Extending IPsec for Efficient Remote Attestation

Ahmad-Reza Sadeghi, Steffen Schulz

System Security Group, Ruhr-University Bochum
{ahmad.sadeghi,steffen.schulz}@trust.rub.de

Abstract. When establishing a VPN to connect different sites of a net-
work, the integrity of the involved VPN endpoints is often a major secu-
rity concern. Based on the Trusted Platform Module (TPM), available
in many computing platforms today, remote attestation mechanisms can
be used to evaluate the internal state of remote endpoints automatically.
However, existing protocols and extensions are either unsuited for use
with IPsec or impose considerable additional implementation complex-
ity and protocol overhead.

In this work, we propose an extension to the IPsec key exchange protocol
IKEv2. Our extension (i) allows for continuous exchange of attestation
data while the IPsec connection is running, (ii) supports highly efficient
exchange of attestation data and (iii) requires minimal changes to the
IKEv2 protocol logic. The extension is fully backwards compatible and
mostly independent of the employed low-level attestation protocol. Our
solution has much less overhead than the TCG TNC design, however,
we also discuss integration with TNC deployments.

1 Introduction

Secure communication between computer systems is typically established using
secure channel technologies such as TLS [1] or IPsec [2]. While these protocols
ensure secure transmission of data and the authenticity of the communication
endpoints, they do not provide any guarantee on the integrity of the involved
endpoints. In many cases however, it is highly desirable to ensure the trustwor-
thiness of the involved remote endpoints, i.e., to have assurance that the remote
system conform to a defined policy.

The secure remote assessment of a remote system’s state is called remote
attestation. It involves a mutually trusted attestor to assure that the possibly
compromised system cannot lie about its current state. The attestor vouches for
the correctness of the attestation data transmitted in one or more attestation
reports. The Trusted Computing Group (TCG), a large consortium of hard- and
software vendors, recently approached this problem by publishing several vendor-
independent specifications to introduce Trusted Computing into the mainstream
computer industry [3]. The core component of the TCG Trusted Computing
Infrastructure [4] is the Trusted Platform Module (TPM) [5], a security module
specifically designed to securely store and report a record of system events. Many
computer vendors already ship the TPM in Laptops and PCs today. The TPM

is already used by some commercial applications such as Microsoft BitLocker [6]
which is a full disk encryption software delivered with some versions of Windows
Vista and “Sirrix. TrustedVPN” that is VPN infrastructure utilizing a broader
set of TPM functionalities [7].

In the TCG approach to attestation, also called binary attestation, relevant
system events are reported to the TPM in form of measurements. More specif-
ically, SHA-1 hash values of binary code that is about to be executed are ez-
tended (stored) into Platform Control Registers (PCRs) of the TPM such that
the order and value of all measurements can be verified. By requiring each soft-
ware component to measure any other component before executing it, a chain
of measurements is created from the initial bootstrapping phase to the start of
individual user applications. For each running application, this chain of measure-
ments can be followed back to the first component started in the system, which
is typically part of the platform firmware (BIOS). For remote attestation of the
current system state, the local TPM simply signs the current set of recorded
measurements (TPHQuote (PCRList)) such that a remote peer can verify an au-
thenticated list of measurements. There have been several enhancements to this
architecture: Examples are the Integrity Measurement Architecture (IMA) [§]
that implements a TCG-style measurement architecture in the Linux kernel or
the concept of a Dynamic Root of Trust for Measurement, where a CPU exten-
sion is used to initialize a trusted system state that can serve as a new root of
the chain of measurements [9], or property-based attestation [10,11]. Another
enhancement is the concept of Runtime Attestation. While normal attestation
typically only records the state of a program at startup, by measuring its pro-
gram code and configuration, runtime attestation attempts to track or enforce
the state transitions of running applications. Known approaches for such pro-
tocols either attest to a certain behavior that is enforced at runtime [12-14] or
attempt to inspect the state of a running program to detect compromise [15-17].
Unfortunately, existing runtime attestation mechanisms are often tuned to spe-
cific use cases and only detect specific attacks. Several attack classes, for example
using Return-Oriented Programming [18], are not yet reliably detected.

A major issue with the TCG approach to the concept of attestation is the
large number of possible states that modern computer system can assume. Due
to the complexity of todays operating systems and applications, it is very hard to
create and maintain a list all valid states of a system. As a result, a lot of effort
is invested into minimizing the Trusted Computing Base (TCB) of a system,
i.e., the number and the size of components that must be trusted. Projects
like NGSCB [19], EMSCB [20], OpenTC [21] and sHype [22] attempt to reduce
complexity and enhance reliability and security of critical subsystems through
modularization and isolation of the system components. In particular, an IPsec-
based VPN service was recently presented in [23] that is optimized for security
and low internal complexity. By using a microkernel-based operating system
and by delegating all uncritical functionality like network card drivers and IP
stack into isolated software modules, the so-called Secure VPN (sVPN) allows
to create IPsec gateways with a small TCB. The obvious next step to enhance

the security of such deployments is to combine sVPN with remote attestation.
Trusted Channels, secure (i.e., authentic, integral, confidential) channels with
remote attestation, have been considered in [24—29]. However, no proposal exists
that specifically targets IPsec VPNs, much less one that focuses on simplicity
and allows efficient exchange of remote attestation reports at runtime, i.e., while
the associated secure channel remains operational.

