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ABSTRACT
Smart personal devices equipped with a wide range of sensors and
peripherals can potentially be misused in various environments.
They can be used to exfiltrate sensitive information from enter-
prises and federal offices or be used to smuggle unauthorized in-
formation into classrooms and examination halls. One way to pre-
vent these situations is to regulate how smart devices are used in
such restricted spaces. In this paper, we present an approach that
robustly achieves this goal for ARM TrustZone-based personal de-
vices. In our approach, restricted space hosts use remote mem-
ory operations to analyze and regulate guest devices within the re-
stricted space. We show that the ARM TrustZone allows our ap-
proach to obtain strong security guarantees while only requiring a
small trusted computing base to execute on guest devices.
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1. INTRODUCTION
Personal computing devices, such as phones, tablets, glasses,

watches, assistive health monitors and other embedded devices have
become an integral part of our daily lives. We carry these devices as
we go, and expect them to connect and work with the environments
that we visit.

While the increasing capability of smart devices and universal
connectivity are generally desirable trends, there are also environ-
ments where these trends may be misused. In enterprise settings
and federal institutions, for instance, malicious personal devices
can be used to exfiltrate sensitive information to the outside world.
In examination settings, smart devices may be used to infiltrate
unauthorized information [5], surreptitiously collude with peers [40]
and cheat on the exam. Even in less stringent social settings, smart
devices may be used to record pictures, videos or conversations that
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could compromise privacy. We therefore need to regulate the use
of smart devices in such restricted spaces.

Society currently relies on a number of ad hoc methods for pol-
icy enforcement in restricted spaces. In the most stringent set-
tings, such as in federal institutions, employees may be required
to place their personal devices in Faraday cages and undergo phys-
ical checks before entering restricted spaces. In corporate settings,
employees often use separate devices for work and personal com-
puting needs. Personal devices are not permitted to connect to
the corporate network, and employees are implicitly, or by con-
tract, forbidden from storing corporate data on personal devices.
In examination settings, proctors ensure that students do not use
unauthorized electronic equipment. Other examples in less for-
mal settings include restaurants that prevent patrons from wearing
smart glasses [37], or privacy-conscious individuals who may re-
quest owners to refrain from using their devices.

We posit that such ad hoc methods alone will prove inadequate
given our increasing reliance on smart devices. For example, it is
not possible to ask an individual with prescription smart glasses (or
any other assistive health device) to refrain from using the device in
the restricted space. The right solution would be to allow the glass
to be used as a vision corrector, but regulate the use of its peripher-
als, such as the camera, microphone, or WiFi. A general method to
regulate the use of smart devices in restricted spaces would benefit
both the hosts who own or control the restricted space and guests
who use smart devices. Hosts will have greater assurance that smart
devices used in their spaces conform to their usage policies. On the
other hand, guests can benefit from and be more open about their
use of smart devices in the host’s restricted space.1

Prior research projects (e.g., [15, 27, 39, 42, 48, 49]) and en-
terprise mobile-device management (MDM) solutions to address
this problem (e.g., Samsung Knox [52], Microsoft Intune [38] and
Blackberry EMM [13]) have typically assumed that guest devices
are benign. These solutions outfit the guest device with a security-
enhanced software stack that is designed to accept and enforce poli-
cies supplied by restricted space hosts. A host must trust the soft-
ware running on a guest device to correctly enforce its policies, and
generally has no means to obtain guarantees that a guest device is
policy-compliant. Clearly, malicious guest devices with a suitably-
modified software stack can easily bypass policy enforcement.

Our vision is to enable restricted space hosts to enforce usage
policies on guest devices with provable security guarantees. Si-
multaneously, we also wish to reduce the amount of trusted policy-
enforcement code (i.e., the size of the security-enhanced software
stack) that needs to execute on guest devices. To that end, this paper
offers a number of advances:
1We only consider overt use of guest devices. Covert use must still
be addressed using other methods, such as physical checks.
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1 Use of trusted hardware. We leverage the ARM TrustZone [3]
on guest devices to offer provable security guarantees. In particu-
lar, a guest device uses the ARM TrustZone to produce verification
tokens, which are unforgeable cryptographic entities that establish
to a host that the guest is policy-compliant. Malicious guest de-
vices, which may have violated the host’s policies in the restricted
space, will not be able to provide such a proof, and can therefore
be apprehended by the host. Devices that use the ARM TrustZone
are now commercially available and widely deployed [9], and our
approach applies to these devices.
2 Remote memory operations. We use host-initiated remote

memory operations as the core method to regulate guest devices.
In this approach, a host decides usage policies that govern how
guest devices must be regulated within the restricted space. For ex-
ample, the host may require certain peripherals on the guest device
(e.g., camera, WiFi or 3G/4G) be disabled in the restricted space.
The host sends these policies to the guest device, where a trusted
policy-enforcement mechanism applies these policies by reading or
modifying device memory.

The principal benefit of using remote memory operations as an
API for policy enforcement is that it considerably simplifies the
design and implementation of the policy-enforcement mechanism,
while still offering hosts fine-grained control over guest devices.
Remote memory operations also give hosts that use our approach
the unique ability to scan guest devices for kernel-level malware.
Combined with the ARM TrustZone, which helps bootstrap trust in
the guest’s policy-enforcement code, our approach offers hosts an
end-to-end assurance that guest devices are policy-compliant.
3 Secure device checkpointing. The downside to enforcing poli-

cies by modifying device memory is that changes to the guest de-
vice are ephemeral, and can be undone with a simple reboot of
the guest device. We therefore introduce REM-suspend, a secure
checkpointing scheme to ensure that a guest device remains “teth-
ered” to the host’s policies even across device reboots and other
power-down events.
4 Vetting for guest device privacy and security. The advances

above benefit hosts, but guests may be uncomfortable with the pos-
sibility of hosts accessing and modifying raw memory on their de-
vices. If access to raw guest device memory is not mediated, mali-
cious hosts may be able to use this access to compromise the guest’s
privacy and security. For example, the host can read sensitive and
private app data from devices and install malicious snooping soft-
ware (e.g., keyloggers) on the guest device. We therefore mediate
the host’s access to the guest device by introducing a vetting ser-
vice. The vetting service is trusted and configurable by guests, and
allows them to check the safety of the host’s memory operations
before performing them on the devices. The vetting service amelio-
rates guests’ privacy and security concerns and restricts the extent
to which hosts can control their devices.

We built and evaluated a prototype to show the benefits of our
approach. We show that a small policy-enforcing code base running
on guest devices offers hosts fine-grained policy-based control over
the devices. We also show that a vetting service with a few simple
sanity checks allows guests to ensure the safety of the host’s remote
memory operations.

2. RESTRICTED SPACES
We provide an overview of the restricted space model, motivate

some features of our enforcement mechanism, and describe our
threat model. Because our mechanism relies on the ARM Trust-
Zone, we begin by introducing its features.

2.1 Background on the ARM TrustZone
The TrustZone is a set of security enhancements to chipsets based

on the ARM architecture. These enhancements cover the proces-
sor, memory and peripherals. With TrustZone, the processor exe-
cutes instructions in one of two security modes at any given time,
a normal world and a secure world. A third monitor mode facili-
tates switching between the normal and the secure worlds. The se-
cure and normal worlds have their own address spaces and different
privileges. The processor switches from the normal world to the se-
cure world via an instruction called the secure monitor call (smc).
When an smc instruction is invoked from the normal world, the
processor context switches to the secure world (via monitor mode)
and freezes execution of the normal world.

The ARM TrustZone partitions memory into two portions, with
one portion being exclusively reserved for the secure world. It also
allows individual peripherals to be assigned to the secure world.
For these peripherals, hardware interrupts are directly routed to and
handled by the secure world. While the normal world cannot ac-
cess peripherals or memory assigned to the secure world, the secure
world enjoys unrestricted access to all memory and peripherals on
the device. It can therefore access the code and data of the normal
world. The secure world can execute arbitrary software, ranging
from simple applications to an entire operating system (OS).

