
Hardware-Assisted Fine-Grained Control-Flow Integrity:
Towards Efficient Protection of Embedded Systems

Against Software Exploitation

Lucas Davi, Patrick Koeberl, and Ahmad-Reza Sadeghi
Intel Collaborative Research Institute for Secure Computing (ICRI-SC) at

Technische Universität Darmstadt, Germany
{lucas.davi,ahmad.sadeghi}@trust.cased.de

patrick.koeberl@intel.com

ABSTRACT
Embedded systems have become pervasive and are built into
a vast number of devices such as sensors, vehicles, mobile
and wearable devices. However, due to resource constraints,
they fail to provide sufficient security, and are particularly
vulnerable to runtime attacks (code injection and ROP).
Previous works have proposed the enforcement of control-
flow integrity (CFI) as a general defense against runtime
attacks. However, existing solutions either suffer from per-
formance overhead or only enforce coarse-grain CFI policies
that a sophisticated adversary can undermine. In this pa-
per, we tackle these limitations and present the design of
novel security hardware mechanisms to enable fine-grained
CFI checks. Our CFI proposal is based on a state model
and a per-function CFI label approach. In particular, our
CFI policies ensure that function returns can only trans-
fer control to active call sides (i.e., return landing pads of
functions currently executing). Further, we restrict indirect
calls to target the beginning of a function, and lastly, deploy
behavioral heuristics for indirect jumps.

1. INTRODUCTION
Embedded systems have radically evolved over the last

years and are permeating our information societies. They
can be found almost everywhere, in sensors, RFID tags,
smart cards, mobile and wearable devices, vehicles, industry
control systems, etc. With the increasing deployment and
integration of embedded systems in safety, security and pri-
vacy sensitive applications as well as critical infrastructures,
we are facing new challenges with respect to their trustwor-
thiness, beyond that of traditional platforms [11].

Resource constraints are typically a challenge in embed-
ded systems (computational, storage, energy, etc.) [15]. As
a consequence, security is usually only introduced if the cor-
responding resource usage is minimal. A second challenge is
that embedded systems are usually programmed using na-

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author. Copyright is held by the owner/author(s).
DAC ’14, Jun 01-05 2014, San Francisco, CA, USA
Copyright 2014 ACM 978-1-4503-2730-5/14/06 ...$15.00.

tive (unsafe) programming languages such as C or assembly
language. As a consequence, they frequently suffer from
vulnerabilities that can be exploited by runtime attacks. In
general, such runtime attacks divert the desired control-flow
of (embedded system) software by exploiting bugs such as
buffer overflows. After gaining control over the program flow
the adversary can inject malicious code to be executed (code
injection [3]), or re-use and combine existing code pieces
(gadgets) that are already residing in program memory (e.g.,
in linked libraries) to implement the desired malicious func-
tionality (return-oriented programming [16]).

One promising and general (software-based) defense tech-
nique against runtime attacks is the enforcement of control-
flow integrity (CFI) [1]. In principle, CFI ensures that an ap-
plication only executes according to a pre-determined control-
flow graph (CFG). Since code injection and return-oriented
programming (ROP) attacks result in a CFG deviation, CFI
detects the malicious flow and prevents the attack. CFI can
be realized as a compiler extension [9] or as a binary rewrit-
ing module [1].

Although CFI is an effective and fundamental defense
against runtime attacks, current solutions suffer from sev-
eral limitations such as performance overhead and requiring
presence of debug symbols. Since CFI implementations on
desktop systems suffer from performance issues, the situa-
tion will be exacerbated when applied to embedded system
software. To tackle some of these shortcomings new CFI
solutions have been presented recently [12, 19] that aim at
coarse-grained CFI to improve efficiency but under weaker
adversary models (see Section 3).