Contribution. We propose an extension to the IPsec key exchange protocol, the
Internet Key Exchange version 2 (IKEv2) [30], to allow for continuous exchange
of attestation data while the IPsec connection is running. As will be elaborated
in Section 3, the IKEv2 protocol regularly establishes its own secure channel
as a control channel for the actual IPsec communication channels. We propose
an extension to IKEv2 to use this control channel for the exchange of remote
attestation reports. This design allows for efficient exchange of attestation data
during connection setup and during the whole lifetime of any associated com-
munication channel. Thus, our solution can modularly and flexibly handle the
underlying attestation protocol supporting various attestation protocols and ar-
chitectures, an mentioned above (e.g., binary, property-based, IMA, etc.), and
is highly suited for future developments in remote attestation. Our extension is
fully backwards compatible to IKEv2 and need only minor changes to the IKEv2
protocol logic. Last but not least our solution can be implemented with signifi-
cantly less components and protocol overhead than the TCG Trusted Network
Connect (TNC) framework, nevertheless, we also discuss how our extension can
be incorporated into TNC deployments.

QOutline. We identify the requirements for our trusted channel in Section 2.
Following a short introduction to the IKEv2 protocol flow and message format
in Section 3, we then describe the details of our extension in Section 4. We
demonstrate the security of our proposal in Section 5 and discuss the relation of
our work to the TCG TNC framework in Section 6.

2 Requirements for Remote Attestation with IKEv2

The security requirements for remote attestation protocols are not difficult to
identify and many solutions are known [24-29, 31]. However, as mentioned in
Section 1, the practicability and scalability of available approaches is question-
able. We feel that minimal complexity and modularization is the best available
approach to achieve scalable trustworthy systems. By isolating critical function-
ality from the remaining software, the TCB of a system is expected to become
less complex and thus more reliable and also more stable over time.

Our goal is thus to integrate existing and future solutions for binary, property-
based or even runtime attestation protocols with system designs that feature
TCBs with high modularity and low complexity, like the Secure VPN (sVPN)
design presented in [23]. For successful integration, we thus identify the following
technical requirements for our protocol extension:

R1 Security. The attestation reports must be cryptographically linked to the
endpoints of the associated secure channel to prevent a compromised end-
point from relaying attestation reports of other parties (cf. [24]).

R2 Privacy. Confidentiality of transferred attestation messages can be a require-
ment depending on the usage scenario, e.g., to comply with a company’s
security policy.

R3 Simplicity and Modularity. As costs to validate and maintain software rise
with its internal complexity, low software complexity is one of the main
design goals of the sVPN architecture. To support this goal, the complexity
added by our protocol extension should be minimal.

R4 Efficiency. For general usability and to limit server load, our extension must
support the exchange of attestation data with minimal additional protocol
overhead, message roundtrips and computational load.

R5 Interoperability and Flexibility. The protocol extension must be backwards
compatible to IKEv2 and should support centralized management similar to
TNC. As remote attestation is still a subject of research (cf. Section 1), the
protocol must be extensible to support future developments in this field.

3 The Internet Key Exchange Protocol (IKEv2)

In this section, we briefly introduce the IKEv2 protocol specified in [30]. We
focus on the general protocol flow and some details on the message format in
order to give the reader a better understanding on the impact of the protocol
extension presented in Section 4.

Overview. The Internet Key Exchange (IKE) protocol was designed as a gen-
eral protocol for negotiation of Security Associations (SAs), i.e., of keys, al-
gorithms and other attributes needed to establish a secure channel. Its most
prominent application is the negotiation of Child SAs for IPsec, the Security
Extension of the Internet Protocol. It is important for the reader to recognize
that IKEv2 will always first negotiate the SA pair! for a secure control chan-
nel (IKE SAs). Within this control channel, SAs for the actual communication
channels are be negotiated (Child SAs), refreshed or revoked without the need
for further authentication. It is this control channel that we will use to transport
the attestation reports.

Protocol Flow. Figure 1 depicts the basic message flow of IKEv2 and the
required payloads in each exchange phase. The protocol works with pairs of
messages, so-called exchanges. The first message of each exchange is sent by the
Initiator and answered (possibly with an empty message) by the Responder. The
standard IKEv2 protocol flow iterates through multiple phases, each of which
consists of at least one message exchange with certain allowed payloads. The
first phase, INIT, is used to exchange Diffie-Hellman public keys (K, K,) and to

! Since SAs are unidirectional, they are typically created and managed in pairs.

negotiate attributes of the IKE SA pair (SA1). The resulting (unauthenticated)
shared secret K, is used to generate a session key SK that protects subsequent
exchanges under the IKE SA (encapsk()). The AUTH exchange is started in
the second phase to mutually authenticate the endpoints of the IKE SAs and to
negotiate a first set of Child SAs (SA2) that can be used for actual data transfer.
After the authentication phase succeeded, the peers may use the established
IKE channel secured by the IKE SAs to transmit additional notifications or to
negotiate additional Child SAs for secure communication channels (INFO phase).

Initiator Responder
Ni, Ki, SA1l
A el Beebetu BN
N,, K,,SAl
T T P

A;, SA2

SK = PRE(N:, Ny, Kip) SHCaPsK(AGSAZ) opr ope (NG, Ny Ko
encapsk (A, SA2)
encapsk (Ar, 542)

INIT

validate(A,.) validate(A;)

INFO | AUTH

encapsk ()

Fig. 1. Standard IKEv2 protocol flow with the IKEv2 Payloads for Diffie-Hellman key
exchange (K), SA proposals for IKE SA (SA1) and first Child SA (SA2), nonces (N)
and authentication of Initiator (A;) and Responder (A,).

