to link the protocols. This problem is (almost) solved
in [11] by hiding the number of unused coupons of the pair of challenged MC s
from the adversary. However, this is done (in part) by requiring that none of the
challenged MC s is ever emptied, hence the adversary is unrealistically prevented
from using the last coupons within the challenged MC s.

Definition 5 (Unlinkability). A multi-coupon scheme is unlinkable if there is
no p.p.t. adversary A := (A1, A2, A3) with non-negligible linkability advantage,

which is defined as: Advlink(A, κ) = Pr[LinkGame(A, κ) = broken]− 1/2.

For the linkability game, the adversary A first interacts with the interface I2

(queries GetPK-SK, Issueu(·, ·), Redeemu(·), and Corrupt(·)), and outputs the
user identities U0 and U1, of two scheduled users that have at least one unused
coupon left (i.e. χx

C > χx
R, for x ∈ {U0,U1}). Then, b is randomly selected

from {0, 1}, and the redemption algorithm Redeemu(Ub) is executed with A.
Afterwards, A is given a set of queries I2(m0, m1,U0,U1), similar to those of I2,
except that the users U0 and U1 cannot be corrupted, and at most m0 Redeemu(·)
queries can be made for the user U0 and m1 queries for U1, where m0 (resp.
m1) is the number of unredeemed available coupons minus one held by user U0

(resp. U1) before A2 redeems. This hides the number of unused coupons from A,
thus avoiding the problem mentioned above. Finally, A outputs d. If d = b the
adversary won the game, otherwise he lost.

LinkGame(A1, A2, A3, κ):
(PK ,SK)← Setup(1κ);
(U0,U1, ς)← AI2

1 (1κ);
if not (U0 ∈ SU ∧ U1 ∈ SU ∧ χU0

C > χU0

R ∧ χU1

C > χU1

R)
then return unbroken;

b← {0, 1}; m0 ← χU0

C − χU0

R − 1; m1 ← χU1

C − χU1

R − 1;
(resUb

, ς)← (I2.Redeemu(Ub), A2(ς));

d← A
I2(m0,m1,U0,U1)
3 (ς);

if (resUb
= acc ∧ d = b) then return broken; else return unbroken;

Theorem 1. Unsplittability is strictly stronger than unforgeability.

Proof (Sketch). (⇒) The condition χA
C = χA

R in the forgeability game implies
χM ≤ 0. Therefore, an adversary A against ForgeGame is also an adversary
against SplitGame with at least the same success probability. E.g., if χM = 0,
then A “splits zero multi-coupons into one”. For the other direction (:) consider
the schemes proposed in [7, 11] which are unforgeable but not unsplittable.

5 Our Multi-Coupon Scheme

We propose the first unsplittable MCS where each coupon has an individual
object, and coupons belonging to the same MC must be redeemed in certain
linear order, which is fixed during the issue procedure. The scheme can be eas-
ily extended with validity periods and arbitrary attributes for each coupon. In
contrast to previous proposals [7], the number of coupons contained in a multi-
coupon is not fixed, but is upper-bounded by kmax. Therefore, no inefficient step
is required for issuing a fraction of the maximum number of coupons [11]. This
is useful, for instance, to implement a personalized electronic discount booklet,
where variable discounts are offered in certain order.

5.1 Notation and Building Blocks

Commitment Scheme (CS). We use the integer tuple CS from [10], based
on the scheme in [8], with a tuple (g1, . . . , gk, n) of k bases gi ∈ QRn (quadratic

residues modulo n), for 1 ≤ i ≤ k, and a special RSA modulus n as a public
key. A commitment to (x1, . . . , xk−1) has the form Cx = gx1

1 · · · g
xk

k , where xk is
a value randomly chosen from an appropriate interval.

Proofs of Knowledge (PoK). We use a number of honest-verifier statistical
zero-knowledge PoK. By PoK{(x̃1, . . . , x̃n) : R(x̃1, . . . , x̃n)} we denote an interac-
tive PoK, where a prover proves to a verifier that she knows a witness (x̃1, . . . , x̃n)
(which we always denote with tilded variables) such that the relation R holds,
and the verifier does not gain any useful information beyond this assumption.