Goals and Contributions.
Our goal in this paper is to tackle the challenge of de-

signing a fine-grained, hardware-based CFI defense for em-
bedded systems that in particular mitigates the crucial class
of return-oriented programing (ROP) attacks. In summary,
our CFI design is based on a state model and per-function
label approach to enforce the following CFI policies:

• Function Calls: After a function call we enforce the
processor to switch to a new state called function en-
try. In this state, the processor only accepts our new
CFI instruction (CFIBR label). These instructions are
inserted by the compiler at the beginning of each func-
tion. Hence, calls can only target a valid function en-
try. Moreover, the label is stored in a CFI Label State
memory to keep track of currently executing functions.

• Function Returns: Our CFI policy for returns en-
forces that a return only targets a valid return landing
pad of a function whose label is currently active. This
is achieved by using a new CFI instruction (CFIRET la-

bel) and indexing our CFI Label State memory.

• Indirect Jumps: For these instructions, we use be-
havioral heuristics in a window of five consecutive in-
direct jumps. Our heuristics cover typical patterns of
ROP attacks (e.g., number of direct branches issued,
as well as stack push and pop instructions).

2. RUNTIME ATTACK THREAT MODEL
Runtime attacks exploit vulnerabilities in the software

running on the targeted embedded system. Relevant vulner-
abilities are memory errors such as stack, heap, or integer
overflows [13]. Such vulnerabilities are likely to be discov-
ered since most embedded system software is implemented
in unsafe languages like C or assembly, and large numbers
of memory errors are reported on an ongoing basis (see e.g.,
NIST vulnerability database CWE category: buffer errors1).

The adversary exploits vulnerable code by providing a ma-
licious input that contains (i) data to overflow the buffer,
(ii) the payload that performs the desired malicious oper-
ations, and (iii) new control-flow information (e.g., a new
return address) used to hijack the execution flow and trans-
fer control to the payload. The payload either consists of
a malicious code (i.e., assembler instructions) or a number
of pointers that point to code pieces in linked libraries2.
The former case represents a code injection attack which
is typically defeated by enforcing the non-executable mem-
ory principle (DEP or W⊕X) used on many platforms to-
day. In contrast, the latter case refers to return-oriented
programming (ROP) attacks re-using short code sequences
(gadgets) that are chained together and executed. These
gadgets can be re-used from any software that is accessi-
ble in virtual memory. In contrast, the latter case refers
to return-oriented programming (ROP) attacks that re-use
short code sequences (gadgets) that are chained together and
executed. These gadgets can be re-used from any software
that is accessible in memory.

Hence, we assume that the adversary does not aim at in-
jecting malicious code or new malicious applications (which
is an orthogonal topic), but it is rather able to launch ROP
attacks. Defending against these attacks by introducing a
new hardware architecture is the main goal of this paper.
Since ROP attacks are prevalent in today’s exploits, we will
take a deeper look how these attacks work internally.

Figure 1 depicts a typical memory layout of a ROP at-
tack. The memory area controlled by the adversary contains
the ROP payload, where the payload consists of several re-
turn addresses each pointing to a ROP sequence residing in
the address space of the application. All these sequences
either terminate in a return [16] or indirect jump/call [5] in-
struction. The payload can also contain data words that the
invoked ROP sequences load into registers via stack POP in-
structions (see ROP Sequence 2). The stack pointer register
(on x86: ESP) plays a crucial role in each ROP attack, be-
cause it dictates which ROP sequence needs to be executed
next. At the beginning of the attack, it points to the first

1http://web.nvd.nist.gov/view/vuln/search-advanced
2A combination of both payload types is also possible.

RET ADDRESS 1

RET ADDRESS 2

DATA WORD 1

DATA WORD 2

RET ADDRESS 3

ins1

ins2

RET

ROP Sequence 1

POP EAX

POP EBX

RET

ROP Sequence 2

ins3

ins4

RET

ROP Sequence 3

Adversary-Controlled
Memory (e.g., Stack)

Stack
Pointer
(ESP)

Figure 1: Memory Snapshot of a ROP Attack

return address of the payload. When ROP Sequence 1 ex-
ecutes the final return instruction (RET), the stack pointer
is automatically advanced by one memory word and control
is transferred to the next ROP sequence (ROP Sequence 2).