Message Format. An IKEv2 message consists of the IKEv2 header followed
by a list of payloads, each of which may contain several substructures. Each
of the IKEv2 payloads start with a Generic Payload Header that specifies the
type and offset of the next payload in the message. This allows Initiator and
Responder to add optional or non-standard payloads to any message without
interfering with the main handshake. If not supported or unexpected by the
implementation of the receiver, payloads are simply ignored by jumping to the
next available payload. However, the sender may also enforce processing of non-
standard payloads by setting a flag in that payload’s Generic Payload Header.
In that case, the receiver must produce a corresponding error message if the
payload could not be processed.

The Security Association Payload (SA Payload) used to negotiate attributes
of an SA is the most complex payload in IKEv2. Each SA Payload contains a list
of SA Proposal Substructures that represent alternative choices for the SA to be
negotiated. Each SA Proposal in turn contains a list of Transform Substructures
that correspond to the available algorithms that can be negotiated as part of
the SA. The Transform Substructures are categorized according to the available
types of algorithms, e.g., algorithms for encryption, employed pseudo-random
functions or authentication. Finally, each Transform Substructure can contain a
list of Transform Attributes to signal the allowed parameters for the respective

algorithm. To illustrate the recursive encoding of SA Proposals, Figure 2 (a)
depicts an example SA Payload where the first SA Proposal structure proposes
the use of Encapsulated Security Payload (ESP) with AES-CBC encryption
and HMAC-SHA1-96 authentication. Note that the AES-CBC algorithm is sup-
plied with a Transform Attribute specifying possible key lengths, while the key
length of HMAC-SHA1-96 is implicit in the algorithm (96 bit [32]). Order and
numbering of structures is used to efliciently encode preferences and available
combinations algorithms. Also note that the type of an SA Proposal restricts its
allowed Transform Substructures: While an SA Proposal for the Authenticated
Header (AH) protocol only contains the authentication Transform, an SA of
type IKE SA contains at least four different types of Transform Substructures,
negotiating attributes for encryption, authentication, Diffie-Hellman group and
Pseudo-Random Function (PRF). For a general introduction to IPsec we refer
to [33, 34].

4 An IKEv2 Extension for Remote Attestation

Our extension is implemented in three steps. First, we define an additional SA
Transformation type Remote Attestation as an optional component of the IKE
SA. This allows a peer to propose and select remote attestation as part of the
negotiated set of algorithms. Secondly, we define a new IKE payload Attestation
Data to tunnel the actual remote attestation data. Finally, we show how the
actual attestation is securely linked to the IKE SA.

4.1 Remote Attestation in the IKE SA

As explained in Section 3, the IKEv2 protocol negotiates algorithms, key lengths
and other attributes of an SA by formulating them in an ordered list of SA
Proposal Substructures. For each SA negotiation, such a list is sent in an SA
Payload by the Initiator. The Responder parses the SA Payload, selects a set
of SA parameters and returns them in a corresponding response SA Payload.
Figure 2 (b) and (c) depict the format of the Transform and Transform Attribute
Substructures that are encapsulated in the SA Proposals.

Since the message format of IKEv2 is extensible by design and contains large
ranges of identifiers that are “reserved for private use”, we can simply define a
new Transform Substructure of type Remote Attestation and use its Transform
ID field to identify up to 2'6 specific remote attestation protocols. This makes
the class of remote attestation algorithms available to the IKEv2 ciphersuite
negotiation and, in case it is selected by both peers, allows us to define the
additional semantics in Sections 4.2 and 4.3.

Unfortunately, since such protocols can be quite complex and are still subject
to research, they may exist in multiple variations. While the exact version can be
negotiated within the attestation protocol, merging it with the SA negotiation
step is more efficient and consistent. In particular it prevents the case where

(a) SA-Payload (b) Transform Substructure

+ + 01234567890123456789012345678901
| SA-Payload | -t - +
|+ + Transform | 0 (last) or 3 | RESERVED | Transform Length |
| |SA-Proposal #1 [ESP]| Structure + -
| | #=mmmmmmm e + Header |Transform Type | RESERVED | Transform ID |
| | |Transform #1 [enc]| + }
[[AES-CBC] | List of | |
| || A= + Transform ~ <Transform Attributes> ~
| | | |Transf.Attr. #1 | Attrs. | |
[[key len=128]|

[e +

| | |Transform #2 [auth]| (c) Transform Attribute Substructure

|l [HMAC-SHA1-96] |

|] A + 01234567890123456789012345678901
| + + + +
| |SA-Proposal #2 [...] | Header |F| Attribute Type | F=1: Attr. Value; F=0: Length |
[| + t
(N t If F=0, ~ F=0: Attribute Value ~
| | Payload F=1: Not Transmitted

Fig. 2. Illustration of the recursive structure of an SA Payload (a). Details of the IKEv2
Transform (b) and Transform Attribute (c) structures as depicted in [30].

two parties agree on an attestation algorithm only to notice, multiple roundtrips
later, that they do not support the same version of it.

