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Abstract—With the rapid growth of the Internet-of-Things
(IoT), concerns about the security of IoT devices have become
prominent. Several vendors are producing IP-connected devices
for home and small office networks that often suffer from
flawed security designs and implementations. They also tend
to lack mechanisms for firmware updates or patches that can
help eliminate security vulnerabilities. Securing networks where
the presence of such vulnerable devices is given, requires a
brownfield approach: applying necessary protection measures
within the network so that potentially vulnerable devices can
coexist without endangering the security of other devices in the
same network. In this paper, we present IOT SENTINEL, a system
capable of automatically identifying the types of devices being
connected to an IoT network and enabling enforcement of rules
for constraining the communications of vulnerable devices so as
to minimize damage resulting from their compromise. We show
that IOT SENTINEL is effective in identifying device types and
has minimal performance overhead.

I. INTRODUCTION

The proliferation of the Internet-of-Things (IoT) is an ongo-
ing megatrend in computing with recent forecasts suggesting
the number of IoT devices to reach 24 billion in 2020 [1].
More and more people install IP-enabled devices and house-
hold appliances in their homes in order to benefit from the
improved ability to be informed about and control relevant
features of their homes. Examples of emerging IoT systems
include automated heating and air conditioning, security sys-
tems and home surveillance, lighting or traditional household
appliances with added WiFi-connectivity.

Numerous device vendors are providing such connected
products to users. Many of these firms are traditional house-
hold appliance manufacturers and do not necessarily have
expertise in engineering systems with computer security in
mind. As a result, there are many reports in the media about
IoT devices being deployed in users’ homes with security
vulnerabilities that can be exploited by attackers (e.g., [2], [3]).
There have been reports of a single software flaw affecting a
full range of different products, as software components are
reused for different device models, thereby placing thousands
of Internet-connected IoT devices susceptible for attack [4].

Using vulnerabilities in insecure devices, adversaries can
mount attacks against the user’s home network. The preferred
solution for dealing with device vulnerabilities would be to
patch them in order to eliminate weaknesses. However, all too

often device vendors are either unable (many users do not
register their devices with the device vendor) or unwilling to
provide such patches in a timely manner. Most IoT users do
not have the skills or willingness to perform such tasks or
they even forget unattended IoT devices previously installed
in their network leaving them with outdated software versions.

Future security solutions for IoT will need to take into
account that IoT devices with unpatched vulnerabilities may
often be present in the user’s network and co-exist with
other devices during their whole device lifetime. The pres-
ence of insecure, unpatched legacy IoT devices mandates to
accommodate a brownfield development approach for security
designs: the security mechanisms must be able to co-exist with
potentially insecure devices and software that users already
have deployed or will deploy in their home networks.

Goals and Contributions. In this paper, we tackle this
problem by presenting IOT SENTINEL, a system capable of
identifying the types of devices introduced to a network
and enforcing mitigation measures for device-types that have
potential security vulnerabilities. IOT SENTINEL does so by
controlling the traffic flows of vulnerable devices in order to
protect other devices in the network from threats and prevent
data leakage.

The contributions of this paper are the following:
• We present the design of IOT SENTINEL, a security

system (Sect. II) for managing the security and privacy
risks posed by insecure IoT devices.

• We introduce a device-type identification technique tai-
lored for IP-enabled IoT devices (Sect. III). Device-
type identification, in conjunction with information from
vulnerability databases can pinpoint vulnerable devices in
a network.

• We demonstrate the accuracy and scalability of IOT
SENTINEL device-type identification using a large set of
different real-world off-the-shelf IoT devices (Sect. V).

• We present a framework using software-defined network-
ing for confining traffic flows of devices identified as
vulnerable (Sect. IV).

II. ADVERSARY AND SYSTEM MODEL

IOT SENTINEL is targeted at a typical network setup found
in homes and small offices, where devices are connected to



a gateway router offering wireless and wired interfaces for
connecting IP-enabled devices to the network. We assume that
when IoT devices are initially connected to the target network
they possibly have security vulnerabilities but are initially
benign, i.e., uncompromised by the adversary. The adversary’s
goal is to exploit IoT devices to either a) exfiltrate data,
security credentials or encryption keys, b) compromise other
IoT devices in the network with the help of a compromised
device, or, c) inject false or tampered information into the
user’s network.

