
The Silence of the LANs:
Efficient Leakage Resilience for IPsec VPNs

Ahmad-Reza Sadeghi1,2,3, Steffen Schulz1,2,4, and Vijay Varadharajan4

1 System Security Lab, Technische Universität Darmstadt
2 System Security Lab, Ruhr-University Bochum

3 Fraunhofer SIT, Darmstadt
4 Information and Network Security Research Lab, Macquarie University

Abstract. Virtual Private Networks (VPNs) are increasingly used to
build logically isolated networks. However, existing VPN designs and
deployments neglect the problem of traffic analysis and covert channels.
Hence, there are many ways to infer information from VPN traffic with-
out decrypting it. Many proposals were made to mitigate network covert
channels, but previous works remained largely theoretical or resulted in
prohibitively high padding overhead and performance penalties.
In this work, we (1) analyse the impact of covert channels in IPsec,
(2) present several improved and novel approaches for covert channel mit-
igation in IPsec, (3) propose and implement a system for dynamic perfor-
mance trade-offs, and (4) implement our design in the Linux IPsec stack
and evaluate its performance for different types of traffic and mitigation
policies. At only 24% overhead, our prototype enforces tight information-
theoretic bounds on all information leakage.

Keywords: IPsec, VPNs, covert channels, performance trade-offs

1 Introduction

Virtual Private Networks (VPNs) are popular means for enterprises and organi-
zations to securely connect their network sites over the Internet. Their security
is implemented and enforced by VPN gateways that tunnel the transferred data
in secure channels, thus logically connecting the remote sites in an isolated net-
work. Abstracted this way, VPNs are increasingly used in scenarios that secure
channels were not designed for: to logically isolate networks, providing “networks
as a service” in virtualized environments like Clouds, Trusted Virtual Domains,
or the Future Internet [1–3]. What is not considered in these scenarios is the
long known problem of covert channels.

Covert channels violate the system security policy by using channels “not
intended for information transfer at all” [4, 5]. While there is a large body of
research on covert channels, few works have considered the practical implemen-
tation and performance impact of comprehensive covert channel mitigation in
modern networks. We believe such work is important for a number of reasons,
especially regarding VPNs and network virtualization:

(1) Insider Threat: In contrast to end-to-end secure channels, where the end-
points are implicitly trusted, VPNs are also used for logical network isolation
and perimeter security enforcement. In this context, the members of a VPN are
often not fully trusted, but instead the trust is reduced to central policy enforce-
ment points, the VPN gateways, which should prevent undesired information
flows. However, malicious insiders in the LAN may leak information through the
VPN gateways using covert channels, thus circumventing the security policy.
Examples of such insiders can be actual humans or stealth malware, engaging
in industrial espionage, leaking realtime financial transaction data, or disclosing
large amounts of data from physically secured institutions (e.g., to Wikileaks).

(2) Traffic Analysis: By analysing traffic patterns and meta-data, it is also
possible to infer information about transferred data without assuming a ma-
licious insider [6, 7]. Such “passive” Man-in-the-Middle (MITM) scenarios are
becoming more prevalent with network virtualization, allowing co-located, sup-
posedly isolated systems to analyse each other [8]. To mitigate such attacks,
a common approach is to consider the maximum possible information leakage
by a colluding malicious insider. In limiting this maximum information leakage,
covert channel analysis and mitigation thus also affects traffic analysis [9].

(3) Combination with Detection: Although application-layer firewalls and in-
trusion detection systems are widely deployed, carefully designed covert channels
remain hard to detect [10,11]. In these systems, the adversary chooses a weaker
signal and mimics the patterns of regular channel usage. Covert channel mitiga-
tion can be useful here to induce noise, forcing the adversary to use a stronger
signal and thus facilitate detection. We expect the combination of covert chan-
nel mitigation and detection to significantly reduce the performance penalty of
covert channel mitigation by allowing less intrusive pattern enforcement.

Contributions. This paper provides for the first time an explicit analysis of
covert channels in IPSec based VPNs and a comprehensive set of techniques and
mechanisms to mitigate them. We identify and categorize the different types
of covert channels and determine their capacity. We develop a framework for
mitigation of these covert channels and describe mechanisms and techniques for
high-performance covert channel mitigation. In particular, we propose an algo-
rithm for on-demand adjustment of traffic pattern enforcement that increases
peak network performance while also reducing overhead during reduced usage.
We present a practical instantiation of this framework for the Linux IPSec stack
and analyse its performance for different kinds of traffic. In contrast to previ-
ous works, which achieve throughput rates in the range of modem speed [9, 12]
and taunt the performance impact of proposed mitigation mechanisms [13], our
prototype achieves 169 Mbit/s in a 200 Mbit/s VPN link at only 24% overhead.

Outline. After defining the problem of VPN covert channels in Section 2, we
discuss efficient covert channel mitigation and performance trade-offs in Sec-
tion 3. An implementation for the Linux IPsec stack is presented and evaluated
in Section 4. We discuss related work in Section 5 and conclude in Section 6.

2 Problem Setting and Adversary Model

In the following we define the problem of covert channels in VPNs. Note that
our definition differs from previous, less explicit considerations, which consider
communication between legitimate VPN participants and are better described
as steganographic channels [14–16]. Although we limit ourselves to VPNs in
state-of-the-art IPsec configuration [17], most of our results can be generalized.

2.1 System Model and Terminology

As illustrated in Figure 1(a), we consider a VPN comprised of two or more
Local Area Networks (LANs) that are inter-connected over an insecure Wide
Area Network (WAN). In our scenario, the security goal of the VPN is not only
to provide a secure channel (confidentiality, authenticity, integrity) but also to
confine communication of LAN hosts to the VPN, i.e., to isolate the protected
from the unprotected domain. VPNs are increasingly used for such logical isola-
tion, to create secure virtualized or overlay networks, or simply enforce perime-
ter security in large companies [1–3]. This de-facto security goal of isolating the
protected from the unprotected domain, and its efficient implementation, is the
main focus of this work.

For this purpose, we distinguish legitimate channels that transfer and protect
user data according to the VPN security policy from covert channels that can
be used to circumvent this policy. Covert channels exist because the legitimate
channel acts as a shared resource between the protected and unprotected domain,
exhibiting certain characteristics that can be manipulated and measured by
different parties. We denote channels from the protected to unprotected domain
and vice versa as outbound and inbound covert channels, respectively.