A device with ARM TrustZone boots up in the secure world.
After the secure world has initialized, it switches to the normal
world and boots the OS there. Most TrustZone-enabled devices
are configured to execute a secure boot sequence that incorporates
cryptographic checks into the secure world boot process [3, §5.2.2].
For example, the device vendor signs the code with its private key,
and the vendor’s code in the boot ROM verifies this signature using
the vendor’s public key. These checks ensure that the integrity of
the boot-time code in the secure world has not been compromised,
e.g., by reflashing the image on persistent storage. Most vendors
lock down the secure world via secure boot, thereby ensuring that
it cannot be modified by end-users. This feature allows hosts to
trust software executing in the secure world and treat it as part of
the trusted computing base (TCB). In this paper, we assume that
guest devices use secure boot.

2.2 Entering and Exiting Restricted Spaces

Check-in. When a guest enters a restricted space, he checks in
each of his devices during entry (Figure 1). During check-in, the
guest device communicates with the host’s policy server for the
following tasks:
1 Authentication. The first step is for the host and the guest to

mutually identify each other. We assume that both the guest and the
host have cryptographic credentials (e.g., public/private key pairs)
that are validated via a trusted third party, such as a certifying au-
thority. The host and the guest mutually authenticate each other’s
credentials in the standard way, as is done during SSL/TLS hand-
shakes.

The host’s policies are enforced by a mechanism that executes
in the secure world of the guest device. We rely on TrustZone’s
secure boot sequence to prevent unauthorized modifications to this
code. Note that the end-user’s usual work environment on the de-
vice, e.g., the traditional Android, iOS or Windows environment
with apps, executes in the normal world (and is untrusted). We ex-
pect the secure world software running the mechanisms proposed
in this paper to be created and distributed by trusted entities, such
as device vendors, and execute in isolation on guest devices.



Restricted space model. Guests “check-in” their personal devices
when entering restricted spaces. During check-in, hosts inspect, analyze
and modify the configurations of these devices in accordance with their
usage policies. In this example, the host restricts the use of the camera
on the smart glass, and the 4G data interface on the smart phone. How-
ever, the glass and watch can continue to use Bluetooth pairing, while
the phone can connect to the host’s access points using WiFi. When
guests leave the restricted space, they “check-out” their devices, restor-
ing them to their original configurations.

Guest device setup. Guest devices are equipped with ARM TrustZone
and execute components of the policy enforcement mechanism in the
secure world (SW). The details of this mechanism appear in Section 4.
At check-in, the host’s policy server leverages the secure world to re-
motely inspect and modify normal world (NW) memory.

Figure 1: An overview of the entities of our restricted space model and the setup of guest devices.

2 Host remotely reads guest state. The host requests the guest
device for a snapshot of its normal world memory and CPU register
state. The secure world on the device fulfills this request (after it
has been cleared by the vetting service) and sends it to the host.
The secure world also sends a cryptographic checksum of this data
to prevent unauthorized modifications during transit.

The host uses raw memory pages from the device in two ways.
First, it scans memory pages to ensure that the normal world ker-
nel is free of malicious software. A clean normal world kernel can
bootstrap additional user-level security mechanisms, e.g., an an-
tivirus to detect malicious user-level apps. Second, it extracts the
normal world’s configuration information. This includes the ker-
nel version, the list of peripherals supported, memory addresses of
various device drivers for peripherals and the state of these periph-
erals e.g., whether a certain peripheral is enabled and its settings.
The host can also checkpoint the configuration for restoration at
check-out.

The host terminates check-in at this point if it finds that the guest
device is malicious or runs a kernel version that it cannot reconfig-
ure. The action that the host takes depends upon the specific setting.
For example, in a federal building, the device owner may be asked
to quarantine the device outside the restricted space or enclose it
in a physically-secured Faraday cage. In less stringent settings, the
host may blacklist the device’s MAC address and prevent it from
connecting to any local resources in the restricted space. Note that
benign end-users may not have willingly installed malware on their
devices. A failed check-in has the desirable side-effect of allowing
such end-users to detect that their device is infected.
3 Host remotely modifies guest state. The host modifies the

guest device to conform to its restricted usage policies. The host’s
restrictions on a guest device depend on what it perceives as poten-
tial risks. Cameras and microphones on guest devices are perhaps
the most obvious ways to violate the host’s confidentiality because
they can be used to photograph confidential documents or record
sensitive meetings. Networking and storage peripherals such as
WiFi, 3G/4G, Bluetooth and detachable storage dongles can work
in concert with other peripherals to exfiltrate sensitive information.
Dually, guest devices can also be used to infiltrate unauthorized in-
formation into restricted spaces, e.g., students can cheat on exams
by using their devices to communicate with the outside world.

The host controls peripherals on guest devices by creating a set
of updates to the device’s normal world memory and requesting the
secure world to apply them. For example, one way to disable a pe-
ripheral is to unlink its driver from the device’s normal world kernel
(details in Section 3). The secure world applies these updates af-
ter using the vetting service to ensure the safety of the requested
updates.

We assume that it is the host’s responsibility to ensure that the
memory modifications are not easily bypassable. For example, they
may be undone if the user of the guest device directly modifies ker-
nel memory, e.g., by dynamically loading kernel modules or using
/dev/kmem in the normal world. The host must inspect the guest
device’s snapshot for configurations that lead to such attacks, and
disallow the use of such devices in the restricted space.

In steps 2 and 3 , the secure world performs the host’s read
and write operations only if they are approved by the vetting ser-
vice. Guests configure the vetting service to suit their security and
privacy goals. If the vetting service deems an operation unsafe,
device check-in is aborted and the device is left unmodified. The
guest cannot use the device in the restricted space because its secu-
rity and privacy goals conflict with the host’s usage policies.
4 Host obtains verification token from guest. After the guest

device state has been modified, its secure world produces a verifi-
cation token to be transmitted to the host. The verification token
is a cryptographic checksum over the memory locations that were
modified. The token is unforgeable in that only the secure world
can re-create its value as long as the host’s memory updates have
not been altered, and any malicious attempts to modify the token
can be detected by the secure world and the host.

The check-in steps above bear some resemblance to TPM-based
software attestation protocols developed in the trusted computing
community [51]. Like TPM measurements, which attest the soft-
ware stack or properties of dynamic data structures [50], verifi-
cation tokens attest that a guest device’s state complies with the
host’s policies. Both TPM measurements and verification tokens
are grounded in a hardware root of trust. However, unlike tradi-
tional software attestation, which has largely been restricted to pas-
sive checks of a remote machine’s state, verification tokens attest to
the integrity of the host’s remote modifications of the guest device.



Like in software attestation, a correct verification token attests
the state of the guest device only at the instant at which it was pro-
duced by the secure world. To ensure that the guest device remains
policy-compliant, the host can request the device to send it the veri-
fication token at any point when the device is in the restricted space.
The secure world on the device computes this token afresh, and
transmits it to the host,2 which compares this freshly-computed to-
ken with the one obtained during check-in. It uses this comparison
to ensure that the guest has not altered the normal world memory
updates from the previous step. The verification token incorporates
a host-supplied challenge to ensure that the guest device cannot
simply replay old tokens. As we demonstrate in Section 6, ver-
ification tokens are only a few hundred bytes in size and can be
computed by the secure world in just a few milliseconds. Thus,
hosts can request guest devices to send verification tokens at fre-
quent intervals, thereby increasing confidence that the guest device
was continuously policy-compliant.

The verification token is ephemeral, and can be computed afresh
by the guest only within an expiration period. The token expires
upon device check-out or if the device is powered off, thereby en-
suring that end-users cannot undo the host’s memory updates by
simply rebooting the device. In Section 4.4, we describe restricted
space-mode (REM) suspend, a special protocol that suspends the
device while allowing the verification token and the host’s memory
updates to persist.