We therefore also define a new Transform Attribute to encode protocol ver-
sion numbers. Specifically, we use a simple Transform Attribute (F' = 1 in Fig-
ure 2 (c)) and split the resulting 16 bit attribute value field into two 8 bit version
numbers. The two numbers V,,,;, and V4, are interpreted as an inclusive range
of acceptable versions or, if V,,,;,, is higher than V,,,,.., as a negated version range.
Similar to the Key Length Attribute, multiple Version Attributes can be included
in a single Transform to encode intersections of version ranges. As an example,
a Remote Attestation Transform with a Transform ID set to 1 might identify
the property-based attestation protocol presented in [10] and an attached Ver-
sion Attribute with V,,;n = Viner = 2 might identify the revised version of that
protocol from [11].

This design allows an Initiator to propose an IKE SA with a remote attesta-
tion protocol in the same way it proposes different encryption or authentication
algorithms. It can suggest multiple alternative protocols at once or make remote
attestation optional by also including SA Proposals without a Remote Attesta-
tion Transform. The Responder has to select one complete set of parameters and
express this set in its reply, or report an error that none of the proposals is ac-
ceptable. Selecting an appropriate Remote Attestation Transform thus imposes
minimal overhead for the peers and is fully backwards compatible.

4.2 The Attestation Data Payload

Once a remote attestation protocol is negotiated, the messages of this protocol
must be transmitted through IKEv2. To send these messages within the IKEv2
exchange, we have to define the layout and semantics of a payload structure

that transports these messages. As creation and verification of attestation mes-
sages is a separate task that can be useful to many different applications besides
IPsec, we assume that actual attestation messages are handled by some external
Attestation Service, however, such a component could also be included into the
IKEv2 server directly.

Attestation Data Payl oad (ADP)

Generic 01234567890123456789012345678901
Payl oad R e L LR LR R T +
Header | Next Payload |C| RESERVED | Payl oad Length |
----------- o e e e e e eeeeeiiaooo-+
Header | Data Length |
----------- g
Attestation | |
Pr ot ocol ~ <Attestation Data> ~
Dat a | |
----------- e

Fig. 3. New payload to transport attestation messages through IKEv2.

As shown in Figure 3, the Attestation Data Payload (ADP) consists of the
Generic Payload Header, a Data Length field and an opaque Attestation Data
field. To rule out possible problems with duplicated or maliciously manipulated
attestation requests as well as privacy concerns, ADPs must only be transmitted
protected by the IKE SA, after the last IKE AUTH exchange succeeded. The
opaque content of the payload may consist of multiple subsequent messages or
logical channels, as for example supported by the TNC Client Server (TNCCS)
protocol specified in [35]. The ADP defined here thus does not itself imple-
ment aggregation of multiple messages into a single payload but delegates this
functionality to the Attestation Service (AS). However, to also support simple
attestation protocols in an efficient manner the IKEv2 server may include mul-
tiple ADPs within a single IKEv2 message and thus transmit multiple queued
attestation messages at once. In this case, the IKEv2 server is responsible for
maintaining the order of Attestation Data messages. This order is already well-
defined through the order of IKEv2 messages and the order of payloads within
a message.

More sophisticated attestation mechanisms like property-based attestation
may require the exchange of larger attestation messages than the maximum
message size of a UDP datagram, 2'¢ — 1 bytes or 64 KB, allows [10]. Following
the example of [29], we thus include the separate Data Length field to allow an
overall attestation message of up to 232 — 1 bytes or 4 GB to be fragmented over
multiple ADPs. Since the order of IKEv2 messages and payloads within a mes-
sage is well-defined and the secure channel provided by the IKE SA addresses
packet loss and Denial of Service (DoS) attacks, reassembling such fragments is
straightforward. Since IKEv2 messages are always exchanged in pairs, fragments
are acknowledged with an empty IKEv2 message as defined in [30]. Defragmen-
tation errors can be handled as IKEv2 payload parsing errors.

Initiator Responder

Attestation Service (AS) IKEv2 Server IKEv2 Server Attestation Service (AS)

Nj, K;, SAT*

INIT

Nr,Kr,SAT*

SK||AK := PRF (N;,Nr,K;y) SK||AK := PRF (N;,Nr,K;y)
encapgy (A;,SA2) D

encapgg (Ar,SA2)

AUTH

need attesy
connect(proto,AK, ...) n>eed attest. C connect(proto.AK, ...)

INFO

data(my)
encapgy (ADP;(m
¢ 1= h(Ny.AK) sk AP dara(my)
my =Ny ||PCRlist
vl data(my) encapgg (ADPr(my) data(m2) DH: h(Ny,AK)
my :=TFRMQuote(c, PCRIist)
C grant()

evaluate(c,m2)

revoke()

close() close()

Fig. 4. Modified IKEv2 protocol flow from Figure 1 using new Transformation Struc-
tures in the SA1* payloads (cf. Section 4.1) and additional ADP payloads that carry
attestation messages m1, mz in the third protocol phase (cf. Section 4.2). The involved
IKEv2 servers are ignorant of the attestation protocol details. They relay the messages
of their responsible ASs and act upon any received policy decisions (cf. Section 4.4). A
simple unilateral attestation protocol is used in phase three to clarify the distinct roles
of AS and TKEv2 server.