We measure the security of our system using the Shannon capacity of the
covert channels, i.e., the information theoretic limit on the amount of information
that can be transferred through them [6]. The covert channel capacity is given
in bits per legitimate channel packet (bpp) or, where applicable, in bits per
second (bps). The capacity of each covert channel type is denoted as Ctype. The
capacities are classified as maximum (m) vs. remaining (r) covert channel rate
for inbound (in) vs. outbound (out) covert channels. For example, the maximum
capacity of the outbound covert channel based on packet size is denoted as
CPktSize

m,out , or as CPktSize
r,out after countermeasures have been applied. The remaining

aggregated inbound and outbound covert channel rates are denoted as Ĉr,in and

Ĉr,out, respectively.

2.2 Adversary Model

The adversary controls one or more compromised hosts in the LAN sites as
well as an active MITM in the WAN. We refer to the LAN hosts controlled by
the adversary as (malicious) insiders, regardless of whether they are controlled
by actual humans or stealth malware. The adversary’s goal is to establish a

MITM

LAN

LAN

Insider

Insider

WAN/VPN

LANVPN-Gateway

WAN/VPN
WAN/VPN

Unprotected Domain Protected DomainProtected Domain

VPN-Gateway

VPN-Gateway

outbound covert channel
inbound covert channel

(a) A VPN with three LAN sites. The adversary
aims to exchange information between the MITM
and malicious insiders using covert channels.

Class Type Capacity Cm in bpp
Outbound Inbound

storage
ECN 2 1
DS 6 6
Flags 1 -
PktSize 8.4 -

timing/ IPD ≥ 1 ≥ 1
channel- PktOrd - > 6.58
logic PktDrop - 1

PMTUD - 0.13
amplify DestIP log2(N) -

(b) Inbound and outbound covert
channels capacities for an IPsec
VPN with N + 1 endpoints.

Fig. 1. Problem scenario: A complex VPN with multiple identified covert channels.

communication channel between the MITM and one or more possibly colluding
malicious insiders, as illustrated in Figure 1(a). This would allow the adversary
to send instructions to the insiders or to leak information from the protected to
the unprotected domain, breaching the perimeter security of the VPN. For this
purpose, we assume a state-of-the-art IPsec configuration with authenticated
encryption using ESP in tunnel mode [17], and the cryptographic primitives
and keys of the VPN are securely enforced by the VPN gateways. However, the
legitimate VPN traffic can be manipulated by malicious parties in the protected
and unprotected domains to exchange information that “survives” these packet
transformation enforced by the VPN gateways.

Unfortunately, no systematic approach is known for identifying network covert
channels apart from exhaustive search, and the categorization as storage or tim-
ing channels can be ambiguous [5]. We used a comprehensive analysis on the
IPsec specification and related work on covert channels in network protocols
(cf. Section 5), as well as source code analysis and testing5 to identify poten-
tial covert channels in IPsec VPNs. IP-Tunneling and authenticated encryption
by the IPsec gateways greatly simplified this problem, as none of the protocol
headers that the MITM can read or modify (i.e., the outer IP and Encapsulated
Security Payload (ESP) header) are directly available to the LAN hosts.

In total, we have identified only eight covert channels. As shown in Fig-
ure 1(b), the available covert channels comprise three storage-based channels
based on fields in the outer IP header (ECN, DS, Flags) and five timing-based
covert channels that manipulate Inter-Packet Delay (IPD), packet order (Pk-
tOrd), WAN capacity (PktDrop), and Path MTU Discovery (PMTUD). The
remaining characteristic of the respective destination LAN of a packet (DestIP)
does not constitute a covert channel in its own right but can act as amplifica-
tion of other covert channels. A detailed discussion of the covert channels we
identified in IPsec VPNs is available in the full version [18].

5 Specifically, we examined the IPsec implementations of the current Linux 2.6.32 to
2.6.38 and OpenBSD 4.7 to 4.8 releases.

We emphasize that some of these channels are implementation dependant,
e.g., the treatment of ECN header flags or PMTUD at the VPN gateway, while
others (IPD, PktSize, PktOrd) are generic problems faced by all packet-oriented
channels. While we are confident to have identified all covert channels, we cannot
account for all possible implementations and interpretations of IPsec. Hence in
this paper we limit our considerations to the identified attack vectors.

3 Covert Channel-Resilient IPsec

In this section we present the design of a high-performance covert channel-
resilient IPsec, i.e., a system with low, known covert channel capacity and high
throughput. We present novel or improved techniques for efficient covert chan-
nel mitigation in Section 3.1. Section 3.2 considers the performance of different
mitigation strategies, introducing on-demand performance trade-offs. Finally, we
derive the remaining aggregated inbound and outbound covert channel capacities
of the system in Section 3.3.

3.1 Covert Channel Mitigation

In the following we present and improve efficient mitigation mechanisms for each
of the covert channels identified in Section 2.2.

Packet Size (PktSize). The packet size characteristic is usually addressed by
padding packets to maximum size or assuming them to be of constant size [6].
However, as the product throughput = pkt size · pkt rate is constant for a given
link, enforcement of small packet sizes can reduce the load per packet signifi-
cantly, allowing higher packet rates and more simultaneous connections.

It was previously proposed to allow multiple alternate packet sizes [19], but
then the ratio between packets of different sizes creates another covert channel.
Mode Security [20] was proposed to manage the switching between different
enforcement modes and audit such a remaining covert channel. However, real
network traffic is often mixed, i.e., packet streams using different packet sizes are
often transmitted at the same time. Moreover, the enforcement of small packet
sizes is problematic for IP protocols: With Path MTU Discovery (PMTUD), the
connection endpoints quickly detect and adapt to the maximum allowed packet
size of an IP route, but only slowly recover to a larger MTU using a conservative
trial-and-error approach. This active adaption also makes it harder for the VPN
gateways to estimate the actual demand for larger packets.

We address these problems by combining packet padding with transparent
fragmentation and multiplexing, mechanisms that were previously only consid-
ered for traffic obfuscation [21]. Packet fragmentation within IPsec allows us to
efficiently and transparently enforce various packet sizes at the gateway without
influencing the channel’s Path MTU (PMTU). This is different from regular IP
fragmentation before or after IPsec processing, which results in visible fragments
either on the LAN or WAN sides that could again be used as covert channels.