Proof of Equality of Representations. P proves that she is able to open two
commitments C1 and C2 (for two possibly different instances of the commitment
scheme), such that certain components of the openings are equal. For example,

we write PoKEqRep{(x̃, r̃x, ỹ, r̃y) : C1 = gx̃
1gr̃x

2 ∧ C2 = ĝỹ
1 ĝ

r̃y

2 ∧ x̃ = ỹ}.

Camenisch Lysyanskaya signature scheme (CLS). The CLS [5] is a simple
signature scheme with efficient protocols based on the strong RSA assumption.
The following description is done in the context of our scheme.

CLS .Setup(1κ). The signer S generates a special RSA modulus n = pq, such
that n has size `n := 2κ, where κ is a security parameter. Then he chooses
numbers a, b ∈R QRn called bases, and a constant c ∈R QRn. The public key
CLSPK is (a, b, c, n), and the secret key CLSSK is the prime number p.

CLS .Sign(x,CLS SK). To sign a message x ∈ [0, 2`m), the signer chooses a
random prime e of size exactly `e := `m + 2, a random number s of size at
most `s := `n + `m + `, where ` is another security parameter, S computes
v ← (axbsc)e−1

(mod n), and outputs (e, s, v).

CLS .Verify(x, σ,CLSPK). For (e, s, v) := σ, the algorithm tests whether
ve ≡ axbsc (mod n), x ∈ [0, 2`m), s ∈ [0, 2`s), e is exactly `e bits long, and
outputs true or false accordingly.

The signature allows the following useful protocols:

Signature on a committed value and PoK of this signature [5]. Signature
generation is a protocol from [5, Fig. 1] between a user U and a signer S, who
knows the secret key CLSSK . (Let CLSPK := (a, b, c, n) be the corresponding
public key.) The common input to U and S is a commitment Cx, for which U
supposedly knows an opening (x, rx) : Cx = axbrx . At the end of the protocol U
obtains a signature σ := (e, s, v) on x, while x is statistically hidden from S. We
denote this protocol as: σ ← SigOnCommit{U(x, rx),S(CLS SK)}(Cx).

Further, for a commitment C ′
x, U can prove the knowledge of (x, r′x, e, s, v) [5,

Figure 2], such that (x, r′x) is an opening of C ′
x, and (e, s, v) is a valid signature

on x, where x and σ are hidden by the zero-knowledge property of the protocol.
An auxiliary commitment scheme (g, h, n) is required, where n is the modulus
used in the CLSPK . We denote this protocol as: PoKSigOnCommit{(x̃, r̃′x, σ̃) :
C ′

x = axbr′

x ∧ CLS.Verify(x̃, σ̃,CLSPK)}.

This signature scheme can be extended to sign message tuples (x1, . . . , xk)
by introducing k bases ai [5]. Also, the pair of protocols above can be extended
to support multiple messages, and selective message disclosure. For instance,
we denote by SigOnCommit{U(x̃1, r̃x1

);S(CLS3 SK)}(Cx1
, x2, x3) a protocol to

generate a signature on a 3-tuple (x1, x2, x3), where the message x1, is (sup-

posedly) blinded by a commitment Cx1
, and two messages x2 and x3 are dis-

closed in clear. Similarly, by PoKSigOnCommit{(x̃3, r̃x3
, σ̃) : Cx3

= ax̃3

3 br̃x3 ∧
CLS3 .Verify(x1, x2, x̃3, σ̃,CLS3PK)} we denote the corresponding PoK that U
knows a signature σ on a tuple (x1, x2, x3), where x1 and x2 are disclosed to the
verifier, but x3 is kept blinded.

5.2 Construction

The components of our construction are two instances of the CL signature
scheme: CLS , for messages in [0, 2`m), and CLS3 , for messages in [0, 2`m)3.

Setup(1κ). The vendor V generates an instance of the CLS3 signature scheme:
(CLS3PK ,CLS3SK) := ((a1, a2, a3, b, c, n), p)← CLS3 .Setup(1κ), and the CLS

signature scheme: (CLSPK ,CLSSK) := ((â, b̂, ĉ, n̂), p̂) ← CLS .Setup(1κ). It is
assumed that CLS3 and CLS have the same parameters `n, `m, `e, `, and `s. Ad-
ditionally, V generates two instances of the CS by computing g, h ∈R QRn, and

ĝ, ĥ ∈R QRn̂. These commitment schemes are only used in the PoKSigOnCommit

protocol. Finally, V initializes a counter on sequence numbers: χsq ← 1, stores

SK := (CLS3 SK ,CLSSK), publishes PK := (CLS3PK , g, h,CLSPK , ĝ, ĥ), and
creates an empty database DB of coupon identifiers.