The goal of IOT SENTINEL is to restrict communications in
the network so that the adversary is either not able to connect
to the vulnerable device to exploit vulnerabilities, unable to use
a compromised device to attack other devices in the network,
or, unable to exfiltrate data from compromised devices, thereby
effectively mitigating attacks or limiting their impact.

To protect the network against adversaries, IOT SENTINEL
will 1) identify the device-types of new IoT devices introduced
into the network, 2) make a vulnerability assessment of a
device using its device-type, and, 3) constrain communica-
tion capabilities of the device accordingly. In this paper we
focus on #1 and #3. The term device-type in this work is
defined to denote the combination of model and software
version of a particular device. Device-type identification in
IOT SENTINEL is based on monitoring the communication
behaviour of devices during the setup process to generate
device-specific fingerprints which are mapped to device-types
with the help of a machine learning-based classification model.
For a given device-type, its potential vulnerability can be
assessed by consulting an external information source as we
briefly describe in Sect. II-B. Based on the vulnerability
assessment, IOT SENTINEL protects the target network by
limiting network communications of the vulnerable device ac-
cordingly. The design of our solution, shown in Fig. 1, consists
of two major components: a Security Gateway located in the
user’s local network and an IoT Security Service operated
by an IoT Security Service Provider (IoTSSP). A prototype
implementation of IOT SENTINEL is presented in [5].

A. Security Gateway

The Security Gateway is a software-defined networking
(SDN) based traffic monitoring and control component acting
as a gateway router. Devices in the local network connect
to the Security Gateway either through WiFi or an Ethernet
connection.

Wireless devices use WiFi Protected Setup (WPS) to obtain
device-specific credentials in the form of WPA2 Pre-Shared
Keys (PSK) for authenticating with the wireless interface of
the Security Gateway. This limits a local adversary’s ability to
impersonate other devices and eavesdrop on encrypted WiFi
traffic in case the adversary can successfully compromise a
device, as each device has a unique, device-specific PSK.
For devices that do not support WPS, Security Gateway will
provide a device-specific WPA2-PSK to be used in the setup
process for WiFi authentication.
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Fig. 1. IOT SENTINEL system design

The Security Gateway monitors and profiles the behaviour
of individual devices and sends device fingerprints to the IoT
Security Service for identification (Sect. III-B) and vulnerabil-
ity assessment of individual devices. Based on this assessment,
the IoT Security Service returns an isolation level (Sect. IV)
to be enforced by the Security Gateway on the device.

B. IoT Security Service

Based on device fingerprints provided by Security Gate-
ways, the IoTSSP uses machine learning-based classification
models to classify devices according to their device-type.
Ground truth information for training the models can be gath-
ered by crowdsourcing device fingerprints from customers of
the IoT Security Service. Contrary to traditional fingerprinting
approaches utilising distinctive characteristics of particular
data fields in protocol messages, our approach focuses on the
behavioural characteristics of devices as discussed in Sect. III.
This allows us to profile and classify devices without prior
knowledge about the syntax of messages or data field values
used by individual devices.

For each device-type in the training data, the IoTSSP
performs a vulnerability assessment by querying repositories
like the CVE database [6] for vulnerability reports related to
the device-type. In case vulnerabilities exist, isolation level
restricted (cf. Sect IV) is assigned. If no vulnerabilities for
the device-type are reported, it is assigned the level trusted.
Unknown devices will be assigned the level strict.

Using the trained classifiers, the IoTSSP identifies the
device-types of any new devices by feeding their device
fingerprints to the classifier. Based on each device-type’s vul-
nerability assessment, the IoTSSP determines the appropriate
isolation level required for the device and notifies the Security
Gateway along with possible auxiliary information depending
on the assigned isolation level. IoT Security Service does not
store any information about its Security Gateway clients, it just
receives fingerprints and returns an isolation level accordingly.



C. Mitigation Strategies

We apply following mitigation strategies that aim to main-
tain as much functionality as possible while minimizing the
risk of harm. Their technical implementation is discussed in
Sect. IV.