Check-out. Once checked-in, the guest device are free to avail of
the facilities of the restricted space under the policies of the host.
For example, in Figure 1, the smart glass and watch can pair with
the smart phone via Bluetooth, while the smart phone can use the
host’s WiFi access point. When the guest checks-out, two tasks
must be accomplished:
1 Host checks guest state. The host requests the guest to send

the verification token to ensure that the device is policy-compliant.
The token may not match the value obtained from the device at
check-in if the host’s memory modifications have been maliciously
altered or if the end-user chose to consciously bypass REM-suspend
and reboot the device. It is not possible to differentiate between
these cases, and the host’s policy to deal with mismatches depends
upon the sensitivity of the restricted environment. For example, in
a federal setting, detailed device forensics may be necessary. As
previously discussed, hosts can request the verification token from
the device at any time when it is in the restricted space. Hosts use
this feature to frequently check the verification token to narrow the
timeframe of the violation.
2 Restoring guest state. To restore the state of the device, the

end-user simply performs a traditional device reboot. The host only
modifies the memory of the device, and not persistent storage. Re-
booting therefore undoes all the memory modifications performed
by the host and boots the device from an unmodified version of the
kernel in persistent storage. Alternatively, the host can restore the
state of the device’s peripherals from a checkpoint created at check-
in. The main challenge here is to ensure consistency between the
state of a peripheral and the view of the peripheral from the per-
spective of user-level apps. For example, when the 3G interface
is disabled, an app loses network connectivity. However, because
we only modify memory and do not actually reset the peripheral,
the 3G card may have accumulated packets, which the app may no
2This assumes that the host’s policy still allows communication be-
tween the host and the guest. If all of the guest’s peripherals are dis-
abled, the host must physically access the guest to visually obtain
the fresh token.

longer be able to process when the kernel state is restored. Mech-
anisms such as shadow drivers [59] can possibly enable such “hot
swaps” of kernel state and avoid a device reboot.

2.3 Threat Model
We now summarize our threat model. From the host’s perspec-

tive, the guest device’s normal world is untrusted. However, the
host trusts device manufacturers and vendors to equip the secure
world with TrustZone’s secure boot protocol. This allows the host
to establish trust in the secure world, which contains the policy-
enforcement code. It is the host’s responsibility to inspect the nor-
mal world memory snapshot to determine whether it is malicious,
contains known exploitable vulnerabilities, or allows guests to by-
pass its memory modifications. From the guest device’s perspec-
tive, the host may attempt to violate its security and privacy by
accessing and modifying normal world memory. The guest relies
on the vetting service, which it trusts, to determine the safety of the
host’s remote memory operations. Guests must keep their devices
powered-on or use REM-suspend to ensure that verification tokens
persist during their stay in the restricted space.

Out-of-Scope Threats. The guest device’s normal world may
contain zero-day vulnerabilities, such as a new buffer overflow in
the kernel. The host may not be aware of this vulnerability, but
a malicious guest may have a successful exploit that allows the
host’s policies to be bypassed. While such threats are out of scope,
the host may require the guest’s normal world to run a fortified
software stack (e.g., Samsung Knox [9] or MOCFI [23]) that im-
plements defenses for common classes of attacks. The host could
check this requirement during the inspection phase. A malicious
guest device may also launch a denial-of-service attack, which will
prevent the host from communicating with the secure world on the
guest device. Such attacks can be readily detected by the host,
which can prevent the device from checking-in. We also do not
consider physical attacks whereby an adversarial guest attempts to
bypass the host’s memory updates by modifying the contents of the
device’s memory chip using external methods.

We restrict ourselves to guest devices that use the ARM Trust-
Zone. It may still be possible for hosts to enforce usage policies on
non-TrustZone devices using other means (see Section 7). How-
ever, it is not possible to provide strong security guarantees without
trust rooted in hardware. While such “legacy” devices are still per-
vasive today, modern devices are outfitted with the TrustZone, and
data from Samsung [9] indicates that millions of ARM TrustZone
devices are already deployed. We hypothesize that in the future,
hosts will have to contend with fewer legacy guest devices than
they do today.

Finally, we only consider overt uses of guest devices in restricted
spaces. Covert uses, where a guest stealthily smuggles a device into
the restricted space without check-in and carefully avoids an elec-
tronic footprint (e.g., by shielding the device from the host’s WiFi
access points), must still be addressed with traditional physical se-
curity methods.

3. REMOTE MEMORY OPERATIONS
We now discuss how hosts can use remote memory read and

write operations to analyze and control guest devices. Our goal
is to describe the power of remote memory operations as an analy-
sis and control API. The discussion below is therefore intentionally
broader than the features that we implemented in our prototype (a
description of which appears in Section 6).



Analysis of Guest Devices. Hosts analyze memory snapshots
of a guest’s normal world kernel to determine its configuration and
scan it for kernel-level malware (also called rootkits).
1 Retrieving configuration information. When a guest device

first checks-in, the host must determine the configuration of the
device, so that it can suitably tailor further analysis of the device.
The host determines the kernel version by inspecting code pages,
thereby also allowing it to check if the guest has applied recom-
mended security patches. To ensure that the normal world is free
of malicious kernel code, the host compares a hash of each ker-
nel code page against a whitelist, e.g., of code pages in approved
Android distributions [35, 54]. Additionally, the host must ensure
that the kernel is configured to disallow well-known attack surfaces,
e.g., access to /dev/kmem and dynamic module loading. Finally,
the host identifies addresses at which functions of a peripheral’s
driver are loaded, where they are hooked into the kernel and the ad-
dresses that store memory-mapped peripheral settings. To do so, it
uses the recursive memory snapshot traversal technique described
below. The host uses this information to design the set of memory
updates that reconfigure the device to make it policy-compliant.
2 Detecting malicious data modifications. Rootkits achieve

malicious goals by modifying key kernel data structures [11, 43,
44]. The attack surface exposed by kernel data structures is vast.
For instance, a rootkit could inject a device driver in kernel mem-
ory and modify kernel function pointers to invoke methods from
this driver. Other examples of data structures that can be misused
include process lists, entropy pools used by the kernel’s random
number generator, and access control structures [11, 43].

We now describe a generic approach, developed in prior work [10,
16, 21, 28, 44], that hosts can use to detect such malicious data
modifications by analyzing the normal world’s memory snapshot.
The main idea is to recursively traverse the memory snapshot and
reconstruct a view of the kernel’s data structures, and use this view
to reason about the integrity of kernel data. We assume that the
host has access to the type declarations of the data structures used
by the guest device’s normal world kernel, e.g., the sizes, layouts,
and fields of every data structure. The host obtains this informa-
tion from trusted repositories using the kernel version, extracted as
discussed earlier.

Snapshot traversal starts from well-known entrypoints into the
system’s memory, e.g., the addresses of the entities in System.map.
When the traversal process encounters a pointer, it fetches the mem-
ory object referenced by the pointer and recurses until all objects
have been fetched. This traversal process works even if the guest
device uses address-space layout randomization (ASLR) techniques
to protect its normal world, as is done on modern Android, iOS
and Windows devices. Having reconstructed a view of kernel data
structures, the host can then determine whether they have been
maliciously modified. For example, it could check that function
pointers in the kernel point to functions defined in the kernel’s
code space [44]. Similarly, the host can check that the kernel’s
data structures satisfy invariants that typically hold in an uncom-
promised kernel [10]. Prior research projects have explored in-
depth the full power of memory snapshot analysis for rootkit de-
tection [10, 16, 21, 28, 44]. We do not further elaborate on these
rootkit detection policies because they are orthogonal to our focus.
Our own prototype implementation only showcases a simple rootkit
detection policy that ensures the integrity of the normal world’s sys-
tem call table. However, our design allows hosts to implement any
of the complex rootkit detection policies described in prior work.

Analysis of memory snapshots is a powerful approach for hosts
to obtain strong assurances about guest devices. A rootkit-infected

OS kernel can be reliably diagnosed only by externally observing
its code and data, e.g., using memory snapshots as already dis-
cussed. Prior techniques that enforce policies on guest devices
by using security-enhanced, policy-enforcing normal world kernels
(e.g., [13, 15, 27, 38, 39, 42, 48, 49, 52]) can also benefit from
our approach to establish normal world kernel integrity to hosts.
Although recent work [62] has explored cache-only normal-world
rootkits on ARM TrustZone devices (which do not leave a memory
footprint), the large majority of known rootkits operate by mod-
ifying kernel memory and can be detected via memory snapshot
analysis.