We also assume that the adversary is able to bypass ASLR
(Address Space Layout Randomization), a defense technique
deployed in today’s systems that randomizes the base ad-
dress of libraries and executables. As a result ASLR ran-
domizes the start addresses of those code sequences the
adversary attempts to invoke in a ROP attack. However,
ASLR is vulnerable to memory disclosure attacks, which re-
veal runtime addresses to the adversary. Such attacks are ca-
pable of circumventing even fine-grained ASLR schemes [17].

3. RELATED WORK
Over the last two decades a number of defense techniques

have been proposed to mitigate runtime attacks. In contrast
to many ad-hoc solutions the most general defense, and the
focus of this paper, is based on the principle of control-flow
integrity (CFI) [1], that tackles runtime attacks regardless
of their specific origin.

3.1 Software-Based CFI Approaches
The original CFI proposal [1] deploys static binary in-

strumentation to derive the control-flow graph (CFG) of an
application binary and extends it with CFI checks. It aims
at fine-grained protection by ensuring that indirect jumps
and calls only target an address that maps to a valid CFG
path, and monitoring that returns only use return addresses
that are held on a so-called shadow stack. For the latter,
function calls are instrumented to always copy the return
address on the shadow stack. One of the main practical lim-
itations of CFI [1] is that it induces a performance overhead
on average by 21% and requires debug symbols. Follow-
up works tackled these limitations in terms of performance
and the necessary extra information [19], and also showed
that CFI enforcement can be realized for ARM-based smart-
phones [6, 9]. However, the solution in [6] still suffers from
performance penalties. Furthermore, the CFI policy used
for return instructions in [19] only provides a coarse-grained
check, because it allows returns to target any instruction
that follows a call instruction.

3.2 Hardware-Assisted CFI Approaches
Several approaches leveraged (or introduced new) hardware-

based mechanisms to mitigate runtime attacks. kBouncer
uses the Last Branch Recording (LBR) history table of re-
cent Intel processors [12]. It adds hooks into API call sites,
and once these are triggered at runtime, it validates the LBR

entries based on a CFI policy. However, this policy is coarse-
grained: returns are allowed to target any instruction after
a call, and indirect jumps and calls are not monitored. In-
stead, kBouncer counts the number of instructions executed
between two indirect branches to identify ROP sequences.

CFIMon uses performance counters and Intel’s Branch
Trace Store (BTS) to detect control-flow deviations [18].
Zhang et al. detect program execution anomalies based on
a new hardware architecture that validates all branch in-
structions [20]. Dynamic Sequence Checking validates the
hamming distance between basic blocks against known val-
ues using a dedicated runtime execution monitor hardware
module [10]. However, some of these approaches require an
offline training phase [18, 20] and all assume a precise and
static control-flow graph (CFG). Deriving a complete CFG
is hardly possible given the complexity and dynamic nature
of modern programs. In particular, statically determining
valid return addresses leads to coarse-grained CFI policies
as described in [1].

The CFI design presented in this paper is most closely
related to the hardware-assisted CFI design presented by
Budiu et al. [4]. In their work, new hardware CFI instruc-
tions are introduced to enforce label checks on each indirect
branch. For this, each branch target is annotated with a
label instruction (cfilabel L), and every indirect branch
is replaced by a corresponding CFI instruction, e.g., jmpc

reg,L. The latter CFI instruction jumps to the address spec-
ified in reg and at the same time sets a label L in a dedicated
(new) CFI register. After the indirect branch has been exe-
cuted, the processor changes state such that cfilabel is the
only permissible next instruction. In particular, the state
will only change back to the ordinary execution state after
a cfilabel instruction has been executed using exactly the
label L that has been stored in the CFI register by the indi-
rect branch. The main drawback of this approach is that it
leads to coarse-grained CFI policies for return instructions.
Note that a subroutine can be called by different callers,
but the return of the subroutine can only use one label, e.g.,
retc L1. Hence, in order to preserve the program seman-
tics at each possible call side, the compiler needs to insert
a label instruction using L1. This allows the adversary to
choose to which call side he wants to return. Moreover,
another related problem arises for those indirect calls that
can potentially target many diverse functions. As an exam-
ple, consider an indirect call that can possibly target 200
functions (which is not an artificial scenario even if source
code is available, see e.g., [2]). To ensure fine-grained CFI,
one would need to assign a unique label for each of the 200
function return instructions. As such, the compiler needs
to add 200 corresponding label instructions at the call side
(the instruction after the indirect call), i.e., 200 cfilabel