1) Network Isolation: The target of network isolation is to
block a potentially vulnerable IoT device from communicating
with other devices so that it cannot mount attacks against
them. To this end, the Security Gateway divides the user’s
network into two virtual network overlays: an untrusted and a
trusted network. Vulnerable devices are placed in the untrusted
network and strictly isolated from other devices.

2) Traffic Filtering: The target of traffic filtering is to hinder
adversaries from communicating with vulnerable devices and
exploiting vulnerabilities or exfiltrating data. Traffic filtering
is performed by the Security Gateway and can be targeted at
particular protocols or endpoints so that the functionality of
the vulnerable device is affected as little as possible.

3) User Notification: In some cases, network isolation
and traffic filtering are not sufficient to provide adequate
protection, e.g., if a vulnerable IoT device is equipped with
an external communication channel like Bluetooth or an LTE
data connection that cannot be controlled by the Security
Gateway. Since a compromised device could use this channel
for exfiltrating sensitive data, the only effective measure for
securing the user’s network is to manually remove devices at
risk. We therefore envisage a mechanism by which the system
notifies the user about devices with insurmountable security
flaws, helps her to identify the device in question and make
sure that it really is removed from the user’s network.

III. IOT DEVICE IDENTIFICATION

In this section we introduce fingerprints specifically de-
signed to discriminate smart home device-types. A two-fold
classification system fed with these fingerprints determines
the type of unknown devices. The system is tailored for IoT
scenarios being able to scale and adapt with minimal cost to
a large and variable set of device-types.

A. Device Fingerprint

Our fingerprint is based on passively observed network
traffic. It leverages the specificity of smart home devices that
need to be inducted into the home network and associated to
the gateway by following a device/vendor specific procedure.
This procedure is characterized by a distinguishable sequence
of communications initiated by the inducted device, which our
fingerprint attempts to capture. When a new device identified
by a newly observed MAC address starts communicating with
the gateway, the latter records n packets {p1, p2, p3, . . . , pn}
received from it during its setup phase. The end of the setup
phase can be automatically identified by a decrease in the
rate of packets sent. We extract 23 features, giving a vector
representation for each packet pi = {f1,i, f2,i, f3,i, . . . , f23,i}
where i ∈ {1, . . . , n}. Hence, a device fingerprint is a 23× n
matrix F with each column representing a packet received
with order i ∈ {1, . . . , n} and each row representing a packet

TABLE I
DESCRIPTION OF THE 23 PACKET FEATURES. FEATURES ARE BINARY

EXCEPT THOSE MARKED WITH “(INT)”, WHICH ARE INTEGER.

Type Features
Link layer protocol (2) ARP / LLC
Network layer protocol (4) IP / ICMP / ICMPv6 / EAPoL
Transport layer protocol (2) TCP / UDP

Application layer protocol (8) HTTP / HTTPS / DHCP / BOOTP /
SSDP / DNS / MDNS / NTP

IP options (2) Padding / RouterAlert
Packet content (2) Size (int) / Raw data
IP address (1) Destination IP counter (int)
Port class (2) Source (int) / Destination (int)

feature, see Eq. (1). Consecutive identical packets from our
feature set perspective (i.e. pi = pi+1) are discarded from F.

F =

p1 p2 p3 . . . pn


f1,1 f1,2 f1,3 . . . f1,n
f2,1 f2,2 f2,2 . . . f2,n
f3,1 f3,2 f3,3 . . . f3,n

...
...

...
. . .

...
f23,1 f23,2 f23,3 . . . f23,n

(1)

Features used for packet representation are presented in
Table I, none of them rely on packet payload, ensuring
that fingerprints can be extracted from encrypted traffic. A
first set is composed of binary features set to 1 if some
selected communication protocols are used. These 16 protocols
were chosen because they are typically used during device
association over WiFi. Two binary features represent the use
of IP header options padding and router alert. The size of the
packet (in bytes) and the presence of raw data is captured.
The destination IP address, if any, is mapped to a counter
starting from 1 and incremented each time a new destination
IP address is observed. This feature denotes the count and
order in which a device communicates with different entities
during its setup procedure. The two last features represent the
source and destination ports used, if any, mapped to network
port class:
• no port ⇒ f = 0
• well-known port [0, 1023]⇒ f = 1
• registered port [1024, 49151]⇒ f = 2
• dynamic port [49152, 65535]⇒ f = 3