We have restricted our discussion and our prototype implemen-
tation to analyzing the normal world’s kernel memory snapshot. In
theory, it is possible for a host to also request and analyze the nor-
mal world’s user-space memory, e.g., for malicious apps that reside
in memory or on the file system. However, in practice, user-space
memory may contain sensitive information stored in apps, which
guests may be unwilling to share with hosts. For example, guests
can configure their vetting service to mark as UNSAFE host requests
to fetch user-space memory pages, as we do in our prototype (see
Section 5).

To ensure user-space security, hosts can leverage the normal world
kernel after establishing that it is benign, e.g., using the snapshot
traversal methods described above. The host can require the nor-
mal world kernel to execute a mutually-agreed-upon anti-malware
app in user-space. At check-in, the host scans the process list in the
device’s kernel memory snapshot to ensure that an anti-malware
is executing. This app can check user-space memory and the file-
system for malicious activity. At check-out, it can ensure that the
same app is still executing by comparing its process identifier to the
value obtained at check-in,3 thereby ensuring that the anti-malware
app was active for the duration of the guest’s stay.

Control over Guest Device Peripherals. Hosts control the
availability and configuration of peripherals on guest devices via
remote memory updates to the devices. After analyzing the guest’s
memory snapshot, hosts prepare a set of memory updates to con-
trol various peripherals on guest devices. These updates are used to
simply uninstall peripherals that may be misused violate the host’s
policies. Our overall approach to controlling peripherals is to up-
date peripheral device drivers. On modern OSes, each peripheral
has an interface within the kernel. This interface consists of a set of
function pointers that are normally set to point to the correspond-
ing functions within the peripheral’s device driver, which commu-
nicates with the peripheral.

We adopted two broad strategies to update device drivers:
1 Nullifying interfaces (Figure 2(a)). This approach simply sets

the function pointers in the peripheral’s interface to NULL. If the
kernel checks these pointers prior to invoking the functions, it will
simply return an error code to the application saying that the device
is not installed. This approach has the advantage of only involving
simple writes to the kernel (NULL bytes to certain addresses), which
can easily be validated as safe if the guest so wishes. However, we
found in our evaluation (Section 6) that this approach can crash the
device if the kernel expects non-NULL pointers.
2 Dummy drivers (Figure 2(b)). In this approach, the host

writes a dummy driver for the peripheral and links it with the kernel
in place of the original driver. If the dummy driver simply return a
3The security of this scheme is based on the fact that PIDs on UNIX
systems are, for all practical purposes, unique on a given system.
For example, while they can be recycled, it requires a large counter
to wrap around.



(a) NULLifying the interface (b) Installing a dummy driver
Each device driver exposes an interface and is linked to the kernel via
function pointers. Part (a) shows how to uninstall the peripheral by making
the kernel’s device interface point to NULL bytes. Part (b) shows how to
uninstall the peripheral by unlinking the original driver and instead linking
a dummy driver.

Figure 2: Uninstalling peripheral device drivers using remote
write operations to kernel memory.

suitable error code rather than communicating with the peripheral,
it has the effect of uninstalling the peripheral. The error code is usu-
ally bubbled up to and handled by user apps. Some apps may not be
programmed to handle such errors, so an alternative approach could
be for the dummy driver to return synthetic peripheral data instead
of error codes [12]. Dummy drivers also offer fine-grained periph-
eral control. For example, with 3G/4G, it may be undesirable to
simply uninstall the modem to disable voice messaging because it
also prevents the guest from making emergency calls. The host can
avoid this by designing a dummy driver that allows calls to emer-
gency numbers alone, while disabling others. In this approach, the
host introduces new driver code into the guest. From the guest’s
perspective, this code is untrusted and must be safety-checked by
the vetting service.

For the above approaches to be effective, the guest must not have
access to certain attack vectors that can be used to bypass the host’s
memory updates. The onus of ensuring these attack vectors are pre-
cluded resides with hosts, who must carefully design their policies
to analyze guest device memory snapshots. For example, the anal-
ysis must ensure that the /dev/kmem interface is not available to
guests, that dynamic module loading is disallowed, and that pe-
ripheral registers are not mapped into user-space memory using the
mmap interface. Likewise, the snapshot analysis must carefully
account for all the interfaces exported by peripheral device drivers
and aliases to the functions implemented in them to ensure that an
unlinked driver is no longer reachable from any paths in the normal
world kernel.

4. POLICY ENFORCEMENT
We now present the design of our policy enforcement mecha-

nism, which executes in the guest’s secure world. The host must
establish a channel to communicate with the guest’s secure world.
This channel must be integrity-protected from adversaries, includ-
ing the guest’s untrusted normal world. One way to set up such
a channel is to configure the secure world to exclusively control a
communications peripheral, say WiFi, and connect to the host with-
out involving the normal world. Thus, the secure world must also
execute the code necessary to support this peripheral. For peripher-
als such as WiFi, this would require several thousand lines of code
from the networking stack to run in the secure work.

Our design aims to minimize the functionality that is imple-
mented in the secure world. In our design, the normal world is
assigned all peripherals on the guest device and therefore controls
all external communication from the device. It establishes the com-
munication channel between the secure world and the host. All
messages transmitted on the channel are integrity-protected by the
message sender using cryptographic checksums. The secure world

1 The host communicates with the UI app on the guest and sends requests
to perform remote memory operations. 2 The UI app uses the vetting
service to determine the safety of the request. 3 If determined to be safe,
the UI app forwards this request to the supporting kernel module. 4 The
kernel module invokes the secure world by performing a world switch.
5 The secure world performs the requested memory operations on the

normal world memory on behalf of the host. The components in the normal
world (the UI app and kernel module) are untrusted. We rely on ARM
TrustZone’s secure boot to establish trust in the secure world.

Figure 3: Guest device setup showing components of the policy
enforcement mechanism.

itself provides support for just four key operations: mutual authen-
tication (Section 4.1), remote memory operations (Section 4.2),
verification tokens (Section 4.3), and REM-suspend (Section 4.4).

Guest devices are therefore set up as shown in Figure 3. Within
the normal world, the end-user’s interface is a user-level app (called
the UI app) that allows him to interact with the host for device
check-in and check-out. The app interacts with the components in
the secure world via a kernel module. The host sends a request
to perform remote memory operations on the guest device to the
app. The app determines the safety of this request using the vetting
service (Section 5), and forwards the request to the kernel mod-
ule, which invokes smc to world switch into secure world. The
components of the secure world then perform the request and com-
municate any return values to the host via the UI app. All messages
include a message-authentication code computed using a key es-
tablished during the mutual authentication step.

We do not place any restrictions on how the host and guest device
communicate. Thus, the host’s policy server could be hosted on the
cloud and communicate with the guest device over WiFi or 3G/4G.
Alternatively, the host could install physical scanners at a kiosk
or on the entry-way to the restricted space. Guest devices would
use Bluetooth, NFC, or USB to pair with the scanner and use it to
communicate with the host.

The core mechanisms that run in the secure world of the guest
device have two key features. They are policy-agnostic in that the
same mechanisms can be used to enforce a variety of host policies.
The narrow read/write interface is also platform-agnostic, and al-
lows the same mechanisms to work irrespective of whether the nor-
mal world runs Android, iOS or Windows. This approach shifts
complex device analysis and policy formulation tasks to the hosts.
Hosts would naturally need to have separate modules to analyze
and formulate memory updates for various normal world OSes.

4.1 Authentication
The host and guest device begin by mutually authenticating each

other (Figure 4). We assume that both the host and the guest de-



Let host’s public/private keypair be PubKeyH, PrivKeyH.
Let guest’s public/private keypair be PubKeyG, PrivKeyG.
1. Guest→ Host: PubKeyG, Certificate(PubKeyG)
2. Host→ Guest: PubKeyH, Certificate(PubKeyH)
3. Guest and host verify Certificate(PubKeyH) and Certifi-

cate(PubKeyG)
4. Host→ Guest: M , EncPrivKeyH(M ) (i.e., host signs M ),

where M is EncPubKeyG(ks, timestamp)
5. Guest verifies host’s digital signature, decrypts M to obtain

ks, and checks timestamp

Figure 4: Mutual authentication and establishment of ks.

vice have public/private key pairs with digital certificates issued
by a certifying authority. The guest device stores its private key
PrivKeyG in its secure world, thereby protecting it from the un-
trusted normal world.