4.3 The Shared Attestation Key

As specified in [30], the peers involved in the IKEv2 exchange initialize an in-
ternal PRF for each of the two negotiated IKE SAs. Based on the exchanged
nonces and the shared Diffie-Hellman key K., the PRF is used to extract shared
fresh symmetric keys for each algorithm of the two IKE SAs. The length of the
keys depend on the respective negotiated algorithms and their attributes and is
computed accordingly.

We extend this definition to create a shared Attestation Key AK if a remote
attestation algorithm is selected as part of the IKE SA negotiation. As shown
in Figure 4, we define the extraction process as SK||AK := PRF(N;, N,, K;;).
This is a simplified version of the extraction process defined in [30] which includes
additional data into the PRF input and defines how to generate several keys for
encryption, authentication etc. that we represent with SK here. Note that all the
keys extracted in this manner are statistically independent from each other as
long as the PRF is secure. Therefore, the order in which they are extracted is not
relevant for their security. More importantly, this allows us to use the Attestation
Keys (AKs) as input for attestation protocols that potentially disclose these
values, e.g., when used as nonces in the TCG TPMQuote () operation.

4.4 Attestation Service (AS) Interface

As flexibility is one of our main goals, we do not intend to restrict our protocol
extension to one or more remote attestation protocols. Instead, we delegate in-
terpretation, verification and creation of attestation data to an external generic
Attestation Service (AS). In the following, we present the semantics of the Inter-
Process Communication (IPC) interface between the IKEv2 server and its (im-
plicitly trusted) AS. A sample communication flow for a unilateral attestation
of the Responder is illustrated in Figure 4.

Connect(): After the last AUTH exchange succeeds, the IKEv2 server uses the
connect() call to inform the AS that an attestation of the local platform or
evaluation of a remote platform’s attestation report is needed. The call to the AS
contains (1) the negotiated remote attestation protocol and attributes (proto),
(2) the symmetric key AK of respective IKE SA, (3) the public key certificates,
if used to authenticate the IKE SA and (4) an identifier of the corresponding
network channel. Note that in case of mutual attestation, the IKEv2 server will
receive attestation requests and responses under the same IKE SA, and will thus
also provide them to the AS under the same channel identifier.

Data(): This call implements the exchange of attestation data between the local
AS and IKEv2 server. It contains the channel identifier and the opaque attesta-
tion message m that was received or is to be sent by the IKEv2 server.

Grant()/deny(): The deny() call can be used by the Attestation Service (AS)
at any time to revoke all Child and IKE SAs associated with the connection.
The grant() call informs the IKEv2 server that the attestation succeeded and the
associated Child SAs can be disclosed to the respective subsystems. The signaling

of error messages or alternative attestation exchanges is the responsibility of the
involved ASs.

Close(): This call can be issued by both, AS and IKEv2 server to signal that
the respective IPC connection and its associated IKE SA shall be closed. Any
associated Child SAs are revoked (revoke()).

5 Security Considerations

In this section, we discuss the security of the trusted channel that can be estab-
lished using the extension proposed above. Since our proposal is not restricted
to a particular remote attestation protocol, we will use the unilateral challenge-
response attestation shown in the third protocol phase of Figure 4 to show by
example that our design achieves the following security goals.

G1 Based on the security of the IKEv2 secure channel and careful choice of
the attestation protocol, the IKEv2 extension allows to establish a trusted
channel that meets our security requirements R1 and R2 of Section 2.

G2 A compromise of the attested platform can be recognized in subsequent
attestation exchanges if it is detected by the employed attestation protocol.

Assumptions. To show that G1 and G2 can be met with the protocol shown in
Figure 4, we need the following additional assumptions.

A1l IKFEv2 Security. As specified in [30], the IKEv2 protocol establishes a secure
channel based on the fresh shared keys stream that can be extracted from
the PRF in the second phase. After the second phase succeeded, this chan-
nel provides an ordered exchange of authenticated and encrypted messages
secure against packet loss, replay and downgrade or version rollback attacks.

A2 TCG PKI. A Public Key Infrastructure (PKI) exists that allows the Initiator
to validate the result of the attestation report of the Responder (e.g., result
of TPMQuote() operation plus measurement log) to gain assurance that the
report is authentic and executed by a mutually trusted attestor component.

A3 Attestation. The attestation mechanism (e.g., the TPMQuote () operation) on
the Responder is secure in the sense that a compromise of the platform’s
system state is reflected in subsequent attestation reports. In this context,
compromise denotes any change to a platform’s state that violates the secu-
rity policy of the Initiator.?

A4 [Psec Security The security of the IKEv2 channel (A1) extends to the as-
sociated Child SAs and how they are used within IPsec. More precisely, the
communication channels that are associated with a secure IKEv2 channel
provide a secure channel with the properties negotiated in the Child SA ne-
gotiation, according to the security policies of Initiator and Responder (e.g.,
authentication, confidentiality, partial sequence integrity as specified in [36].

Adversary. The adversary considered here is provided with two major attack
vectors. Firstly, we assume that the network channel used by Initiator and Re-
sponder to communicate is fully under control of the attacker (V1). Secondly,
we assume that the attacker can take control the platform of the Responder at
any time, even while the trusted channel is already established (V2), with the
exception that the mutually trusted attestor component of the platform remains
integral.