Our fingerprints consider the temporal dimension of com-
munication by representing the sequential order in which
packets are sent by a device p1 → pn. In contrast to
techniques aggregating network traffic statistics over a period
of time [7], [8], this extraction method raises some issues for
comparison, since fingerprints have variable size n. To cope
with this limitations we build a second fixed-size fingerprint
F′, composed of the 12 first unique vector packets p from F,
concatenated to produce a 276-dimensional feature vector (12
packets × 23 features):
F′ = {f1,1, f2,1, . . . , f23,1, f1,2, f2,2, . . . , f22,i, f23,i}

Preliminary analysis concluded that 12 packets was a good
trade-off for F′ length: long enough to distinguish device-types



and short enough to be fully filled with unique packets from
F. However, if F does not contain enough unique packets to
fill F′, a padding with 0 values is used to reach the size of
276 features.

B. Device-Type Identification

In order to be scalable and applicable for an evolving
number of device-types, we propose a two-fold identification
technique. First, we train a single classifier for each device-
type. Each classifier provides a binary decision whether the
input fingerprint matches the device-type or not. An unknown
fingerprint can be accepted by several classifiers and thus
match several device-types. In such cases, we break the tie
between multiple matches by using an edit distance-based
metric. While edit distance could be used alone to identify
device-types, this procedure is more time consuming than
classification as we will see in Sect V-B. The classification step
can be easily applied to thousands of device-types, providing
a limited set of device-types to tiebreak via edit distance,
ensuring the speed and scalability of the approach.

1) Fingerprint Classification: The device classification is
operated using the fixed length fingerprints F′. Let’s as-
sume we have a set of fingerprints S for several device-
types. We select the subset of n fingerprints SDi

=
{F′1,i,F′2,i, . . . ,F′n,i} for the device-type Di. The remaining
fingerprints of the set are for device-types Dx 6= Di. These
fingerprints belong to the complement of SDi

in S: Sc
Di

. A
classifier Ci is trained for identifying the device-type Di, using
all samples from SDi

as one class and a subset of samples from
Sc
Di

as the other class. Only a subset from Sc
Di

is selected for
classifier training in order to avoid imbalanced class learning
issues. Ci is then able to identify an unknown fingerprint as
belonging to the type Di or not. This process is repeated
for each device-type in S in order to build one classifier per
device-type. We use Random Forest classification algorithm
[9] to build these models.

Using this approach, every time the fingerprint of a new
device-type is captured, a new classifier is trained without
making any modification to the existing classifiers, avoiding a
costly relearning process. This “one classifier per device-type”
approach also enables the discovery of new devices since it
does not force any fingerprint to belong to one learned class
of a multi-class classifier. A fingerprint can be rejected by all
classifiers and thus be identified as a new device-type.

2) Edit Distance Tiebreak: If an unknown fingerprint F′

matches several device-types during the classification process,
the corresponding full fingerprint F is compared to a subset
of fingerprints from each device-type it got a match for.
The fingerprint comparison is done by computing Damerau-
Levenshtein edit distance [10], which considers the insertion,
deletion, substitution and immediate transposition of charac-
ters. We consider the matrix F as a word with each character
being a column of the matrix, i.e. a packet pi. Character
equality for edit distance computation is considered if all
features f from a packet pi are equal to those of another packet
pj . The obtained absolute distance between two fingerprints
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Fig. 2. After fingerprinting and device-type identification, new devices are
assigned to isolation level strict, restricted or trusted.

is divided by the length of the longest one to provide a
normalized distance value bounded on [0, 1].

The distance is computed between the fingerprint to identify
F and a subset of five fingerprints from each device-type Di it
got a match for. Distances are summed up per device-type to
get a global dissimilarity score si ∈ [0, 5] of F with the type
Di. The lowest dissimilarity score si gives the final predicted
device-type for F.

IV. ENFORCEMENT

Security Gateway uses Software-defined Networking (SDN)
to enable enforcement. We wrote a custom module for Flood-
light SDN controller [11] to perform network monitoring tasks,
fingerprint generation and to manage communications with
IoT Security Service. This module is also responsible for
generation and enforcement of restricted network access for
connected devices.