Authentication is akin to SSL/TLS handshakes. The host and
the guest exchange public keys and validate the certificates of these
keys with the issuing authority. The host then computes a session
key ks, which is then transmitted to the client over a secure chan-
nel. Note that ks is only used to protect the integrity of messages
transmitted between the guest and the host and not their secrecy.
The key ks is stored in secure world memory, and is invisible to the
normal world. It persists across REM-suspends of the guest device,
but is erased from memory if the device is rebooted.

As with SSL/TLS, the ability of this protocol to resist man-in-
the-middle attacks depends on the host and guest device’s ability
to validate each other’s public keys. We assume that device ven-
dors would provision PubKeyG for individual devices and register
them with a certifying authority. Hosts register PubKeyH in much
the same manner as is done for Web services today. While there is
a case to be made that the certifying authority model has its limita-
tions in the era of the Web and smart devices [17], we note that our
use of authentication is entirely standard—to validate the host’s and
guest device’s identities and to establish a session key ks. Thus, we
think that the other parts of our policy enforcement mechanism will
work as-is with alternative authentication schemes, e.g., those that
use identity-based encryption.

4.2 Remote Reads and Writes

Remote Reads. During check-in the host typically requests the
guest to send raw memory pages from the normal world for analy-
sis. The UI app receives this request and performs a world switch
to complete the request. The world switch suspends the UI app
and transfers control to the secure world. Each request is a set (or
range) of virtual memory addresses of pages that must be sent to
the host. The host also includes a message-authentication code, a
SHA1-based HMAC in our case, with the request. The HMAC is
computed on the body of the request using the key ks negotiated
during authentication.

The secure world checks the integrity of the request using the
HMAC. This step is necessary to ensure that the request was not
maliciously modified by the untrusted components in the normal
world. The secure world then translates each virtual page address
in the request to a physical page address by consulting the page
table in the normal world kernel. In this case, the page table will
correspond to the suspended context in the normal world, i.e., that
of the UI app, into which the running kernel is also mapped. It
then creates a local copy of the contents of this physical page from
the normal world, and computes an HMAC over the page (again
using ks). The page and its HMAC are then copied to a buffer in
the normal world, from where they can be transmitted to the host

by the UI app. The host checks the HMAC and uses the page for
analysis. This process could be iterative, with the host requesting
more pages from the guest device based upon the results of the
analysis of the memory pages received up to that point.

Both the host and the secure world are isolated from the normal
world, which is untrusted. We only rely on the normal world kernel
to facilitate communication between the host and the secure world.
Moreover, both the host and the secure world use HMACs to pro-
tect the integrity of messages transmitted via the normal world. The
normal world may drop messages and cause a denial-of-service at-
tack; however, such attacks are outside our threat model (see Sec-
tion 2.3). The host can therefore reliably obtain the memory pages
of the normal world to enable the kinds of analyses described in
Section 3. Communication between the host and the secure world
is not confidential and is therefore not encrypted.4 Thus, a mali-
cious normal world kernel can potentially snoop on the requests
from the host to fetch pages and attempt to remove the infection to
avoid detection. However, this would have the desirable side-effect
of cleaning the guest device at check-in.

Remote Writes. The host reconfigures the guest by modifying
the running state of the normal world kernel via remote memory
updates. The host sends the guest a set of triples 〈vaddri, vali, old-
vali〉 together with an HMAC of this request. The normal world
conveys this message to the secure world, which verifies its in-
tegrity using the HMAC. For each virtual address vaddri (which
refers to a memory location in the virtual address space of the UI
app) in the request, the secure world ensures that the current value
at the address matches old-vali. If all the old-vali values match,
the secure world replaces their values with vali; else the entire op-
eration is aborted.

Because the normal world is frozen during the course of this
operation, the entire update is atomic with respect to the normal
world. When a remote write operation succeeds, the secure world
computes and returns a verification token to the host. If not, it re-
turns an ABORT error code denoting failure.

The host’s memory update request is aborted if the value stored
at vaddri does not match old-vali. This design feature is required
because the host’s remote read and write operations do not happen
as an atomic unit. The host remotely reads pages copied from the
normal world’s memory, analyzes them and creates remote write
request using this analysis. During this time, the normal world ker-
nel continues to execute, and may have updated the value at the
address vaddri.

If the memory update is aborted, the host repeats the operation
until it succeeds. That is, it refetches pages from the guest, an-
alyzes them, and creates a fresh update. In theory, it is possible
that the host’s memory updates will abort ad infinitum. However,
for the setting that we consider, aborts are rare in practice. This
is because our write operations modify the addresses of peripheral
device driver hooks. Operating systems typically do not change
the values of device driver hooks after they have been initialized at
system boot.

In theory, a remote memory write can also abort if the virtual
address vaddri referenced in the request is not mapped to a physical
page in memory, i.e., if the corresponding page has been swapped
out to persistent storage. In practice, however, we restrict remote
writes to kernel data pages that are resident in physical memory, as
is the case with device drivers and pages that store data structures
4The host and guest could communicate over SSL/TLS, but this
channel on the guest ends at the UI app, which runs in the normal
world.



of peripherals. Thus, we do not observe ABORTs due to a failure to
resolve vaddris.

It is possible to completely avoid such problems by designing the
both the read and write operations to complete within a single world
switch. During this time, the normal world remains frozen and
cannot change the view of memory exported to the host. The read
and write operations will therefore happen as an atomic unit from
the normal world’s perspective. However, in this case, the secure
world must have the ability to directly communicate with the host.
As previously discussed, we decided against this design because
it has the unfortunate consequence of bloating the functionality to
be implemented in the secure world. Thus, we make the practical
design tradeoff of minimizing the functionality of the secure world
while allowing the rare remote write failure to happen.

Note that our approach uses virtual addresses in remote memory
operations. In doing so, we implicitly trust the integrity of page
tables in the normal world kernel, which are used to translate these
virtual addresses to physical ones. Recent work has demonstrated
address-translation redirection (ATRA) attacks that work by mali-
ciously modifying page table entries and the page table base reg-
ister [31]. An ATRA attack effectively hides malicious code and
data modifications by creating shadow pages containing unmodi-
fied code and data, and maliciously modifying page table entries
to redirect requests from a security monitor to these shadow pages.
On ARM TrustZone devices, it is possible to defend against such
attacks by ensuring that all normal world page table updates are
shepherded by the secure world. This is implemented by modify-
ing the normal world kernel to invoke the secure world (via smc)
for page table updates, and implementing a suitable security pol-
icy within the secure world to ensure the integrity of these up-
dates [9, 24]. We have not implemented this defense in our proto-
type and doing so will require additional code in the secure world.
However, we note that such a defense is already implemented as
part of the secure world in Samsung Knox [9]. We hypothesize that
a solution that integrates our approach with Knox will therefore be
robust against ATRA attacks.

4.3 Verification Tokens
The host receives a verification token from the secure world upon

successful completion of a remote write operation that updates nor-
mal world memory. A verification token VTok[r] is the follow-
ing value: r||MemState||HMACks [r||MemState] where MemState
is 〈vaddr1, val1〉|| . . . ||〈vaddrn, valn〉, the set of vaddri modified
by the remote write, and the new values vali at these locations. The
token VTok[r] is parameterized by a random nonce r. This nonce
can either be provided by the host together with the remote write
request, or can be generated by the secure world.

Verification tokens allow the host to determine whether the guest
attempted to revert the host’s memory updates, either maliciously
or by turning off the guest device. To do so, the host obtains
a verification token VTok[rcheckin ] upon completion of check-in,
and stores this token for validation. During checkout, the host re-
quests a validation token VTok[rcheckout ] from the guest over the
same virtual memory addresses. The secure world accesses each
of these memory addresses and computes the verification token
with rcheckout as the nonce. The host can compare the verification
tokens VTok[rcheckin ] and VTok[rcheckout ] to determine whether
there were any changes to the values stored at these memory ad-
dresses.

The nonces rcheckin and rcheckout ensure the freshness of the to-
kens VTok[rcheckin ] and VTok[rcheckout ]. The use of ks to com-
pute the HMAC in the verification token ensures that the token is
only valid for a specific device and for the duration of the session,

i.e., until check-out or until the device is powered off, whichever
comes earlier. Because ks is only stored in secure world memory,
it is ephemeral and unreadable to the normal world. Any attempts
to undo the host’s memory updates performed at check-in will thus
be detected by the host.