L1-L200 instructions. This leads to a significant space and
performance overhead. Given these problems, using the ap-
proach presented in [4] will with high probability lead to a
coarse-grained CFI policy where identical labels will be used
for a subset of returns.

To summarize, many software and hardware-based CFI
approaches rely on coarse-grained return policies allowing a
return to target any call-preceded instruction. As we will
further analyze in Section 4 this allows an adversary to by-
pass these defenses and mount ROP attacks. As a conse-
quence, we aim towards a more effective and at the same
time efficient protection against ROP attacks.

4. PROBLEMS OF COARSE-GRAINED CFI
As mentioned in Section 3, many CFI schemes allow a

return instruction to target any valid call side, i.e., any in-
struction that follows after a call instruction. While it is
widely believed that this protection level is already sufficient
to thwart ROP attacks (see e.g., [4, 19, 12]), we argue that
this only negligibly raises the bar for an adversary. For this,
we performed a small experiment, where we statically ana-
lyzed the standard UNIX C library libc.so and searched for
valid call-preceded gadgets. Our analysis reveals that there
are 2,242 valid call-preceded sequences each terminating in
an indirect branch in the 1.6MB large libc.so library. In
particular, we only consider sequences that contain at most
10 instructions3. In other words, the adversary can target
more than 2,000 locations when he exploits a single return
instruction. Based on this large set of ROP sequences we
constructed a proof-of-concept ROP exploit that launches
a new shell to the adversary. Our proof-of-concept attack
demonstrates the ineffectiveness of coarse-grained CFI, and
confirms the attacks recently presented against Windows
EMET and CFI for COTS binaries [7, 8].

5. DESIGN OF HARDWARE-ASSISTED CFI
In this section, we introduce the design and implementa-

tion of our novel security hardware architecture that pro-
vides fine-grained protection against ROP attacks based on
control-flow integrity (CFI).

Our basic design modelled as a state machine is shown
in Figure 2. The main idea of our protection mechanism
is to enforce CFI based on label state, and decouple source
from destination labels (e.g., as used in [4]). For this we
distinguish between four states: (0) for ordinary program
execution, (1) function entry, (2) function exit, and (3) CFI
exception state when an attack is detected. To enforce our
CFI label approach we envision the introduction of two new
CFI label instructions, namely CFIBR and CFIRET. As the
names imply, we use one label instruction for function calls
and another one for returns. This distinction allows us to
deploy different policies for calls and returns, and at the
same time ensures that an indirect call cannot target a label
instruction used for returns and vice versa.

Call Instrumentation.
In state 0, three types of indirect branches are of interest

for CFI. First, direct and indirect calls will lead to a transi-
tion from state 0 to state 1 (function entry). In this state,
we only allow the program to use a CFIBR instruction. Any
other instruction will lead to a CFI violation and transition
to state 3. Each CFIBR instruction contains a label, which is
hard-coded as an immediate. Specifically, we use labels on
a per-function level. In other words, every function in the
program is assigned one unique label and we insert a CFIBR

instruction at the beginning of each function.
The effect of a CFIBR is twofold: first, it loads the used la-

bel in a dedicated and isolated memory storage that we refer
to as CFI Label State. This operation effectively activates
a label, i.e., it indicates that a function has been entered.
The second effect is that after CFIBR has been executed, the
processor changes back to state 0. Our mechanism ensures
that an indirect call must target a CFIBR instruction. Since

3Larger sequences are typically not useful for ROP attacks
since they induce too many side-effects.