On the other hand, packet multiplexing can be used to reduce packet padding
overhead, and in general to reduce the IPsec encapsulation overhead (ESP, IP).

When working with mixed traffic, the sender gateway first fragments large
packets and then attempts to multiplex small packets or fragments into the
padding area of previously processed packets that are still in the packet buffer. At
the receiving gateway, packets are first de-multiplexed and then defragmented.

Inter-Packet Delay (IPD). The covert channel based on IPDs and its mit-
igation were subject of several previous works (e.g., [6, 10, 22–24]). In theory,
it is easily eliminated by enforcing a fixed IPD at the VPN gateway, inserting
dummy packets when no real packets are available [24]. However, due to the
very high packet rates in modern networks, even short periods of non-optimal
enforcement of IPDs (and thus packet rate) at the VPN gateway quickly re-
sult in packet loss due to packet buffer overflows or network congestion. This
is particularly critical for Internet protocols, where packet loss triggers conges-
tion avoidance, degrading overall throughput independently of the packet rate
enforced by the VPN gateways. The effect can be partly mitigated with large
packet buffers; however, large buffers can also create high packet delays, de-
grading network responsiveness [25]. Also, the optimal enforced packet rate can
be very large in modern networks, creating a high computational overhead for
the time-synchronous packet processing. For example, to saturate a 100 Mbit/s
link with 200 byte packets, an average IPD of 500 byte

100·106 byte/s = 2µs should be

enforced. Finally, one must consider inaccuracies in the timing enforcement that
appear at high system loads [23, 26]: Since high activity on the LAN interface
can influence the system load of the gateway, a LAN host may induce inaccura-
cies in the IPD enforcement of the gateway that can again be measured by the
Man-in-the-Middle (MITM), yielding CIPD′

r = 0.16 bps [9].
We have implemented the traffic reshaping inside the Linux kernel, using the

modern High-Precision Event Timer (HPET) infrastructure for packet schedul-
ing with nanosecond resolution. This substantially reduces the overhead of con-
text switching and buffering, allowing an IPDs in the range of microseconds
rather than several milliseconds (e.g., [9, 12]) and noticeably improves through-
put and responsiveness. To maintain good system performance at even higher
packet rates we use packet bursts, i.e., we translate very low IPDs into bursts of
multiple packets at correspondingly larger delays. For optimal packet buffering
our system adjusts the buffer size depending on the currently enforced IPD. This
prevents long delays at low rates while allowing generous buffering at high rates.

To address the problem of timing inaccuracies, we use the high resolution of
the HPET timers to monitor and actively compensate for timing inaccuracies
in randomized IPD enforcement. Specifically, we exploit the fact that determin-
ing timing inaccuracies during randomized IPD enforcement is harder for the
remote MITM than for the local system. The adversary always requires signif-
icantly more measurements to first detect the variance of the random IPD en-
forcement and then the inaccuracy in the enforced variance [23], while the VPN
gateway itself can directly compare the intended versus actual packet sending

time. Hence, the gateway can approximate the current inaccuracy faster, requir-
ing less measurement samples. Given this knowledge of unintended change in
IPD variance, we let the VPN gateways compensate for the enforcement inac-
curacy by dynamically compensating the variance of the IPD enforcement. This
prevents the adversary from ever measuring the actual inaccuracy, eliminating
the timing channel (CIPD

r = 0). However, further evaluation with specialized
network hardware is needed to confirm (the non-existance of) this effect.

Packet Order (PktOrd). Sequence numbers in protocol headers have been
used before to create a covert or steganographic channel based on packet re-
ordering [16, 27]. However, in contrast to previous works we can eliminate this
channel in the VPN scenario using the IPsec anti-replay window and secure
sequence numbers in Encapsulated Security Payload (ESP).

IPsec implementations maintain a bitmap of the last r seen and unseen se-
quence numbers so that replay attacks within the window size can be detected
and older packets discarded. To eliminate communication through packet re-
ordering, we propose to implement this window as a packet buffer, where new
packets are inserted sorted by their ESP sequence number and leave the buffer as
the window advances. As a result, all packets forwarded from the VPN gateway
into the LAN are ordered and the covert channel is eliminated: CPktOrd

r,in = 0.

Unfortunately, the approach is problematic for low packet rates, since the
window may advance slowly and individual packets are not forwarded fast enough.
We solve this issue by establishing a certain maximum IPD (e.g., 50ms) at the
sender and assure that at least r dummy packets are sent by a gateway before
a connection is stopped. These constraints are necessary in any case to assure
network responsiveness and hide short periods of inactivity.

Packet Drops (PktDrop). In general, it appears impossible to eliminate
covert channels based on packet dropping in the WAN. Mitigation with error
correction codes is expensive and easily defeated by dropping even more pack-
ets. Instead, we propose to mitigate the channel by injecting noise, by increasing
packet loss proportionally to the actual packet loss.

Specifically, the gateways maintain a buffer p of size d. At the sender gateway,
packets are buffered in p and their order is randomized before encapsulation. At
the receiver gateway, the packets are again collected in p and the number of
dropped packets i is determined based on their ESP sequence number. If i > 0,
the gateway drops another j packets from the current buffer, such that i+j = 2x,
where 1 < x ≤ log2(d), and forwards the remaining packets after randomizing
their order once again. As a result, the MITM can choose the overall number of
packets to be dropped but cannot select which packets to drop, resulting in a
symbol space of log2(d)+1 packets per window d. The remaining covert channel

capacity is then CPktDrop
r,in = 1

d · log2(log2(d) + 1) bpp.

Similar to the above packet re-ordering mitigation, the inbound packet buffer
at the receiving gateway is problematic for very low traffic rates and requires

similar restrictions to assure a steady stream of (dummy) packets. The imple-
mentation can be simplified at the cost of a slightly higher covert channel rate
by removing the randomization buffer at the sending gateway and re-using the
anti-replay window for dropping the additional j packets.

Path MTU Discovery (PMTUD). To our knowledge, no previous work
considered the possibility of covert channels based on PMTUD, in particular
with respect to VPNs. Since PMTUD is critical for good network performance,
we do not disable it but instead mitigate the channel by enforcing limits on the
rate and values that are propagated by the VPN gateways into the LAN.