V1 The control of the network channel allows the attacker to launch downgrade,
version rollback, replay, injection and many more attacks on IKEv2 and as-
sociated communication channels. Due to assumptions A1 and A4 however,
these attacks are all prevented by the employed secure channel protocols.
The adversary is still capable of launching a DoS attack, however, this is al-
ways possible with the given level of control on the network and thus trivial.
In a more selected DoS attack, the adversary may attempt to either pre-
vent the exchange of attestation messages after the secure channel is already
established. However, as specified in Section 4.1, the use of attestation is
negotiated in IKEv2 phase one and thus known and confirmed at both peers

2 Our goal is to show that the proposed system design is sound if a sufficiently secure
attestation protocol is used, i.e., the attestation protocol is out of scope. We thus
use this definition to obviate any discussion of the attestation scheme, including the
problem of runtime attestation.

as soon as authentication succeeded. As specified in Section 4.4, the IKEv2
servers will thus wait for the decision of the Attestation Service to grant or
deny the use of the actual associated communication channels. In face of se-
lective DoS in later IKEv2 exchanges, the involved ASs can simply deny all
further communication due to attestation timeout. As the attestation mes-
sages are only exchanged once the IKEv2 authentication phase succeeded,
requirement R2 of goal G1 is met in case of V1.

V2 When taking over control of a platform (in our example, that of the Re-
sponder) the adversary is free to modify or inspect its state, including, e.g.,
long term authentication keys and session keys for the secure channel estab-
lished via IKEv2. However, by assumption A3 any such action is detected
by the employed attestation protocol and reflected in subsequent attestation
reports if it is relevant to the Initiator®. Based on the example attestation
protocol illustrated in Figure 4, one can easily see how the Initiator can as-
sure in this case that any subsequent attestation reports either report the

compromise or fail the authentication:

P1 When requesting an attestation report (m; with requested property list
PCRlist), the freshness of the response is assured by including a fresh
nonce (N7) in the request that must be used in combination with a
one-way function when computing the response.

P2 The attestation protocol must be designed such that attestation reports
cannot be spoofed. In our example, this is achieved by combining the
TCG TPMQuote operation with assumption A2.

P3 The remaining option for the adversary is to reflect the request of the
Initiator to an uncompromised third party to receive a fresh and valid
attestation report to answer the original request. This is prevented in our
example by including the shared Attestation Key (AK) into the attesta-
tion report using a one-way function h(). More precisely, the Responder
hashes the nonce together with the shared Attestation Key of the asso-
ciated connection and uses the result ¢ = h(N1, AK) as additional input
to the digital signature computed in the TPMQuote() command. With
growing bit length of AK, the adversary has exponentially decreasing
probability that the AK’ used by the third party is the same as the
AK used in the connection between Initiator and Responder, so that
the attestation report is linked to the respective channel endpoint as re-
quired by R1. Alternatively, we also provide the certificate data used to
authenticate the peers of the IKEv2 channel, thus providing additional
ways to meet R1.

Finally, the adversary may choose not to send a response at all. However, the

Initiator may simply signal the IKEv2 server to close the associated connec-

tions after some timeout to address this issue. Unfortunately, the violation

of R2 is always possible (and thus trivial) if the peer that validates an attes-
tation report is compromised and the attestation protocol discloses the state

3 In practical systems, the platform configuration may be divided into isolated com-
partments that prevent the instant compromise of the whole system, thus allowing
the relevant components to detect the compromise.

it attests to. This can be solved using privacy-preserving remote attestation
protocols like [10,11, 37].

With appropriate choice of the employed attestation protocol, our design thus
achieves the security goals G1 and G2. The argument is easily extended to mul-
tilateral attestation and repeated attestation exchanges at runtime. In fact, any
attestation protocol that follows the requirements in P1 to P3 meets our secu-
rity goals under aforementioned assumptions A1 to A4 if only communicating
using our extension.

6 Related Work - TCG Trusted Network Connect

The TCG work group for Trusted Network Connect (TNC) published several
specifications on the integration of remote attestation into existing secure chan-
nel protocols. Their proposed TNC architecture [38] is a general framework for
request, transmission and validation of attestation reports: Attestation data is
exchanged between multiple Agents on the involved network endpoints. The mes-
sages are collected from the Agents [39, 40], and encapsulated in the TNC Client
Server (TNCCS) signaling protocol [35]. Two alternative protocols are specified
to transport these TNCCS messages to the peer, one using the Extensible Au-
thentication Protocol (EAP) framework [41] and one using a separate dedicated
Transport Layer Security (TLS) [42] channel.

Several modern secure channel protocols support EAP, a protocol framework
that supports many different authentication mechanisms as sub-protocols (EAP
methods). The TCG thus defined the IF-T Binding to EAP [29] to describe
a way to tunnel TNCCS messages within EAP methods (inner EAP method).
Alternatively, if EAP is not available, the IF-T Binding to TLS [42] specifies how
the TNCCS messages can be transmitted through a separate dedicated TLS [1]
connection.

While the TNC framework is highly flexible and integrates well with EAP-
based centralized network access control management, it fails to meet our re-
quirements for simplicity and efficiency: The use of EAP imposes a significant
protocol overhead in terms of roundtrips and relies on the secure configuration
and implementation of multiple additional protocol layers. The additional layers
introduced by the TNC framework aggravate this problem. Further, the design
requires to repeat the EAP handshake and possibly reset the channel when ad-
ditional attestation exchanges are desired after the channel is established (e.g.,
to report changes to the local policy of a peer at runtime). The IF-T Binding
to TLS on the other hand requires a dedicated TLS channel for the exchange of
attestation messages. This allows to exchange additional attestation reports at
runtime, however, the cost of implementing and negotiating TLS as well as the
associated certificate management is considerable. The approach is complicated
by the requirement to cryptographically link the remote attestation reports to
the secure channel. As we have shown, an extension of the IKEv2 protocol is the
less cumbersome and more flexible solution.