4.4 Restricted Space Mode (REM) Suspend
If a guest device is rebooted, the host’s updates to device mem-

ory are undone and ks is erased from secure world memory, thereby
ending the session. However, it is sometimes necessary to suspend
the device in the restricted space, e.g., to conserve battery power.
We design REM-suspend to handle such cases and allow the ses-
sion key ks to persist when the device is woken.

The ARM TrustZone allows a device to be configured to route
certain interrupts to the secure world [3]. We route and handle
power-button presses and low-battery events in the secure world
by prompting the user to specify whether to REM-suspend the de-
vice. When a guest device is checked into a restricted space, we
configure the default power-down option to be REM-suspend; the
default reverts to the traditional power-down sequence when the de-
vice checks out. The user can consciously choose to bypass REM-
suspend, in which case the device shuts down the traditional way,
thus ending the session. The same happens if the device shuts down
due to other causes, e.g., power loss caused by removing the de-
vice’s battery.

When the guest device REM-suspends, the secure world check-
points normal world memory, which contains the host’s updates,
and the key ks, which are both restored when the device is wo-
ken up. The main challenge is to protect the confidentiality of ks.
The device user is untrusted, and can read the contents of persistent
storage on the device; ks must thus be stored encrypted with a key
that is not available to the device user.

To achieve this goal, we leverage a feature referenced in the
ARM TrustZone manual [3, §6.3.1], which provisions a device with
a statistically-unique one-time programmable secret key that we
will refer to as KDev. KDev is located in an on-SoC cryptographic ac-
celerator, and accessible only to secure world software [3, §6.3.1].
KDev cannot be read or changed outside the secure world, other
bus masters or the JTAG [32]. KDev allows confidential data to be
encrypted and bound to the device, and has previously been refer-
enced in other research [7, 18, 46, 53]. Note that KDev is not the
same as PrivKeyG, the device’s private key.

In REM-suspend, the secure world first checkpoints normal world
memory and CPU registers, and suspends the execution of the nor-
mal world. It sets a bit BREM to record that the device is REM-
suspended. It stores the checkpoint and BREM, together with an
HMAC of these values under ks on the device’s persistent storage.
It also stores to persistent storage the value of ks encrypted under
KDev. The untrusted device user does not know KDev, and there-
fore cannot forge the encrypted value of ks or retrieve the cleart-
ext value of ks. The HMACs under ks protect the integrity of the
normal world checkpoint and BREM. An alternative way to protect
the integrity of the normal world checkpoint and BREM is to store
them in the replay-protected memory block (RPMB), a trusted stor-
age partition available on many mobile devices that come equipped
with a embedded multi-media storage controller. The RPMB of-
fers integrity-protection for stored data, ensures data freshness by
protecting against replay attacks, and has been leveraged in recent
work [46]. However, even with this alternative the confidentiality
of ks needs to be protected by encrypting it using KDev.

When the device is woken up, the secure world uses BREM to
check if the device is REM-suspended. If so, it uses KDev to retrieve
ks, verifies the integrity of the normal world checkpoint and BREM



using their HMACs, and starts the normal world from this check-
point. The device resumes execution under the same session and
continues to produce verification tokens if requested by the host.

The original ARM TrustZone manual [3] described KDev in the
context of a hypothetical device, and KDev is not part of the core
specification of the TrustZone architecture. As such, it is not clear
how many deployed devices support KDev; for example, it is not
supported by the TrustZone-enabled board that we used for our
prototype implementation. Many emerging ARM TrustZone-based
security solutions [18, 46, 53] rely on the existence of KDev, and
it is likely that future revisions of the TrustZone architecture will
incorporate such a key. The REM-suspend protocol can be used on
any device that supports KDev or a cryptographic key with similar
properties, i.e., a hardware-provisioned key only accessible from
the secure world. Note that guest devices that do not support such
a key can still be restricted using our approach. However, the only
shortcoming is that without REM-suspend, a power-down event
will undo the memory updates requested by the host, and clear ks,
thereby terminating the session with the host.

5. GUEST PRIVACY AND SECURITY
We built a vetting service trusted by guests to determine the

safety of a host’s request. We built it as a cloud-based server, to
which the guest device forwards the host’s memory updates to-
gether with a copy of its normal world memory image (via the
UI app). We assume that the device and the vetting service have
authenticated each other as in Figure 4 or use SSL/TLS to obtain
a communication channel with end-to-end confidentiality and in-
tegrity guarantees. It may also be possible to implement vetting
within the secure world itself. However, we chose not to do so to
avoid bloating the secure world.

The vetting server checks the host’s requests against its safety
policies and returns a SAFE or UNSAFE response to the device.
The response is bound with a random nonce and an HMAC to the
original request in the standard way to prevent replay attacks. The
secure world performs the operations only if the response is SAFE.
Guests can configure the vetting server with domain-specific poli-
cies to determine safety. Our prototype vetting service, which we
built as a plugin to the Hex-Rays IDA toolkit [1], analyzes mem-
ory images and checks for the following safety policies. Although
simple and based on conservative whitelisting, in our experiments,
the policies could prove safety without raising false positives.
• Read-safety. For each request to read from address vaddri,
we return SAFE only if vaddri falls in a pre-determined range of
virtual addresses. In our prototype, acceptable address ranges only
include pages that contain kernel code and kernel data structures.
The vetting server returns UNSAFE if the read request attempts to
fetch any addresses from kernel buffers that store user app data, or
virtual address ranges that lie in app user-space memory.
• Write-safety. Our prototype currently only allows write re-
quests to NULLify peripheral interfaces or install dummy drivers
that disable peripherals. We use the following safety policy for
dummy drivers. For each function f implemented in the dummy
driver, consider its counterpart forig from the original driver, which
the vetting service obtains from the device’s memory image. We re-
turn SAFE only if the function f is identical to forig , or f ’s body
consists of a single return statement that returns a valid error code
(e.g., -ENOMEM). We define an error code as being valid for f if
and only if the same error code is returned along at least one path
in forig . The intuition behind this safety check is that f does not
modify the memory state of the device or introduce new and possi-
bly buggy code, but returns an error code that is acceptable to the

kernel and client user apps. For more complex dummy drivers that
introduce new code, the vetting service could employ a traditional
malware detector or more complex program analyses to scan this
code for safety.

We implemented the above safety policies in a 190-line Python
plugin to the IDA toolkit. In the following section, we report the
performance of the vetting server as it established the safety of var-
ious host requests to uninstall guest device peripherals. Although
we have only explored the simple safety policies discussed above,
the vetting service can implement more complex policies, and we
plan to experiment with such policies in future work. For exam-
ple, although our read-safety policy ensures that only kernel code
and data pages can be sent to the host, even these pages may com-
promise the guest’s privacy. The buffer cache and various buffers
used by the networking stack reside in kernel data pages, and may
store sensitive user information. A more nuanced read-safety pol-
icy would identify which memory addresses store such data and
mark as UNSAFE any host requests to fetch data from those ad-
dresses. Note that implementing more complex vetting policies
will increase the code-base of the vetting service, which the guest
trusts. However, this complexity does not affect the size of the TCB
running on the guest device.

6. IMPLEMENTATION AND EVALUATION
We implemented our policy enforcement mechanism on a i.MX53

Quick Start Board from Freescale as our guest device. This board
is TrustZone-enabled and has a 1GHz ARM Cortex A8 processor
with 1GB DDR3 RAM. We chose this board as the guest device
because it offers open, programmable access to the secure world.
In contrast, the vendors of most commercially-available TrustZone-
enabled devices today lock down the secure world and prevent any
modifications to it. A small part of main memory is reserved for ex-
clusive use by the secure world. On our i.MX53 board, we assigned
the secure world 256MB of memory, although it may be possible
to reduce this with future optimizations. The normal world runs
Android 2.3.4 atop Linux kernel version 2.6.35.3.