In particular, we limit the possible PMTU values by maintaining a list of
common PMTU values and only propagate the respective next lower PMTU to
the LAN. Such common PMTUs values can be established on site or can be
derived from previously proposed performance optimizations for PMTUD [28].
The rate limitation of PMTU propagation is problematic in general, as a lack of
MTU adaption will lead to packet loss. However, in our case the current PMTU is
always known to the trusted VPN gateways, which can then use the transparent
fragmentation feature from PktSize enforcement to translate between LAN and
WAN packet sizes. Considering the 10 most common PMTUs and an average
interval of, e.g., 2 minutes [28] between propagation of PMTU changes, our
measures reduce the covert channel rate to less than CPMTUD

r,in = 0.02 bps.

Storage-based Channels (ECN, DS, Flags). The storage-based covert
channels exploiting the Explicit Congestion Notification (ECN), Differentiated
Services (DS) and IPv4 Flags handling of IP/IPsec are easily eliminated by re-
setting the respective fields of the outer IP header at encapsulation and ignoring
them during decapsulation. Normalizing the IPv4 Flags field is unproblematic
as en-route fragmentation is deprecated in IP. However, eliminating the ECN
and DS covert channels disables these performance optimizations in the WAN.

3.2 Mitigation Policies and Performance

In this section, we discuss different covert channel mitigation policies that can
be enforced using the techniques described in Section 3.1. We start by discussing
the problems of previously proposed Fully Padded Channel and Mode Security
approaches, and then propose a new system for on-demand, dynamic adaption
of the enforced channel characteristics. We focus on the IPD and PktSize en-
forcement mechanisms, since they have by far the highest performance impact.

Fully Padded Channel. When applied without any performance trade-offs,
the mitigation mechanisms described in Section 3.1 result in a fully padded chan-
nel : The WAN packet stream is constantly padded to the maximum desired
throughput rate and packet size. However, this mitigation policy has several
disadvantages: (1) The system must compromise between high throughput and

responsiveness, likely opting to enforce maximum packet sizes to reduce frag-
mentation overhead; (2) the maximum (desired) network load is constantly en-
forced in both directions, reducing overall performance due to network conges-
tion; (3) TCP/IP congestion avoidance algorithms do not work, since any rate
throttling is compensated by additional channel padding. In case of temporary
reductions in WAN capacity, this leads to repeated packet loss and throttling,
until the network is not usable anymore. Hence, the fully padded channel policy
is unfit for practical use, except in private/dedicated physical infrastructures.

Mode Security. Mode Security is a generic scheme for trading covert channel-
resilience against system performance. This is done by organizing system oper-
ation in a set of alternative operation modes that can be switched at a certain
rate [20]. The current operation mode is then selected such that performance
penalty and/or overhead produced by the covert channel mitigation is mini-
mized. Since the operation mode is typically adapted depending on the actually
required usage, the adaption itself may be exploited as a covert channel. In this
case, the covert channel capacity can be given as CModeSec

out = R · log2(M), where
M is the number of operation modes and R is the maximum rate at which the
operation mode can be changed (transition rate).

Mode Security was used to estimate the theoretic network overhead and
covert channel capacity [6]. However, this assumes an algorithm that can deter-
mine the optimal operation mode to switch to. To the best of our knowledge, no
practical implementation and evaluation of this mechanism exists; in particular,
no strategies have been proposed to automatically determine and apply the op-
timal operation mode in the face of often unpredictable traffic, with exponential
rate increases and congestion avoidance algorithms. In fact, our attempts to di-
rectly apply Mode Security to on-demand covert channel mitigation resulted in
poor performance, with TCP throughput benchmarks becoming stuck at very
low packet rates or completely losing the connection.

On-Demand Mode Security Management. An algorithm for on-demand
adaptation in network covert channel mitigation must accommodate multiple
conflicting constraints. It must quickly react to changes in channel usage to
elude congestion avoidance algorithms, yet the amount of possible mode changes
should be minimal. Moreover, the employed packet queue should buffer packet
bursts at various average packet rates, yet react quickly when the current average
rate is overused by dropping individual packets. We address these conflicts using
the following regulation mechanisms:

Token Bucket Filter. We generalize the transition rate R of the Mode Security
paradigm to a token bucket filter [29]. Tokens are generated at a fixed rate R
and each mode transition consumes a token from the token bucket. This allows
us to “save up” unused mode transitions in form of tokens and consume them
on demand, at temporarily higher rates than R. The amount of cached tokens is
limited by the token bucket size and the average transition rate R̄ is bound by the

Algorithm 1: Packet rate handler.

1 while true do
2 (rLAN, rfrag, rmplex)← get-stats()
3 ropt ← rLAN + rfrag − rmplex

4 ravg ← 0.1 · ropt + 0.9 · ravg
5 case ropt > 0.9 · rnow
6 ramp ← (rmax − ropt)/tnum
7 rnew ← ropt +

1
2
rquant + ramp

8 case rnow > 1.1 · ravg ∧ tnum > tdec
9 rnew ← ravg

10 rnew ← quantatize(rnew, rquant)
11 sleep(ival)

(a) Simplified pseudo-code for dynamic
packet rate adjustment in steps of rquant.

Type Max. Capacity Rem. Capacity
Cm in bpp Cr in bps

Outbound Inbound Outbound Inbound
ECN 2 1 0 0
DS 6 6 0 0

Flags 1 - 0 -
PktSize 8.4 - 0 -

IPD ≥ 1 ≥ 1 0 0
PktOrd - > 6.58 - 0

PktDrop - 1 - ≤ 5
PMTUD - 0.13 - 0.02
DestIP log2(N) - log2(N) -

Overall > 18.4 > 15.64 0 ≤ 5.02

(b) Maximum and remaining covert channel
capacities for VPNs with N + 1 endpoints.

Fig. 2. Design of high-performance covert channel mitigation.

rate R at which new tokens are generated. Thus, the token bucket filter allows us
to immediately react to changes in network usage, before connection throttling
kicks in or network delays become noticeable. Further, the token bucket status
may influence and optimize decisions on the operation mode to be enforced.

Aggressive Increase. Network throughput is scaled mainly based on its packet
rate r, with typically exponential rate increase until the first network bottleneck
is detected. While the optimum WAN packet rate ropt is easily calculated based
on the currently observed LAN rate rLAN, fragmented and multiplexed pack-
ets (rfrag, rmplex), the derivation of the next enforced packet rate rnew is more
involved, as shown in Figure 2(a).