When a new device connects to the network, Security
Gateway generates a fingerprint from its network activity. This
fingerprint is sent to IoT Security Service, which identifies
the device-type, determines its required network isolation level
and returns it to the Security Gateway. There are three different
isolation levels for any device as shown in Fig. 2:
• Strict isolation level only allows the device to communi-

cate with other devices in the untrusted network overlay
with no Internet access for the device.

• Restricted isolation level allows the device to communi-
cate with other devices in the untrusted network overlay
as well as with a limited set of remote destinations on
the Internet (e.g., the vendor’s cloud service).

• Trusted isolation level allows the device to communicate
with any other device in the trusted network overlay and
unrestricted Internet access.

For the Restricted isolation level, the IoT Security Service
provides to Security Gateway an additional set of IP addresses
(or DNS names) with which communications are allowed.
Security Gateway stores the received information in local
cache and update it through regular queries to the IoT Security
Service. Security Gateway uses this information to generate
enforcement rules to enforce device-specific isolation level
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required in the network. We identify traffic to/from any device
using device MAC addresses.

Network isolation at device level granularity ensures that no
vulnerable device, when compromised, is able to infect other
devices in the trusted network. Our custom module in the SDN
controller intercepts all traffic flows in the network and ensures
that they are filtered according to the required isolation level.

Our implementation extends the traffic filtering to make it
more specific, up to the level of individual flows. To minimize
latency, enforcement rules are stored in a hash table structure
to minimize lookup times as the enforcement rule cache grows.
Typically, the traffic between two wireless clients connected
to same AP is bridged between the clients and does not
go to the routing plane. To enable traffic filtering between
wireless devices on the same AP, we use OpenWRT and Linux
drivers to redirect traffic between wireless clients through
Open vSwitch (OVS) for identifying the devices connected
to the wireless interface. This allows us to manage device-
to-device communications and maintain required isolation
between wireless devices [12].

V. EVALUATION

To evaluate our apprach, we developed a prototype system in
an IoT laboratory environment shown in Fig. 3. We simulated
the IoT device setup process and collected packets sent by
each device during the setup process. The collected data were
used to build classification models for IoT device identification
as described in Sect. III.

A. Device Fingerprint Collection

Measurement collection was implemented with a Linux
Laptop running Kali Linux. The software package hostapd
was used to set up a WiFi access point on the laptop emulating
the WiFi interface on a WiFi AP. Similarly, an external
Ethernet interface was connected to the laptop for emulat-
ing the Ethernet ports typically present on APs. The packet
capture module was implemented by using tcpdump on the
monitored WiFi and Ethernet interfaces so that all network
traffic visible to the Security Gateway on both wireless and
wired network interfaces could be recorded and forwarded to
the fingerprinting module. Data collection was controlled by
a scripted UI showing the test person performing the device

setup process the necessary step-by-step instructions required
to complete the connection of each device to the network. The
test scripts were manually compiled following the printed or
on-line user manual of each device. The setup process of most
of the examined IoT devices was facilitated with a smartphone
app or in a few cases a PC application. For such devices, the
corresponding app was installed on a testing smartphone or
laptop and used in the setup process according to the provided
instructions.

1) Tested devices: A representative set of IoT devices
targeted for regular consumers that were available in the
European market during Q1 2016 was selected for our exper-
iments. These covered most common device classes related to
smart lighting, home automation, security cameras, household
appliances and health monitoring devices. Most of the tested
devices were connected to the user’s network via WiFi or
Ethernet, but some devices used other IoT protocols like
ZigBee or Z-Wave to connect to the network indirectly through
an Ethernet or WiFi hub device. For such devices, we focused
on monitoring the indirect traffic generated by the hub device
acting as a gateway towards the user’s network. The detailed
list of tested devices is available in a full technical report [13].