We built a bare-metal runtime environment for the secure world,
just enough to support the components shown in Figure 3. This
environment has a memory manager, and a handler to parse and
process commands received from the host via the normal world.
To implement cryptographic operations, we used components from
an off-the-shelf library called the ARM mbed TLS (v1.3.9) [2].
Excluding the cryptography library, our secure world consists of
about 3,500 lines of C code, including about 250 lines of inline as-
sembly. The secure world implements all the features described in
Section 4, except for one minor deviation in the implementation of
the REM-suspend protocol. The i.MX53 does not support KDev, so
our prototype implements REM-suspend assuming that such a key
is available and can be fetched from hardware.

Figure 5 shows the sizes of various components. We used mbed
TLS’s implementation of SHA1 and HMACs, RSA and X509 cer-
tificates. As shown in Figure 5, the files implementing these com-
ponents alone comprise only about 4,000 lines of code. In addition
to these secure world components, we built the kernel module and
the UI app (written as a native daemon) for the normal world, com-
prising 165 lines of code. We implemented a host policy server that
authenticates guest devices, and performs remote memory opera-
tions. We conducted experiments to showcase the utility of remote
reads and writes to enforce the host’s policies on the guest. The
guest and the host communicate over WiFi.



Component Name LOC
Secure World (TCB)

Memory manager 1,381
Authentication 1,285
Memory ops. & verif. tokens 305
REM-suspend 609
SHA1+HMAC 861
X509 877
RSA 2,307

Normal World
Kernel module 93
UI app 72

Figure 5: Sizes of components on the guest.

Peripheral
uninstalled

Approach used
(from Figure 2)

Device
used

Bytes added
or modified

Vetting
time (sec.)

Verification
token (bytes)

USB (webcam) NULLification i.MX53 104 - 260
USB (webcam) Dummy driver i.MX53 168 2.22 388
Camera NULLification Nexus 140 - 332
Camera Dummy driver Nexus 224 2.19 500
WiFi Dummy driver Nexus 152 5.58 356
3G (Data) Dummy driver Nexus 192 2.15 436
3G (Voice) Dummy driver Nexus 124 2.15 300
Microphone Dummy driver Nexus 164 2.27 380
Bluetooth Dummy driver Nexus 32 2.52 116

Figure 6: Peripherals uninstalled using remote write operations to a guest device.

Guest Device Analysis. To illustrate the power of remote mem-
ory read operations to perform device analysis, we wrote a simple
rootkit that infects the guest’s normal world kernel by hooking its
system call table. In particular, it replaces the entry for the close
system call to instead point to a malicious function injected into
the kernel. The malicious functionality ensures that if the process
invoking close calls it with a magic number, then the process is
elevated to root. Although simple in its operation, Petroni and
Hicks [44] show that over 95% of all rootkits that modify kernel
data operate this way.

We were able to detect this rootkit on the host by remotely read-
ing and analyzing the guest’s memory pages. We remotely read
pages containing the init, text and data sections of kernel mem-
ory. Our analyzer, a 48 line Python script, reads the addresses
in the system call table from memory, and compares these entries
with addresses in System.map. If the address is not included,
e.g., as happens if the entry for the close system call is modified,
it raises an error. For more sophisticated rootkits that modify ar-
bitrary kernel data structures, the host can use complex detection
algorithms [10, 16, 44] based on the recursive snapshot traversal
method outlined in Section 3.

For the above experiment, it took the secure world 54 seconds
to create an HMAC over the memory pages that were sent to the
host (9.2MB in total). It takes under a second to copy data from the
normal world to the secure world and vice versa. It may be possible
to accelerate the performance of the HMAC implementation using
floating point registers and hardware acceleration, but we have not
done so in our prototype.

Guest Device Control. We evaluated the host’s ability to dy-
namically reconfigure a guest device via remote memory write op-
erations. For this experiment, we attempted to disable a number
of peripherals from the guest device. However, the i.MX53 board
only supports a bare-minimum number of peripherals. As proof-
of-concept, we therefore tested the effectiveness of remote writes
on a Samsung Galaxy Nexus smart phone with a Texas Instruments
OMAP 4460 chipset. This chipset has a 1.2GHz dual-core ARM
Cortex-A9 processor with 1GB of RAM, and runs Android 4.3 atop
Linux kernel version 3.0.72. This device has a rich set of peripher-
als, but its chipset comes with TrustZone locked down, i.e., the se-
cure world is not accessible to third-party programmers. We there-
fore performed remote writes by modifying memory using a kernel
module in its (normal world) OS. Thus, while remote writes to this
device do not enjoy the security properties described in Section 4,
they allow us to evaluate the ability to uninstall a variety of periph-
erals from a running guest device.

Figure 6 shows the set of peripherals that we uninstalled, the
method used to uninstall the peripheral (from Section 3), the device
on which we performed the operation (i.MX53 or Nexus), and the
size of the write operation, i.e., the number of bytes that we had to

modify/introduce in the kernel. We were able to uninstall the USB
on the i.MX53 and the camera on the phone by NULLifying the
peripheral interface. For other peripherals, we introduced dummy
drivers designed according to the safety criterion from Section 5.
We also used dummy drivers for the USB and the camera to com-
pare the size of the write operations. In this case, the size of the
write includes both the bytes modified in the peripheral interface
and the dummy driver functions. For the 3G interface, we con-
sidered two cases: that of disabling only 3G data and that of only
disabling calls. Our experiment shows it is possible to uninstall pe-
ripherals without crashing the OS by just modifying a few hundred
bytes of memory on the running device.

For each uninstalled peripheral, Figure 6 shows the time taken
by the vetting service to determine the safety of the write opera-
tion (using the policy from Section 5). Our vetting service runs
on a quad-core Intel i5-4960 CPU running at 3.5Gz, with 16GB of
memory. Figure 6 also shows the size of the verification token gen-
erated by the secure world for the write operation. The size of the
verification token grows linearly with the size of the write opera-
tion, but is just a few hundred bytes in all cases. On the i.MX53,
it took the secure world under 6 milliseconds to generate the verifi-
cation tokens. This shows that it is practical for the host to request
the guest device to resend the verification token at periodic intervals
during its stay in the restricted space.

Installing a dummy driver disables the peripheral, but how does
it affect the user app that is using the peripheral? To answer this
question, we conducted two sets of experiments involving a number
of client user apps that leverage the peripherals shown in Figure 6.
In the first set of experiments, which we call the passive setting,
we start with a configuration where the client app is not executing,
replace the device driver of the peripheral with a dummy, and then
start the app. In the second set of experiments, called the active
setting, we replace the peripheral’s device driver with the dummy
as the client app that uses the peripheral is executing.

Figure 7 shows the results of our experiments. For both the pas-
sive and active settings, we observe that in most cases, the user app
displays a suitable error message or changes its behavior by dis-
playing a blank screen or creating an empty audio file. In some
cases, particularly in the passive setting, the app fails to start when
the driver is replaced, and the Android runtime displays an error
that it is unable to start the app.

7. RELATED WORK AND ALTERNATIVES

TrustZone Support. A number of projects have used Trust-
Zone to build novel security applications. TrustDump [58] is a
TrustZone-based mechanism to reliably acquire memory pages from
the normal world of a device (Android LiME [26] and similar ac-
quisition tools [25, 57, 60] do so too, but without the security of-
fered by TrustZone). While similar in spirit to remote reads, Trust-



USB MobileWebCam Camera ZOOM FX Retrica Candy Camera HD Camera Ultra
Passive APPERRMSG APPERRMSG ANDROIDERRMSG APPERRMSG ANDROIDERRMSG
Active APPERRMSG APPERRMSG APPERRMSG APPERRMSG APPERRMSG

Camera Camera for Android Camera MX Camera ZOOM FX HD Camera for Android HD Camera Ultra
Passive ANDROIDERRMSG APPERRMSG APPERRMSG ANDROIDERRMSG ANDROIDERRMSG
Active BLANKSCREEN APPERRMSG ANDROIDERRMSG BLANKSCREEN BLANKSCREEN

WiFi Spotify Play Store YouTube Chrome Browser Facebook
Passive LOSTCONN LOSTCONN LOSTCONN LOSTCONN LOSTCONN
Active LOSTCONN LOSTCONN LOSTCONN LOSTCONN LOSTCONN