To adequately consider exponential rate increases without requiring too fre-
quent changes to rnow, our rate increase phase is designed to constantly overes-
timate the current optimal packet rate ropt, by increasing rnow as soon as it is
approached by ropt (cf. Figure 2(a), Line 5). Combined with buffering and short
monitoring intervals ival ≈ 200ms, this approach successfully eludes congestion
avoidance algorithms and prevents undesired throughput throttling. However,
the overestimation should also not be too large, as it directly affects the padding
overhead and can also reduce the inbound traffic rate due to the imposed network
load. Moreover, all stored tokens may be used up before a reasonably high packet
rate rnow ≈ rmax is reached, resulting in bad performance until new tokens are
generated. Hence we also include an amplification mechanism that increases the
rate ropt in larger steps ramp, depending on the currently available amount of
tokens rnum (Line 6f.). This prevents the system from becoming “stuck” at low
packet rates, at the cost of potentially high padding overhead in cases where
such amplification was not required.

Conservative Slowdown. When putting the WAN channel in a state of decreased
performance, we must take care that sufficient transition tokens are available to
adequately adapt to a possible subsequent usage increase as outlined above. In
contrast to the aggressive rate increase policy, any reduction in the enforced

traffic rate is therefore delayed until a certain amount of tokens tdec have been
collected in the token bucket. Moreover, to reduce the impact of short-term
fluctuations in the packet rate, the rate is only reduced based on the longer-time
average traffic rate ravg, as shown in Figure 2(a) Line 8f. Overall, the described
approach saves up tokens in the “slowdown” phases while aggressively spending
them in the “increase” phase, creating an equilibrium around tdec and ravg.

Dynamic Queue Size with RED. When dynamically adjusting the overall through-
put of the WAN channel, we must also adjust the size of the packet queue ac-
cordingly. At small rates, a lot of packets may build up in a large queue, leading
to large delays and timeouts. Similarly, a small queue is not effective at support-
ing a channel with high packet rates. Hence, we dynamically adapt the queue
size based on the desired maximum buffering delay and the currently enforced
packet rate. Eventually, the WAN channel or its enforcement policy may also
reach a point where further rate increases are not possible. In this case, the end-
points should be notified of the current throughput limit as quickly as possible,
without dropping several packets at once due to full buffers. We achieve this by
deploying Random Early Detection (RED) [30] as the packet queue’s dropping
policy, so that packets are randomly dropped with increasing queue usage.

We implemented several variations of this approach and evaluated the effect
of different parameters on the short-term and long-term usage adaption. The
achieved performance and adaptation behavior is presented in Section 4.3.

3.3 Remaining Covert Channel Capacity

In the following we summarize the identified covert channels and derive the ag-
gregated remaining covert channel capacity of our covert channel-resilient VPN.

Unfortunately, it is not possible to give all the covert channel rates in a
closed form and with comparable units. Several covert channels also depend on
additional parameters like network PMTU or minimum WAN packet rate. To
provide a reasonable overview of the overall effectiveness of the covert channel
mitigation, we have used the capacity estimations derived in the examples of
Section 3.1, assuming a state-of-the-art IPsec VPN configuration (cf. Section 2).

Figure 2(b) lists the individual covert channel capacities for the unmitigated
(Cm) and mitigated (Cr) case. Considering that today’s networks easily transmit
several thousand packets per second, i.e., 1 bpp � 1 bps, our system results
in significant improvements over standard IPsec. In fact, all outbound covert
channels are completely eliminated, except for the DestIP channel. However, as
explained in Section 2.2, the DestIP characteristic does not by itself constitute a
covert channel but can only be used to amplify other channels. Hence, the overall
remaining covert channel capacity is given by Ĉr,out = CModeSec

out · CDestIP
out .

For the less critical inbound covert channels (e.g., control channels for stealth
malware), only the channels based on PMTUD and PktDrop remain. The Pkt-

Drop covert channel has the highest impact with CPktDrop
r,in ≤ 5 bps and is easy

to exploit. Since the PMTUD channel could be exploited at the same time, their
capacities must be added up: Ĉr,in = CPktDrop

r,in + CPMTUD
r,in = 5.02 bps.

HPET

LAN

Input

WAN

Output

Kernelspace

packet
queue

dummy
queue

Fragmenta�on

HPCM Manager

Userspace

HPCM Engine
Linux IPsec (ESP Tunnel)

Timer

Header
Reset

get_sta�s�cs()

compute_se�ngs()

update_se�ngs()

Mul�plexing

Padding

send-event

(a) Architecture of our Linux prototype.

ESP-TrailerPayloadTFCIP ESP

Next Hdr Reserved F M Length

Security Parameter Index (SPI)

Fragment ID OffsetM

Fragmented Mul�plexed

More Fragments

0 8 16 31

F

(b) TFC encapsulation protocol.

Fig. 3. Implementation architecture and encapsulation protocol.

4 Practical Covert Channel Mitigation with Linux

In this section we describe the instantiation of our system based on the Linux
IPsec stack and analyse the achieved network performance and behavior.

In our prototype implementation and evaluation we only consider the mitiga-
tion of outbound covert channels, since information leakage from the protected
to the unprotected domain is usually considered more critical (e.g., consider
Bell-LaPadula [31]). Moreover, from our discussions in Section 3 it is clear that
outbound covert channel mitigation is more efficient, as it requires less buffering
and processing but is more effective in reducing the covert channel capacity.

4.1 Architecture and Implementation Details

We have implemented a High-Performance Covert Channel Mitigation (HPCM)
system inside the IPsec stack of the Linux kernel. The architecture and encap-
sulation protocol are based on the Traffic Flow Confidentiality (TFC) project, a
system for probabilistic traffic flow obfuscation and re-routing in IPsec [21]. We
revised and extended TFC to support High-Precision Event Timers (HPETs),
fragmentation, multiplexing and dummy packet generation that is indistinguish-
able from real traffic payloads, elimination of storage-based covert channels in the
encapsulation headers and, most importantly, a interface for packet processing
statistics and flexible policy enforcement in userspace. The resulting architecture
is illustrated in Figure 3(a). In kernelspace, the HPCM Engine processes packets
as part of the IPsec subsystem, rewriting problematic header fields and enforc-
ing the currently desired size and IPD constraints as described in Section 3.1.
In userspace, the HPCM Manager collects processing statistics from the en-
forcement engine and combines them with the observed inbound LAN traffic to
determine the optimal enforcement parameters, as presented in Section 3.2.