For each tested device, the typical device setup process
was repeated n = 20 times in order to generate sufficient
fingerprints for classification model training. After each testing
round, a hard reset of the tested device was performed to return
it to its default factory settings. Typically, a setup procedure
for a device involved activating the device, connecting to the
device directly over WiFi (the device sets up an ad-hoc WiFi
access point) or Ethernet with the help of a vendor-provided
app and transmitting WiFi credentials to the user’s network
over this connection to the device. After this, the device would
typically reset and connect to the user’s network using the
provided credentials. During this setup procedure, all network
traffic visible to the Security Gateway was recorded and
provided to the fingerprinting module for further processing.
The fingerprints generated were then transferred to the IoT
Security Service for off-line training of the classification
model. The dataset collected from our evaluation setup is
publicly available for research use [14].

B. IoT Device Identification

The fingerprints F and F′ were extracted from the traffic
captures following the technique introduced in Sect. III-A to
obtain a dataset of 540 fingerprints representing 27 device-
types. The IoT device identification method was evaluated
through a stratified 10-fold cross-validation process using this
dataset. At each fold, we used the training data to learn
one classification model per device-type taking all the n
fingerprints F′ of the targeted type as one class and 10*n
randomly selected fingerprints F′ from the rest to represent
the other class. The testing data were subjected to the 27
learned models to get a prediction from each. In case of
positive decision from several classifiers, edit distance tiebreak
was performed using fingerprints F randomly selected from
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the training data as described in Section III-B. The cross-
validation was repeated 10 times to generalize the results.

The ratio of correct identification for each device-type is
reported in Fig. 4. The accuracy of identification is over 0.95
for 17 devices, most of them reaching 1. However, we can see
that 10 devices are correctly identified with an accuracy around
0.5, which is lower but still good considering a random type
assignment that would give 1/27 = 0.037 accuracy. The global
ratio of correct identification over the 27 devices is 0.815.
To better understand why the 10 aforementioned devices got
identified with lower accuracy than others, Table II depicts
their confusion matrix. We can see that the misidentification
occurs between similar devices from same vendors, i.e., a set
of similar D-Link devices (1-4), two models of smart plugs
from TP-Link (5-6) and Edimax (7-8) and a coffee machine (9)
and water kettle (10) from the same vendor. In contrast, Fig. 4
shows that our identification technique is able to distinguish
devices from same vendor with different purposes, e.g., D-
Link camera, hub and sensors, WeMo devices, Edimax camera
and plug, etc. From a system point of view, the misidentified
devices are very similar: D-Link water sensor (2), siren (3)
and sensor (4) have identical hardware and firmware version,
as TP-Link plugs (5-6) do. Hence, these devices are likely to
share vulnerabilities, if any and this specific misidentification
issue is not a concern for our purpose of identifying vulnerable
devices.

TABLE II
CONFUSION MATRIX FOR 10 DEVICES WITH LOW IDENTIFICATION RATE

(DEVICE INDEX FIND CORRESPONDING NAMES IN FIG. 4)
A= ACTUAL TYPE / P= PREDICTED TYPE

A\P 1 2 3 4 5 6 7 8 9 10
1 123 23 28 26 0 0 0 0 0 0
2 0 103 42 55 0 0 0 0 0 0
3 4 55 87 54 0 0 0 0 0 0
4 8 65 49 78 0 0 0 0 0 0
5 0 0 0 0 132 68 0 0 0 0
6 0 0 0 0 88 112 0 0 0 0
7 0 0 0 0 0 0 125 75 0 0
8 0 0 0 0 0 0 84 116 0 0
9 0 0 0 0 0 0 0 0 90 110
10 0 0 0 0 0 0 0 0 117 83

From a performance perspective, Tab. III reports the time
taken for device-type identification. We see that most of the

time is spent on cases where tiebreak using edit distance was
required. During experiments, 55% of the analyzed finger-
prints matched more than one type and needed a tiebreak
step that involved between two and five types. On average,
seven edit distance computations were needed per device.
The average time for device-type identification is around 150
ms. For comparison, the time taken for device setup was
between one and two minutes, the packet collection was
performed in parallel of this operation. The classification with
Random Forest takes very little time (<1 ms) and grows
linearly with the number of types to identify. This shows
that IOT SENTINEL can easily scale to thousands of device-
types while keeping classification time below 100 ms and type
identification likely below 1 second.