6.1 TNC Compatibility

As explained in Section 2, the primary goal of our proposal is the efficient and
flexible transport attestation messages over the IKEv2 protocol. From perspec-
tive of the TNC architecture, our proposal can thus be seen as a new IF-T
Binding to IKEv2 which leverages the existing secure channel.

In fact, our extension meets the requirements of the TNCCS protocol. Specif-
ically, the requirements for Chunking, Transport and Security are met through
transparent in-order transfer of messages of up to 232 — 1 bytes and the secure
channel provided by the IKE SA%. Our protocol extension can thus be used to
transport TNCCS messages transparently, however, with one major caveat: As
our design leverages the secure channel provided by IKEv2, exchanged attesta-
tion messages are only protected during transmission between the two involved
IKEv2 servers. Our protocol does not explicitly support the case where (part of)
the Attestation Service is on a remote system. However, where such a design is
desired, the existing IPsec implementation can be used to configure additional
secure tunnels towards the AS.

7 Conclusion

In this work we proposed an extension to the IKEv2 key exchange protocol
used in IPsec VPNs. We leverage the high flexibility of IKEv2 to implement the
transport of remote attestation messages within the IKEv2 channel, resulting in
a highly efficient and simple design. The result is particularly interesting for use
with resource constrained devices or if formal verification is desired. As IKEv2
is designed as a generic key exchange server, our solution is also more versatile
than previous TLS-based trusted channels. We are currently working to integrate
our extension into the Turaya Secure VPN service [23], together with a simple
attestation protocol to continuously report changes to the low-level IPC access
control. The result can be used to build highly reliable VPN appliances based
on the Turaya Secure OS, featuring a minimal TCB with a small set of security
services on top of a microkernel [43, 44].

References

1. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (2008)

2. Kent, S., Seo, K.: Security Architecture for the Internet Protocol. RFC 4301 (2005)

3. Trusted Computing Group (TCG): Teg homepage.
https://www.trustedcomputing.org (2009)

4. Trusted Computing Group: TCG Architecture Overview, v1.4. (2007)

5. Trusted Computing Group: TPM Main Specification, v1.2. (2005)

4 If an insecure IKE SA is negotiated, by design the lack of security also extends to
its Child SAs and thus to all communication channels.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Microsoft TechNet: Bitlocker drive encryption technical overview.
http://technet.microsoft.com/en-us/library /cc732774.aspx (2008)

Sirrix AG security technologies: Homepage. http://www.sirrix.com (2009)

Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of a
TCG-based integrity measurement architecture. Research Report RC23064, IBM
Research (2004)

McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Seshadri, A.: Minimal TCB
code execution. In: Proceedings of the IEEE Symposium on Research in Secu-
rity and Privacy, Oakland, CA, IEEE Computer Society, Technical Committee on
Security and Privacy, IEEE Computer Society Press (2007)

Chen, L., Landfermann, R., Loehr, H., Rohe, M., Sadeghi, A.R., Stiible, C.: A
protocol for property-based attestation. [45]

Korthaus, R., Sadeghi, A.R., Stiible, C., Zhan, J.: A practical property-based
bootstrap architecture. In: STC ’09: Proceedings of the 2009 ACM workshop on
Scalable trusted computing, New York, NY, USA, ACM (2009) 29-38

Alam, M., Zhang, X., Nauman, M., Ali; T., Seifert, J.P.: Model-based behavioral
attestation. In: SACMAT ’08: Proceedings of the 13th ACM Symposium on Access
Control Models and Technologies, New York, NY, USA, ACM (2008) 175-184
Peng, G., Pan, X., Zhang, H., Fu, J.: Dynamic trustiness authentication framework
based on software’s behavior integrity. In: 9th International Conference for Young
Computer Scientists, Los Alamitos, CA, USA, IEEE Computer Society (2008)
2283-2288

Nauman, M., Alam, M., Zhang, X., Ali, T.: Remote attestation of attribute updates
and information flows in a ucon system. [46] 63-80

Loscocco, P.A., Wilson, P.W., Pendergrass, J.A., McDonell, C.D.: Linux kernel
integrity measurement using contextual inspection. [47] 21-29

Petroni, Jr., N.L., Hicks, M.: Automated detection of persistent kernel control-flow
attacks. In: CCS ’07: Proceedings of the 14th ACM Conference on Computer and
Communications Security, New York, NY, USA, ACM (2007) 103-115

Baiardi, F., Cilea, D., Sgandurra, D., Ceccarelli, F.: Measuring semantic integrity
for remote attestation. [46] 81-100

Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go
bad: generalizing return-oriented programming to RISC. In: CCS ’08: Proceedings
of the 15th ACM conference on Computer and communications security, ACM
(2008) 27-38

England, P., Lampson, B., Manferdelli, J., Peinado, M., Willman, B.: A trusted
open platform. IEEE Computer 36 (2003) 55-63