For flexible packet padding and rerouting, TFC deploys its own encapsula-
tion protocol with explicit signalling flags and length header [21]. To also support
transparent fragmentation and multiplexing within our system, we extend the
TFC protocol with an optional 32 bit fragmentation extension header as illus-
trated in Figure 3(b). The employed header format is compatible with the IPv4

Benchmarks No Padding Fully Padded On-Demand
IP ESP TFC 1422 800 R̄ = 10−1s

LAN Throughput (Mbit/s) 570 201 175 58 75 169
TCP Transaction Rate (Hz) 1756 1462 1364 611 740 532
LAN/WAN Overhead (%) 0 10 13 (73) (61) ≈24
Relative Throughput (%) 283 100 87 28 37 84

Table 1. Throughput and transaction rate for regular and modified IPsec VPN.

header format, allowing us to reuse the existing IP defragmentation framework
of Linux for defragmenting TFC payloads. Also note that the additional Securi-
ty Parameter Index (SPI) field is only required due to restrictions of the Linux
IPsec framework, and could be removed to reduce the TFC protocol overhead.

4.2 Testbed and Raw Performance

In this section we describe the performance achieved by our prototype in terms
of network throughout, transaction rate (i.e., roundtrip time) and protocol over-
head. Our testbed corresponds to the VPN scenario in Figure 1(a), except that
we use only two LAN sites with one physical host per LAN. The Man-in-the-
Middle (MITM) is implemented as an Ethernet bridge between the two VPN
gateways, allowing reliable observation of all transmitted packets. For our eval-
uation, the MITM is completely passive and only used to provide independent
performance measurements of the WAN. All hosts are 3.2 Ghz Intel Core i5-650
machines, equipped with two Intel PCIe GBit network cards and 4GB system
memory. All network links are established at full-duplex GBit/s speed.

We have used the Netperf6 benchmarks TCP STREAM and TCP RR to measure
the maximum TCP throughput and transaction rate between the LAN sites. By
comparing LAN and WAN throughput, we can determine the protocol overhead
of the covert channel mitigation, including dummy packets and packet padding.

We list the overall performance results in Table 1. The first two columns show
the testbed performance for raw IP (plain-text) transmission and IPsec ESP tun-
neling. With 570 Mbit/s, the raw transmission does not reach the expected GBit
throughput, likely due to deficient hardware or drivers. As the LAN hosts and the
MITM measure the same IP payloads, there is no LAN/WAN overhead. With
201 Mbit/s, the throughput of a standard IPsec ESP tunnel is already notably
slower due to 10% protocol overhead but mainly computational constraints of
the VPN gateways. As our covert channel mitigation is an extension of this ESP
tunnel configuration, we normalize the relative throughput to 100%.

For reference and confirmation of the expected implementation overhead of
our prototype, we next evaluated the raw performance of our HPCM Engine
compared to the standard IPsec ESP tunnel. The third column “TFC” of Table 1
lists the achieved network performance when tunneling TFC inside ESP with
with all covert channel mitigation techniques disabled. The overall LAN/WAN
overhead of 13% (or 3% when compared with the ESP tunnel) is the result of
the 8 to 12 byte TFC protocol encapsulation plus some computational overhead.

6 http://www.netperf.org

http://www.netperf.org

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120

T
h
r
o
u
g
h
p
u
t

(
M
b
i
t
/
s
)

Elapsed Time (Seconds)

WAN at 5^-1s
WAN at 10^-1s
WAN at 15^-1s
WAN at 20^-1s

(a) WAN adaption to repeated TCP load.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 100 200 300 400 500 600

R
e
q
u
e
s
t

T
i
m
e

(
S
e
c
o
n
d
s
)

Elapsed Time (Seconds)

LAN at 5^-1s
LAN at 10^-1s
LAN at 15^-1s
LAN at 20^-1s

(b) HTTP request delay in mixed traffic.

 0

 50

 100

 150

 200

 250

 0 100 200 300 400 500 600

T
h
r
o
u
g
h
p
u
t

(
M
b
i
t
/
s
)

Elapsed Time (Seconds)

WAN at 5^-1s
WAN at 10^-1s
WAN at 15^-1s
WAN at 20^-1s

(c) WAN adaption to pseudo-random web traffic and downloads.

Fig. 4. Behavior of mode adaptation for different token generation rates R. For refer-
ence, the grey filled graph shows LAN performance without time/size padding.

4.3 Covert Channel Mitigation Performance

We now describe the behavior and performance of different mitigation policies.
The fourth and fifth column of Table 1 show the performance of a “fully

padded channel”, enforcing packet sizes of 1422 and 800 bytes at the maxi-
mum possible packet rate. For this purpose, we first measured the maximum
bi-directional throughput of the VPN channel (201 Mbit/s per direction) and
then selected the desired packet rate (inverse IPD) such that the bidirectional
channel capacity is almost7 saturated. We then again measured the maximum
(uni-directional) throughput and roundtrip time. As shown in Table 1, the fully
padded channel configuration achieves rather poor performance in both config-
urations, reaching only 37% and 28% of the ESP tunnel throughput. Observe
that the enforcement of 800 byte packet size achieves higher transaction rate as
well as higher throughput. We believe this is due to the overhead of padding
TCP acknowledgements to maximum packet size.

We have also implemented and tested an instantiation of our on-demand
mode security management scheme presented in Section 3.2. As shown in the
last column of Table 1, the employed mode adaption heuristics reach almost the
same maximum throughput as the raw TFC encapsulation without time/size
padding (169 Mbit/s vs. 175 Mbit/s). The LAN/WAN overhead is slightly
higher (24% vs. 13%) and the transaction rate rather low. The high throughput
despite relatively high overhead is explained by the mode adaption behavior:

7 As explained in Section 3.2, it is critical that the link is not fully saturated since
congestion leads to packet loss and congestion avoidance does not work.

As shown in Figure 4(a), the WAN channel adapts to the maximum possible
throughput, but suffers overhead in the rate increase and especially rate decrease
phases. As desired by our design in Section 3.2, the main impact of reduced to-
ken regeneration rates R̄ ≤ 15−1s in Figure 4(a) is the increased overhead in the
intervals between TCP loads, when the rate is not decreased to save tokens.