3G (Data) Spotify Play Store YouTube Chrome Browser Facebook
Passive LOSTCONN LOSTCONN LOSTCONN LOSTCONN LOSTCONN
Active LOSTCONN LOSTCONN LOSTCONN LOSTCONN LOSTCONN

3G (Voice) Default call application
Passive APPERRMSG: Unable to place a call
Active APPERRMSG: Unable to place a call

Microphone Audio Recorder Easy Voice Recorder Smart Voice Recorder Sound and Voice Recorder Voice Recorder
Passive APPERRMSG APPERRMSG APPERRMSG APPERRMSG APPERRMSG
Active EMPTYFILE EMPTYFILE EMPTYFILE EMPTYFILE EMPTYFILE

We use Passive to denote experiments in which the user app was not running when the peripheral’s driver was replaced with a dummy,
and the app was started after this replacement. We use Active to denote experiments in which the peripheral’s driver was replaced with
a dummy even as the client app was executing. 1 APPERRMSG denotes the situation where the user app starts normally, but an error
message box is displayed within the app after it starts up; 2 BLANKSCREEN denotes a situation where the user app displayed a blank
screen; 3 LOSTCONN denotes a situation where the user app loses network connection; 4 EMPTYFILE denotes a situation where no
error message is displayed, but the sound file that is created is empty; 5 ANDROIDERRMSG denotes the situation where the user app
fails to start (in the passive setting) or a running app crashes (in the active setting), and the Android runtime system displays an error.

Figure 7: Results of robustness experiments for user apps.

Dump’s focus is to be an alternative to virtualized memory intro-
spection solutions for malware detection. Unlike our work, Trust-
Dump is not concerned with restricted spaces, authenticating the
host, or remotely configuring guest devices.

Samsung Knox [9] and SPROBES [24] leverage TrustZone to
protect the normal world in real-time from kernel-level rootkits.
These projects harden the normal world kernel by making it per-
form a world switch when it attempts to perform certain sensitive
operations to kernel data. A reference monitor in the secure world
checks these operations, thereby preventing rootkits. In our work,
remote reads allow the host to detect infected devices, but we do not
attempt to provide real-time protection from malware. Our work
can also leverage Knox to enhance the security of the normal world
(Section 2.3).

While we have leveraged TrustZone’s ability to isolate secure
world memory from the normal world, TrustZone supports addi-
tional features that can be used to explore alternative designs. One
such feature is TrustZone’s support for peripheral reassignment be-
tween the normal and secure worlds. Using this feature, a host
could require all of a guest device’s restricted peripherals to the
trusted secure world during check-in. The secure world implements
the equivalent of dummy drivers that control and therefore restrict
peripherals.

The above design is a viable alternative that we plan to explore
in future work. In our current design, we chose to explore the ben-
efits and limits of remote memory operations because it allowed
us to satisfy our goal of minimizing the size of the TCB on guest
devices. The alternative design described above would require ad-
ditional driver code to execute in the secure world. That said, even
this design alternative can leverage some of the ideas from our cur-
rent work. For example, peripherals assigned to the secure world at
check-in can be reassigned to the normal world via a device reboot.
A protocol based on REM-suspend can be used to save peripheral
assignment state upon power-down events, and restore the periph-
eral assignment upon power-up in guest devices that support KDev.

TrustZone has also been used to improve the security of user ap-
plications. Microsoft’s TLR [53] and Nokia’s ObC [33] use Trust-

Zone to provide a secure execution environment for user apps, even
in the presence of a compromised kernel. Other applications in-
clude ensuring trustworthy sensor readings from peripherals [36],
securing mobile payments (e.g., Apple Pay and Samsung Pay), mo-
bile data billing [47], attesting mobile advertisements [34], and im-
plementing the TPM-2.0 specification in firmware [46].

Enterprise Security. With the growing “bring your own device”
(BYOD) trend, a number of research projects and enterprise MDM
products (e.g., [13, 38, 52]) have developed security solutions that
enable multiple persona (e.g., [6, 15, 27]) or enforce mandatory
access control policies on smart devices (e.g., [15, 27, 55, 61]).
Prior work has also explored context-based access control and tech-
niques for restricted space objects to push usage policies onto guest
devices (e.g., [19, 39, 41, 42, 48, 49]).

These projects tend to use one of two techniques. One is to re-
quire guest devices to run a software stack enhanced with a policy
enforcement mechanism. For instance, ASM [27] introduces a set
of security hooks in Android, which consult a security policy (in-
stalled as an app) that can be used to create multiple persona on a
device. Each persona is customized with a view of apps and pe-
ripherals that it can use. Another approach is to require virtualized
guest devices [4, 6, 20, 22]. In this approach, a trusted hypervisor
on the guest device enforces isolation between virtual machines im-
plementing different persona.

The main benefit of these techniques over our work is the greater
app-level control that they provide. For example, they can be used
to selectively block sensitive audio and blur faces by directly ap-
plying policies to the corresponding user apps [30, 49]. These
techniques are able to do so because they have a level of seman-
tic visibility into app-level behavior that is difficult to achieve at
the level of raw memory operations.

On the other hand, our approach enjoys two main benefits over
prior work. First, our approach simplifies the design of the trusted
policy-enforcing code that runs on guest devices to a TCB of just
a few thousand lines of code. In contrast, security-enhanced OSes
and virtualized solutions required hundreds of thousands of lines of



trusted policy-enforcement code to execute on guest devices. Prior
research has investigated ways to reduce the TCB, e.g., by creating
small hypervisors [56]. However, the extent to which such work
on small hypervisors applies to smart devices is unclear, given that
any such hypervisor must support a variety of different virtualiza-
tion modes, guest quirks, and hardware features on a diverse set of
personal devices.

The second benefit of our approach is that it provides security
guarantees that are rooted in trusted hardware. Prior projects have
generally trusted guest devices to correctly implement the host’s
policies. This trust can easily be violated by a guest running a
maliciously-modified OS or hypervisor. It is also not possible for
a host to obtain guarantees that the policy was enforced for the
duration of the guest’s stay in the restricted space. We leverage the
TrustZone to offer such guarantees using verification tokens and
REM-suspend.

Other Hardware Interfaces. Hardware interfaces for remote
memory operations were originally investigated for the server world
to perform remote DMA as a means to bypass the performance
overheads of the TCP/IP stack [8, 29]. This work has since been
repurposed to perform kernel malware detection [45] and remote
repair [14]. These systems use a PCI-based co-processor on guests
via which the host can remotely transfer and modify memory pages
on the guest.

On personal devices, the closest equivalent to such a hardware
interface is the IEEE 1394 (Firewire), which is available on some
laptops. However, it is not currently available on smaller form-
factor devices. Another possibility is to use the JTAG interface [32],
which allows read/write access to memory and CPU registers via a
few dedicated pins on the chipset. However, the JTAG is primar-
ily used for debugging and is not easily accessible on consumer
devices. One drawback of repurposing these hardware interfaces is
that they cannot authenticate the credentials of the host that initiates
the memory operation. Moreover, to use these hardware interfaces
on guest devices, the host needs physical access to plug into them.
Thus, these interfaces are best used when the guest can physically
authenticate the host and trust it to be benign.

8. CONCLUDING REMARKS
This paper develops mechanisms that allow hosts to analyze and

regulate ARM TrustZone-based guest devices using remote mem-
ory operations. These mechanisms can be implemented with only a
small amount of trusted code running on guest devices. The use of
the TrustZone allows our approach to provide strong guarantees of
guest policy-compliance to hosts. Our vetting service allows guests
to identify conflicts between their privacy goals and the hosts’ us-
age policies.

While this paper demonstrates technical feasibility of our ap-
proach, questions about its adoptability in real-world settings re-
main to be answered. For example, we can imagine our solution to
be readily applicable in settings such as federal or corporate offices
and examination halls, where restricted spaces are clearly demar-
cated and the expectations on guest device usage are clearly out-
lined. Will it be equally palatable in less stringent settings, such
as social gatherings, malls or restaurants? A meaningful answer to
this question will require a study of issues such as user-perception
and willingness to allow their devices to be remotely analyzed and
controlled by hosts. We hope to investigate these and other issues
in follow-on research.
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