Issue. In this protocol (Figure 2) the user U interacts with the vendor V
to obtain k coupons with objects ob i, for 0 ≤ i < k. First, V chooses a new
sequence number sq0 ← χsq , updates the counter χsq ← χsq + k + 1, computes
σ′

0 ← CLS .Sign(sq0,CLSSK), and sends both sq0 and σ′
0 to U . Then, U ran-

domly chooses k coupon identifiers id i, for 0 ≤ i < k, and commits to them by
computing the commitments Cidi

, which are sent to V . Afterwards, for each i,
0 ≤ i < k, U executes the SigOnCommit protocol to obtain a CLS3 signature σi

on (id i, obi, sq0 + i), where id i is kept blinded in Cidi
, and obi, sq0 + i are known

by the V . Notice that only the first coupon is redeemable.
Redeem. In the redeem protocol (Figure 3) U selects her next unused re-

deemable coupon (id i, obi, sq i, σi, σ
′
i) from her MC , commits to sq i via Csqi

←

a
sqi

3 brsqi , C ′
sqi
← âsqi b̂r′

sqi using the appropriate moduli n and n̂ of the two sig-
nature schemes, and sends id i, obi, Csqi

, and C ′
sqi

to V . The vendor checks that
id i is not in the database, and inserts it. Then, U proves that Csqi

and C ′
sqi

are
commitments to the same sequence number sq i. Then, U uses PoKSigOnCommit
to prove in zero knowledge that she knows a CLS3 signature σi on the tuple
(id i, obi, sq i) without disclosing σi. Additionally, U proves to V the knowledge of
a CLS signature σ′

i on sq i, without disclosing any useful information about it to
V . Finally, if every PoK succeeded, U obtains a signature σ′

i+1 on sq i+1 := sq i+1,
i.e., her next coupon becomes redeemable.

In the description above, it is assumed that U always outputs rej in case any
obtained signature is invalid. Similarly, V must output rej in case any PoK fails.

5.3 Security Proofs

In this section we present a number of theorems stating the properties of our
scheme. Due to space restrictions we omit some proofs.

Common input: public keys CLSPK = (â, b̂, ĉ, n̂), CLS3PK = (a1, a2, a3, b, c, n),

User’s input: −
number of single coupons k, object identifiers obi, i = 0, . . . , k − 1

Vendor’s input: private keys CLSSK = p̂, CLS3SK = p

User U Vendor V

sq0 ← χsq; χsq ← χsq + k + 1;

σ′

0 ← CLS .Sign(sq0,CLSSK);
sq0, σ′

0

for each i = 0, . . . , k − 1 do

end do;

idi ∈R (0, 2`m);

ridi
∈R (0, 2`n);

Cidi
← aidi

1 bridi ;

Cid0
, . . . , Cidk−1

for each i = 0, . . . , k − 1 do
SigOnCommit{U(idi, ridi

) : V(CLS3SK)}(Cidi
, obi, sqi)σi ←

end do;

CLS .Verify(sq0, σ0,CLSPK)
?
= true

sqi+1 ← sqi + 1; sqi+1 ← sqi + 1;

Fig. 2. Issue Protocol

Theorem 2. The MCS proposed in Section 5 is correct. (Proof omitted)

Theorem 3. The MCS proposed in Section 5 is unsplittable.

Proof (Sketch). Assume A is an adversary against unsplittability. It is possi-
ble to construct an algorithm B, which outputs a forgery to one of the signatures
CLS3 or CLS with at least half the success probability of A (minus some negli-
gible term). B simulates the interface I1, and must answer the queries made by
A. The only steps which B cannot trivially simulate are those which require the
generation of a signature. To accomplish this he has black box access to A, and
access to two signature oracles CLS3 .Sign(·,CLS3 SK) and CLS .Sign(·,CLS SK)
(for two randomly chosen secret keys CLS3 SK and CLSSK unknown to B). Each
time B must sign a message sq0 in clear, he simply queries the CLS oracle.

The execution of the SigOnCommit protocol, in both the issue and redeem
procedures, can be simulated towards A as described in the proof of [5, Lemma
6.1], where the actual signature computation is outsourced to the corresponding
signature oracle.