EMSCB Project Consortium: The European Multilaterally Secure Computing
Base (EMSCB) project. http://www.emscb.org (2004)

The OpenTC Project Consortium: The Open Trusted Computing (OpenTC)
project. http://www.opentc.net (2005)

Sailer, R., Valdez, E., Jaeger, T., Perez, R., van Doorn, L., Griffin, J.L., Berger,
S.: sHype: Secure hypervisor approach to trusted virtualized systems. Technical
Report RC23511, IBM Research Division (2005)

Schulz, S., Sadeghi, A.R.: Secure VPNs for trusted computing environments. [46]
197-216

Goldman, K., Perez, R., Sailer, R.: Linking remote attestation to secure tunnel
endpoints. [45] 21-24

Asokan, N., Ekberg, J.E., Sadeghi, A.R., Stiible, C., Wolf, M.: Enabling Fairer
Digital Rights Management with Trusted Computing. Research Report HGI-TR-
2007-002, Horst-Gortz-Institute for IT-Security (2007)

26.
27.

28.

29.

30.
31.

32.
33.
34.
35.

36.
. Chen, L., Lohr, H., Manulis, M., Sadeghi, A.R.: Property-based attestation with-

38.
. Trusted Computing Group: TNC TNC IF-IMC Specification, v1.2. (2007)
40.
41.

42.
43.

44.

45.

46.

47.

Stumpf, F., Tafreschi, O., Roder, P., Eckert, C.: A robust integrity reporting
protocol for remote attestation. Revised version (2006)

Gasmi, Y., Sadeghi, A.R., Stewin, P., Unger, M., Asokan, N.: Beyond secure
channels. [47] 30-40

Armknecht, F., Gasmi, Y., Sadeghi, A.R., Stewin, P., Unger, M., Ramunno, G.,
Vernizzi, D.: An efficient implementation of trusted channels based on OpenSSL.
In Xu, S., Nita-Rotaru, C., Seifert, J.P., eds.: STC, ACM (2008) 41-50

Trusted Computing Group: TNC IF-T: Protocol Bindings for Tunneled EAP Meth-
ods, v1.1. (2007)

Kaufman, C.: Internet Key Exchange (IKEv2) Protocol. RFC 4306 (2005)
Trusted Computing Group: Subject Key Attestation Evidence Extension, v1.0.
2005

%(rawzzyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message Au-
thentication. RFC 2104 (1997)

Paterson, K.G.: A Cryptographic Tour of the IPsec Standards. cite-
seer.ist.psu.edu/737404.html (2006)

Doraswamy, N., Harkins, D.: IPsec: The new Security Standard for the Internet,
Intranets and Virtual Private Networks (second edition). Prentice Hall (2003)
Trusted Computing Group: TNC IF-TNCCS: Trusted Network Connect Client-
Server, v1.2. (2009)

Kent, S.: IP Encapsulating Security Payload (ESP). RFC 4303 (2005)

out a trusted third party. In Tzong-Chen, Lei, W.C.L., Rijmen, V., Lee, D.T\,
eds.: Information Security — 11th International Conference, ISC 2008, Taipei, Tai-
wan, September 15-18, 2008, Proceedings. Volume 5222 of LNCS., Springer-Verlag
(2008) 31-46

Trusted Computing Group: TNC Architecture for Interoperability, v1.3. (2008)

Trusted Computing Group: TNC TNC IF-IMV Specification, v1.2. (2007)
Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., Levkowetz, H.: Extensible Au-
thentication Protocol (EAP). RFC 3748 (2004) Updated by RFC 5247.

Trusted Computing Group: TNC IF-T: Binding to TLS, v1.0. (2009)

Pfitzmann, B., Riordan, J., Stiible, C., Waidner, M., Weber, A.: The PERSEUS
system architecture. In Fox, D., K6hntopp, M., Pfitzmann, A., eds.: VIS 2001,
Sicherheit in komplexen IT-Infrastrukturen. DuD Fachbeitrige, Vieweg Verlag
(2001) 1-18

Alkassar, A., Stiible, C. In: Die Sicherheitsplattform Turaya. Vieweg+Teubner
(2008) 86-96 (German).

Juels, A., Tsudik, G., Xu, S., Yung, M., eds.: Proceedings of the 1st ACM Workshop
on Scalable Trusted Computing (STC’06). In Juels, A., Tsudik, G., Xu, S., Yung,
M., eds.: Proceedings of the 1st ACM Workshop on Scalable Trusted Computing
(STC’06), New York, NY, USA, ACM Press (2006)

Chen, L., Mitchell, C.J., Martin, A., eds.: Trusted Computing, Second Interna-
tional Conference, Trust 2009, Oxford, UK, April 6-8, 2009, Proceedings. In Chen,
L., Mitchell, C.J., Martin, A., eds.: Trusted Computing, Second International Con-
ference, Trust 2009, Oxford, UK, April 6-8, 2009, Proceedings. Volume 5471 of
Lecture Notes in Computer Science., Springer-Verlag, Berlin Germany (2009)
Ning, P., Atluri, V., Xu, S., Yung, M., eds.: Proceedings of the 1st ACM Workshop
on Scalable Trusted Computing (STC’07). In Ning, P., Atluri, V., Xu, S., Yung,
M., eds.: Proceedings of the 1st ACM Workshop on Scalable Trusted Computing
(STC’07), New York, NY, USA, ACM Press (2007)