TABLE III
TIME CONSUMPTION FOR DEVICE-TYPE IDENTIFICATION. TIME FOR

SINGLE STEPS IS PRESENTED AT THE TOP AND TIME FOR AN AVERAGE
TYPE IDENTIFICATION IN OUR LAB SETUP IS PRESENTED BELOW.

Steps Mean (±StDev)
1 Classification (Random Forest) 0.014 ms (±0.003)
1 Tiebreak (edit distance) 23.36 ms (±24.37)
Fingerprint extraction 0.850 ms (±0.698)
27 Classifications (Random Forest) 0.385 ms (±0.081)
7 Tiebreaks (edit distance) 156.5 ms (±170.6)
Type Identification 157.7 ms (±171.4)

C. Mitigation Measures Enforcement

Fig. 3 shows the lab setup used for testing enforcement
mechanism employed by Security Gateway. We used a Rasp-
berry PI 2 (R-Pi II) running both OVS and the SDN controller
to take the role of Security Gateway in the network. An
external USB WiFi dongle and hostapd was used to emulate
the wireless interface on R-Pi II.

For each experiment, we performed 15 iterations for each
measured device pair. We measured the latency experienced
between devices D1 − Dn connected to Security Gateway
wireless interface, as well as between devices and servers,
where Slocal is in the local network and Sremote is a remote
server deployed in Amazon EC2. Table IV shows that the
enforcement mechanism employed for traffic filtering by Se-
curity Gateway does not impact the latency experienced by
the user. Fig. 5a shows the impact on latency experienced by
devices regarding the total number of concurrent flows in the
network. The results show that the increase in latency for up to
150 concurrent flows is insignificant to affect user experience
or device operations.

TABLE V
OVERHEAD DUE TO FILTERING

MECHANISM.

Case Overhead
Mean (± StDev)

D1D2 Latency +5.84% (±4.76%)
D1D3 Latency +0.71% (±5.88%)
CPU utilization +0.63% (±1.8%)
Memory usage +7.6% (±4.6%)

We also measured the
memory and CPU
overhead of our
enforcement mechanism.
Fig. 5b shows that there
is very little overhead
in terms of CPU
utilization due to traffic
filtering mechanism. The
overall CPU utilization
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(c) Memory utilization of Security Gateway.

Fig. 5. IOT SENTINEL Performance evaluation for Raspberry PI based deployment of Security Gateway. There is only minimal increase in CPU
and memory utilization of Security Gateway with filtering mechanism enabled. Additionally, the increase in latency experienced relative to increasing number of
concurrent flows in the network is insignificant in terms of user experience.

TABLE IV
LATENCY (MS) EXPERIENCED BY USERS WHERE D1−D4 ARE USER

DEVICES CONNECTED TO SECURITY GATEWAY (SGW) AND Slocal AND
Sremote ARE SERVERS.

Source Destination Filtering
Mean (± StDev)

No Filtering
Mean (± StDev)

D1 D4 24.8 (±1.4) 24.5 (±1.4)
Slocal 18.4 (±1.3) 18.2 (±1.3)
Sremote 20.6 (±3.3) 20.3 (±3.1)

D2 D4 28.5 (±1.7) 28.2 (±1.6)
Slocal 17.2 (±1.2) 17.0 (±1.2)
Sremote 20.0 (±2.9) 19.8 (±3.1)

D3 D4 27.6 (±1.6) 27.5 (±1.6)
Slocal 15.5 (±1.2) 15.4 (±1.1)
Sremote 20.6 (±3.2) 19.9 (±3.2)

measurements also shows that Security Gateway does not
require high processing power to perform network operations.

Similarly, Fig. 5c shows the amount of memory utilized by
Security Gateway with and without using filtering mechanism
is almost similar. The amount of memory used for storing
enforcement rules can be controlled by limiting the size of
enforcement rule cache and removing unused enforcement
rules (for the devices that are no longer connected to the
network) from the cache. The percentage increase in memory,
CPU utilization as well as latency experienced by user due to
filtering mechanism is given in Table V. These results show
that the overhead on memory and CPU utilization is low. Fig. 5
also shows that a small form factor PC such as Raspberry
Pi II provides sufficient computational resources for a typical
environment hosting, e.g., a hundred IoT devices generating
the same number of concurrent flows and requiring as many
enforcement rules.