Because of the soundness of every zero-knowledge PoK in the Issue and
Redeem protocols, we can assume that during the protocol executions, B can
extract (by using rewinding) all the witnesses for each PoK from A. This allows
B to obtain the attributes of all coupons, both issued and redeemed.

Common input: public keys CLSPK = (â, b̂, ĉ, n̂), CLS3PK = (a1, a2, a3, b, c, n),

User’s input: single coupon (idi, obi, sqi, σi, σ
′

i)
bases ĝ, ĥ, g, h for internal use of PoKSigOnCommit protocols

Vendor’s input: private keys CLSSK = p̂, CLS3SK = p, data base DB for coupon ids

User U Vendor V

r′sqi
, rsqi

∈R (0, 2ln);

C ′

sqi
← âsqi b̂

r′

sqi ;

C ′

sqi
, Csqi

, idi, obi

SigOnCommit{U(sqi+1, rsqi
) : V(CLSSK)}(C ′

sqi+1
)σ′

i+1 ←

Csqi
← a

sqi

3 brsqi ;

PoKSigOnCommit{(s̃qi, r̃sqi
, σ̃i) : Csqi

= a
s̃qi

3
br̃sqi ∧ CLS3 .Verify((idi, obi, s̃qi), σ̃i,CLS3PK)}

PoKSigOnCommit{(s̃qi, r̃
′
sqi

, σ̃′

i) : C′

sqi
= âs̃qi b̂

r̃′

sqi ∧ CLS .Verify(s̃qi, σ̃
′

i ,CLSPK)}

PoKEqRep{(s̃qi, r̃sqi
, s̃q′i, r̃

′

sqi
) : C′

sqi
= âs̃qi b̂

r̃′

sqi ∧ Csqi
= a

s̃q′

i

3
br̃sqi ∧ s̃qi = s̃q′i}

check that idi is not in DB;
sqi+1 ← sqi + 1;

C ′

sqi+1
← C ′

sqi
â;

add idi to DB;
C ′

sqi+1
← C ′

sqi
â;

Fig. 3. Redeem Protocol

It is possible to prove that the number of unused redeemable coupons pro-
vided to A in the unsplittability game is at most χM (here it is important that
B updates the counter χsq to avoid signing the same sequence number twice).
In the last part of the unsplittability game A is able to redeem χM +1 coupons.
Hence B is able to extract from A the information of χM +1 redeemable coupons
(id i, obi, sq i, σi, σ

′

i), for 0 ≤ i ≤ χM . In particular, at least one of these coupons
has a signature σi on (id i, obi, sq i) or σ′

i on sq i, which was not queried to the
respective signature oracle and therefore is an existential forgery of one of the
signature schemes. In order to identify the forgery, B stores every signature-
message pair queried to the signature oracles.

Theorem 4. The MCS proposed in Section 5 is unforgeable.

Proof. The theorem trivially follows from Theorems 1 and 3.

Coupon objects are useful features that unavoidably come at a price: they
can be trivially used by the vendor to link protocol runs (e.g. by assigning unique
coupon objects to each user). Hence, our construction does not meet unlinkability
as in Definition 3. However, in practice, if there are many redeemable coupons
at any time for each possible coupon object, then this information by itself does
not substantially harm privacy.

Theorem 5. The MCS of Section 5 restricted to constant coupon objects is
unlinkable.

Proof (Sketch). Wlog assume we can guess the users U0 and U1 challenged by
A. The proof is based on the existence of simulators for each one of the proofs
of knowledge employed in the protocols, and can be organized as a sequence of
games [16]. We can construct a series of modified games from the unlinkability
game, by substituting, one by one, every PoK and every commitment used in
the Issue and Redeem protocols executed by the users U0 and U1. The hiding
property of the commitment scheme can be used to replace the commitments by
random values. In each transition, the adversary’s success probability is modified
only by a negligible amount.

In the last game, the adversary’s view regarding the users U0 and U1 is com-
pletely simulated, thus his success probability is exactly 1/2. This implies that
his linkability advantage for the original game is negligible.