Finally, we have investigated the ability of our on-demand mode security
management to adapt to random, highly heterogeneous traffic patterns one
would expect from a VPN with many users. We used Tsung, a traffic load
testing tool8, to record several HTTP sessions in our network, partly also in-
cluding larger (≈ 60 MB) HTTP downloads. We then configured one of our
testbed LANs to act as Internet gateway for the other LAN and used Tsung to
replay the recorded HTTP sessions in a pseudo-random fashion with 60 to 80
simultaneous users. Figure 4(c) shows how the WAN traffic enforcement for four
different token regeneration rates R̄ dynamically adapts to the LAN usage (grey
filled). For R̄ ≤ 15−1s, only the larger peaks in LAN usage influence the WAN
traffic enforcement, reducing information leakage at the cost of padding over-
head. As shown in Figure 4(b), the mean duration of responding to individual
HTTP requests is kept within reasonable limits. However, in contrast to un-
padded traffic (grey filled) the accumulated request delays become noticeable to
the user.

In the presented configuration, our mode adaption algorithm switches packet
sizes in steps of 100 bytes and packet rates in steps of 1000 packets per second.
Considering the maximum WAN packet rate of about 250.000 packets/s, we can
derive CModeSec

r,out = R̄ · log2(1500
100 · 250000

1000) = R̄ · 11.87 and an overall outbound

covert channel capacity of, e.g., Ĉr,out = 0.6 bps for R̄ = 20−1s and N = 1.

5 Related Work

Several works consider the problem of covert channels and covert channel mit-
igation in Internet protocols [32, 33], yet we know of no works that specially
discuss the problem of covert channels in IPsec. The covert channels we identify
in IPsec are generally known, but we found no previous discussion of the PM-
TUD channel. Additionally, the PktSize [19], PktSort [11, 27] and DestIP [19]
characteristics have different impact in IPsec, and the discussion of storage-based
covert channels in the IPsec specification [14] proved to be inaccurate.

Although the IPD-based covert channel is generally well-known [6,10,19,22,
34], the problem of inaccuracies in timing enforcement during increased system
load remained unsolved [9, 23]. We consider this complication in our design in
Section 3.1 and present a compensation mechanism that detects and compen-
sates unintended timing inaccuracies. Also, while most works simply assume that
packets are of constant size [24] or padded to the maximum desired size [19,33],
our adoption of multiplexing and fragmentation enables flexible packet size en-
forcement. The combination of different mitigation techniques makes our imple-
mentation the first prototype for comprehensive covert channel mitigation.

8 http://tsung.erlang-projects.org

Regarding performance trade-offs, Mode Security was proposed as a general
approach to adapt to resource usage by switching between different operation
modes [20]. A similar approach called Traffic Stereotyping was proposed for net-
works [19]. To our knowledge, there is only one system that uses Mode Security
to optimize covert channel mitigation, which aims to provide sender anonymity
based on dynamic re-routing and IPD enforcement [6,24]. They assume a trusted
network stack on each network endpoint and a periodic global negotiation to
achieve an equalized traffic matrix [24]. A performance analysis was done based
on statistics collected from a medium-sized network [12]; however, no actual per-
formance measurements of their system have been provided and the problem of
determining the optimal enforcement mode was left unsolved. Alternatively, Net-
Camo [34] requires its endpoints to explicitly request their delay and throughput
demands beforehand. We extend on these works by proposing a practical algo-
rithm to determine the optimal operation mode on-demand. As we do not aim
for sender-anonymity, we do not require mix-networks and various attacks on
mixes do not apply to our approach (e.g., [35, 36]).

In contrast to probabilistic traffic obfuscation schemes such as HTTPOS [37]
or Traffic Morphing [38], our framework enforces an information-theoretic bound-
ary for the maximum information leakage. As argued in Section 1, covert channel
detection schemes such as [39,40] are complementary to our work and should be
used where mitigation is costly, e.g., for the PktSort and PktDrop characteristics.

While we know of no practical performance measurements for comprehensive
covert channel elimination, an overhead of 45%-56% was reported solely for
obfuscating the packet size in website traffic [7, 38].

6 Conclusion and Future Work

We have motivated the problem of covert channels in Virtual Private Net-
works (VPNs) and presented the design, implementation, and performance of
a covert channel-resilient VPN. We identified several covert channels and pre-
sented new countermeasures. We have investigated the problem of on-demand
adaption of operation modes and presented an implementation for comprehen-
sive, high-performance covert channel mitigation in the Linux IPsec stack. Our
evaluation shows that on-demand rate adaption is feasible and practical even
for highly unpredictive traffic. In more predictable throughput benchmarks, our
system achieves remarkable 169 Mbit/s in a 201 Mbit/s VPN connection (84%).

As part of our future work, we will consider the effectiveness of alternative
trade-off and normalization strategies. Furthermore, we aim to investigate the
impact of inaccuracies in IPD enforcement.

7 Acknowledgements

We thank Amir Herzberg, Haya Shulmann and Thomas Schneider for their in-
sightful comments and review of earlier versions of this work.

References

1. Cohesive Flexible Technologies: VPN-Cubed. http://cohesiveft.com (2012)
2. Catuogno, L., Dmitrienko, A., Eriksson, K., Kuhlmann, D., Ramunno, G., Sadeghi,

A.R., Schulz, S., Schunter, M., Winandy, M., Zhan, J.: Trusted Virtual Domains
- design, implementation and lessons learned. In: International Conference on
Trusted Systems (INTRUST), Springer (2009)

3. Carapinha, J., Feil, P., Weissmann, P., Thorsteinsson, S., Etemoğlu, c., In-
gthórsson, O., Çiftçi, S., Melo, M.: Network Virtualization - Opportunities
and Challenges for Operators. In: Future Internet Symposium (FIS’10). LNCS,
Springer (2010)

4. Lampson, B.W.: A note on the confinement problem. Communications of the
ACM 16(10) (1973)

5. National Computer Security Center: A Guide to Understanding Covert Channel
Analysis of Trusted System. (1993)

6. Venkatraman, B.R., Newman-Wolfe, R.E.: Capacity estimation and auditability
of network covert channels. In: Research in Security and Privacy (S&P), Oakland,
CA, IEEE (1995)