VI. RELATED WORK

A. Securing IoT Device-to-Device Communications

Authentication schemes tailored for resource constrained
devices [15] are primarily used to control communications
between IoT devices. Zenger et al. [16] proposed a vicinity
based pairing mechanism that delegates trust from one node
to another based on physical proximity. Messaging between
devices can be authenticated using multiple communication

channels (e.g. Bluetooth + NFC) to ensure secure pairing [17].
However, these schemes require some implementation on all
devices of the system to be applicable, failing to cope with
the IoT brownfield of legacy devices already deployed.

At run time, communications between IoT devices can be
restricted based on high level user requirements that a system,
namely SIFT [18], translates to low level access control
policies. Fully automated techniques to identify malicious
communications rely on intrusion detection systems tailored
for IoT scenarios [19]. Verification of data sent from a given
device can be based on measurement correlation with other
devices to identify malicious nodes attempting to pollute mea-
surements [20]. The main difference between IOT SENTINEL
and these techniques is that the former is preventive, mitigating
the threat of vulnerable devices when they are inducted in the
system and before any malicious communication is initiated.

B. Device Fingerprinting

Early work in 802.11 wireless communication fingerprinting
targeted the identification of hardware and driver specific
characteristics. Cache [21] used 802.11 frames’ duration field
that only takes few discrete values depending on driver imple-
mentation to identify WiFi drivers. Passively recording 802.11
probing frames inter-arrival time from a device, Franklin et
al. [7] were able to classify 17 WiFi drivers with an accuracy
ranging between 77% and 96% using a Bayesian classification
method. While relying on passively captured network traffic
as we do, these techniques build hardware/driver specific
fingerprints that are too coarse-grained for our purpose of
identifying device-types. Low cost IoT devices are likely to
use identical cheap WiFi interfaces and corresponding drivers
leading to aggregate a wide range of device-types in the same
class using these techniques.

On the other hand, the fingerprinting of specific users
is achieved using network features such as packet destina-
tion, SSID probes, broadcast packet size and MAC protocol
fields [8] or web transaction characteristics [22]. Hardware
specific characteristics such as clock skew [23] or radio-
frequency signature [24] can be used to identify a unique
network interface card, mostly for rogue wireless Access Point



detection purposes. IoT-specific techniques target mostly high-
end devices, leveraging mobile device configuration [25], or
sensor specific features [26]. However, sensor data analysis
only addresses the identification of a limited class of devices
actually reporting such information. All these methods build
fingerprints able to uniquely identify a device, which is too
specific to identify an unknown device as belonging to one
type. Our technique is positioned between the former and latter
approaches, providing the right granularity to identify device-
types from passive traffic captures.

Gao et al. [27] similarly introduced a passive technique to
identify device-types using the fact that a type of device mod-
ifies a packet in a unique way, due to its internal architecture,
while processing it. Capturing incoming and outgoing packets
and applying wavelet analysis, they were able to discriminate
device-types. This technique only applies to devices processing
and forwarding packets such as routing devices but is not
applicable to end point IoT devices that we target in our work.

GTID [28] also addresses device-type identification. GTID
builds a feature vector composed of inter-arrival time of
packets sent by a device for a specific type of traffic (e.g.
Skype, ICMP, etc.). Feature vectors are used in a neural
network predicting as many classes as there are device-types
to identify. The main difference with our work is that our
fingerprints are not specific to a type of traffic sent at high
rate over a significant period of time. In contrast to devices
used for GTID evaluation, i.e., smartphones and tablets, most
IoT devices generate little traffic with little diversity limiting
this approach to high-end devices. Our technique has a wider
scope, applying to wireless and wired traffic. In addition, using
a single multi-class neural network model in GTID requires
full model relearning when one new type is identified while
our “one classifier per type approach” does not.

VII. FUTURE WORK

In this work, we defined a device-type to denote the
combination of a device’s model and software version. In our
set of test devices, only a few devices offered the possibility
for a software update during our experimentation period, so
we were not able to comprehensively investigate the impact
of updates. For three devices for which updates were applied,
they led to generate distinguishable fingerprints between soft-
ware versions of these devices. In our future work we expect
to be able to investigate this further, as we expect over time
software updates to become available for more devices.
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