Complexity and Extensions. The computation and communication com-
plexity of the issue protocol is linear in k, while the redemption complexity is
constant in k. This improves the complexity of the scheme in [7], which is linear
for both issue and redeem, but is less efficient than the scheme in [11], which
has constant complexity for both protocols. However, for many applications the
scheme in [11] is less practical than ours, because it lacks specific attributes per
coupon, and it only offers weak unsplittability.

It is possible to extend the scheme by adding additional attributes to each
coupon. For instance, we can easily implement validity periods by adding two
attributes ta and tb, such that a coupon is only valid if a publicly known time
variable belongs to the interval [ta, tb]. Furthermore, by using standard zero-
knowledge interval protocols [2], it is possible for a user to prove that the coupon
is valid at some precise date/time, without disclosing either ta or tb. Note that
this has a similar effect on unlinkability as coupon objects.

6 Conclusion and Future Work

In this paper we introduced a privacy-protecting multi-coupon system, which
improves previous proposals with regard to various aspects: better efficiency
than [7], weaker assumptions than [11], and stronger security requirements. In
particular, we provide an improved security model with a stronger definition of
unsplittability, which discourages sharing of multi-coupons without relying on
the all-or-nothing principle. Unlike alternative approaches, our scheme does not
encode valuable information into the coupons to dissuade users from sharing
them. Therefore, it can be considered more privacy-friendly. Moreover, it can be
extended with additional attributes such as validity periods.

Some open problems are to design a MCS with the properties above, but in
which coupons can be redeemed in arbitrary order, and to develop MCS s for
more general settings (e.g. multiple collaborating vendors).

References

1. C. Blundo, S. Cimato, and A. De Bonis. Secure e-coupons. Electronic Commerce

Research, 5(1):117–139, 2005.
2. F. Boudot. Efficient proofs that a committed number lies in an interval. In EUR-

CRYPT, number 1807 in LNCS, pages 431–444. Springer Verlag, 2000.
3. S. Brands. A technical overview of digital credentials. research report, February

2002. Available at http://www.xs4all.nl/#brands/.
4. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In EURO-

CRYPT, number 3494 in LNCS, pages 302–321. Springer Verlag, 2005.
5. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols.

In Third Conference on Security in Communication Networks – SCN’02, number
2576 in LNCS. Springer Verlag, 2002.

6. S. Canard, A. Gouget, and E. Hufschmitt. A handy multi-coupon system. In
Applied Cryptography and Network Security, ACNS, pages 66–81, 2006.

7. L. Chen, M. Enzmann, A.-R. Sadeghi, M. Schneider, and M. Steiner. A privacy-
protecting coupon system. In Financial Cryptography, volume 3570 of LNCS, pages
93–108, Berlin, 2005. Springer-Verlag.

8. I. Damg̊ard and E. Fujisaki. A statistically hiding integer commitment scheme
based on groups with hidden order. In ASIACRYPT 2002, Proceedings, number
2501 in LNCS. Springer Verlag, 2002.

9. A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In EUROCRYPT

2004, number 3027 in LNCS, pages 571–589. Springer Verlag, 2004.
10. H. Lipmaa. On diophantine complexity and statistical zero–knowledge arguments.

In ASIACRYPT’03, number 2894 in LNCS, pages 398–415. Springer Verlag, 2003.
11. L. Nguyen. Privacy-protecting coupon system revisited. In Financial Cryptography,

number 4107 in LNCS. Springer Verlag, 2006. (To appear).
12. L. Nguyen and R. Safavi-Naini. Dynamic k-times anonymous authentication. In

ACNS, number 3531 in LNCS, pages 318–333. Springer Verlag, 2005.
13. A. Odlyzko. Privacy, economics, and price discrimination on the internet. In ICEC

’03: Proceedings of the 5th international conference on Electronic commerce, pages
355–366, New York, NY, USA, 2003. ACM Press.

14. K. Park and M. Gómez. The coupon report: A study of coupon discount methods.
Technical report, Department of Applied Economics and Management, Cornell
University, 2004. http://aem.cornell.edu/research/researchpdf/rb0407.pdf.

15. P. Persiano and I. Visconti. An efficient and usable multi-show non-transferable
anonymous credential system. In Financial Cryptography, number 3110 in LNCS.
Springer Verlag, February 2004.

16. V. Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/.

17. P. Syverson, S. Stubblebine, and D. Goldschlag. Unlinkable serial transactions.
In Financial Cryptography, number 1318 in LNCS, pages 39–56. Springer Verlag,
1997.