7. Liberatore, M., Levine, B.N.: Inferring the source of encrypted HTTP connections.
In: Computer and Communications Security (CCS), ACM (2006)

8. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Computer and
Communications Security (CCS), ACM (2009)

9. Graham, B., Zhu, Y., Fu, X., Bettati, R.: Using covert channels to evaluate the
effectiveness of flow confidentiality measures. In: Parallel and Distributed Sys-
tems (ICPADS), IEEE (2005)

10. Liu, Y., Ghosal, D., Armknecht, F., Sadeghi, A.R., Schulz, S., Katzenbeisser, S.:
Hide and seek in time — robust covert timing channels. In: European Symposium
on Research in Computer Security (ESORICS). Volume 5789 of LNCS. Springer
(2009)

11. Murdoch, S., Lewis, S.: Embedding covert channels into TCP/IP. In: Information
Hiding. Springer (2005)

12. Venkatraman, B.R., Newman-Wolfe, R.E.: Performance analysis of a method for
high level prevention of traffic analysis using measurements from a campus network.
In: Computer Security Applications Conference (ACSAC), IEEE (1994)

13. Millen, J.: 20 years of covert channel modeling and analysis. In: Research in
Security and Privacy (S&P), Oakland, CA, IEEE (1999)

14. Kent, S., Seo, K.: Security Architecture for the Internet Protocol. RFC 4301 (2005)
15. Ahsan, K.: Covert channel analysis and data hiding in TCP/IP. Master’s thesis,

Department of Electrical and Computer Engineering, University of Toronto (2002)
16. Kundur, D., Ahsan, K.: Practical internet steganography: Data hiding in IP. In:

Texas Workshop on Security of Information Systems. (2003)
17. Degabriele, J.P., Paterson, K.G.: On the (in)security of IPsec in MAC-then-encrypt

configurations. In: Computer and Communications Security (CCS), ACM (2010)
18. Sadeghi, A.R., Schulz, S., Varadharajan, V.: The silence of the LANs: Efficient

leakage resilience for IPsec VPNs (full version). Technical report (2012)
19. Girling, C.G.: Covert channels in LAN’s. IEEE Transactions on Software Engi-

neering 13(2) (1987)
20. Browne, R.: Mode security: An infrastructure for covert channel suppression. In:

Research in Security and Privacy (S&P), Oakland, CA, IEEE (1994)

http://cohesiveft.com

21. Kiraly, C., Teofili, S., Lo Cigno, R., Nardelli, M., Delzeri, E.: Traffic flow confiden-
tiality in IPsec: Protocol and implementation. In: The Future of Identity in the
Information Society, Springer (2008)

22. Moskowitz, I.S., Miller, A.R.: Simple timing channels. In: Research in Security
and Privacy (S&P), Oakland, CA, IEEE (1994)

23. Fu, X.: On Traffic Analysis Attacks and Countermeasures. PhD thesis, Texas
A&M University (2005)

24. Venkatraman, B.R., Newman-Wolfe, R.E.: Transmission schedules to prevent traf-
fic analysis. In: Computer Security Applications Conference (ACSAC), IEEE
(1994)

25. Gettys, J.: Bufferbloat: Dark buffers in the Internet. IEEE Internet Computing
15(3) (2011)

26. Fu, X., Graham, B., Bettati, R., Zhao, W.: On effectiveness of link padding for
statistical traffic analysis attacks. In: International Conference on Distributed
Computing Systems (ICDCS), Washington, DC, USA, IEEE (2003)

27. El-Atawy, A., Al-Shaer, E.: Building covert channels over the packet reordering
phenomenon. In: International Conference on Computer Communications (INFO-
COM), IEEE (2009)

28. Mogul, J., Deering, S.: Path MTU discovery. RFC 1191 (1990)
29. Zhao, W., Olshefski, D., Schulzrinne, H.: Internet quality of service: An overview.

Technical report, Columbia University (2000)
30. Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering, S., Estrin, D., Floyd,

S., Jacobson, V., Minshall, G., Partridge, C., Peterson, L., Ramakrishnan, K.,
Shenker, S., Wroclawski, J., Zhang, L.: Recommendations on Queue Management
and Congestion Avoidance in the Internet. RFC 2309 (1998)

31. Bell, D.E.: Looking back on the Bell-LaPadula model. In: Computer Security
Applications Conference (ACSAC), IEEE (2005)

32. Llamas, D., Allison, C., Miller, A.: Covert channels in internet protocols: A survey
(2006)

33. Zander, S., Armitage, G., Branch, P.: A survey of covert channels and counter-
measures in computer network protocols. Comm. Surveys & Tutorials 9(3) (2007)

34. Guan, Y., Fu, X., Xuan, D., Shenoy, P.U., Bettati, R., Zhao, W.: NetCamo: Cam-
ouflaging network traffic for QoS-guaranteed mission critical applications. Trans.
on Systems, Man, and Cybernetics - Systems and Humans 31(4) (2001)

35. Shmatikov, V., Wang, M.H.: Timing Analysis in Low-Latency Mix Networks:
Attacks and Defenses. In: European Symposium on Research in Computer Security
(ESORICS). LNCS. Springer (2006)

36. Abraham, T., Wright, M.: Selective cross correlation in passive timing analy-
sis attacks against Low-Latency mixes. In: Global Communications Conference
(GLOBECOM), IEEE (2010)

37. Luo, X., Zhou, P., Chan, E.W.W., Lee, W., Chang, R.K.C., Perdisci, R.: HTTPOS:
Sealing information leaks with browser-side obfuscation of encrypted flows. In:
Network and Distributed Systems Security (NDSS), Internet Society (2011)

38. Wright, C.V., Coull, S.E., Monrose, F.: Traffic morphing: An efficient defense
against statistical traffic analysis. In: Network and Distributed Systems Security
(NDSS), Internet Society (2009)

39. Berk, V., Giani, A., Cybenko, G.: Detection of covert channel encoding in network
packet delays. Technical Report TR536, Dartmouth College (2005)

40. Gilbert, P.A., Bhattacharya, P.: An approach towards anomaly based detection and
profiling covert TCP/IP channels. In: Information, Communications and Signal
Processing (ICICS), IEEE (2009)

	The Silence of the LANs:Efficient Leakage Resilience for IPsec VPNs