State 0
Normal Execution

State 1
Function Entry

Direct and
Indirect Calls

Returns

Indirect Jump

State 2
Function Exit

CFIBR label

CFIRET label

Indirect Jump
Anomaly Detector

Counter: Direct Jumps

Counter: POP and PUSH

CFI Label State

0000

Active Labels

0005

0020

State 3
Attack Detection

STOP
Execution

No CFIBR issued

No CFIRET issued or
inactive label used

Counter thresholds exceeded

Valid CFIBR issued

Valid CFIRET issued

Figure 2: Design of Hardware-Enforced ROP Detection

Program Code

Function A

Instruction 1

CFIBR 0025

Instruction 2

CALL Function B

CFIRET 0025

Instruction 3

RET 0025

Function B

Instruction 4

CFIBR 0050

Instruction 5

RET 0050

Function C

CALL Function X

CFIBR 0272

CFIRET 0272

RET 0272

CFI Label State

0025

0050

LabelActivate Label 0025

Activate Label 0050

Deactivate Label 0050

Label 0272 not active
→ Stop execution

1

3

2

4

Figure 3: CFI policy for function returns

these are placed at each function entry, we prevent the adver-
sary from jumping into the middle of a function. This basic
check is along the lines of existing CFI approaches. Our
main security improvement compared to previous works is
our instrumentation for function returns.

Return Instrumentation.
Whenever a return instruction is issued by the program,

we exchange the state from 0 to state 2. Similar to state 1,
we only allow the execution of CFIRET instruction in this
state. Furthermore, state 2 enforces a CFI policy ensuring
that only those CFIRET instructions with an active label in
our CFI Label State memory are executed. This policy en-
sures that function returns can only target a function that is
currently executing. To support this scheme, the CFI com-
piler emits CFIRET instructions at all valid call sides (i.e.,
at all instructions following a call instruction) using exactly
the same label that has been assigned to the function.

A detailed flow of the return protection is shown in Fig-

ure 3. It shows a sample program consisting of three func-
tions: A, B, and C. Each function is assigned a label, e.g.,
label 0025 is used for Function A. As described above this
label is written to our CFI Label State memory through the
CFIBR instruction at the beginning of each function (step 1).

Note that Function A performs a subroutine call to Func-
tion B (step 2). Hence, the processor switches to state 1, and
the CFIBR of Function B activates label 0050 in the CFI La-
bel State memory (step 3). The critical point with regards
to CFI is the function return in Function B. Potentially, the
adversary could have manipulated the return address to hi-
jack the execution flow. To prevent this attack, we apply
our CFI policy for returns ensuring that that a return can
only target a CFIRET instruction using an active label. In
the example shown in Figure 3, our CFI policy is preserved
when the program returns to Function A, because at its call
side the CFI compiler has emitted a CFIRET 0025 instruc-
tion. Consequently, the adversary has no chance to redirect
the control-flow to the call side of Function C, since label
0272 is not active. Recall that coarse-grained CFI protec-
tion schemes that only deploy one label for returns would
have not prohibited this malicious execution flow.

Since we activate labels, we also need to deactivate them
at the time the function returns. This can be achieved in
two ways: one option is to embed the label in the return
instruction. Alternatively, we could introduce a separate
new instruction that performs the deactivation and place it
before the return instruction, e.g., DEACT label.

Indirect Jump Instrumentation.
Although most existing exploits today deploy ROP at-

tacks that misuse return instructions to chain gadgets to-
gether, there is also the possibility of mounting ROP at-
tacks using indirect jumps [5]. Although these attacks are
more challenging to execute, since there are not as many
sequences available as for returns, they are harder to pre-
vent due to the fact that many indirect jumps cannot be
resolved prior to execution, i.e., their set of target addresses
are hard to predict. Hence, we leverage in our design a
heuristic behavioral-based approach that does not rely on
perfect resolving of indirect branch targets. Specifically, we

keep track of several counters in the window of five indirect
jumps. One counter keeps track of the number of direct
branches executed between our sliding window. This is a
reliable ROP attack indicator, because ROP attacks today
rarely employ direct branches but rely on indirect branches
whose target addresses can be controlled. In contrast, di-
rect branches are hard-coded and in most cases will lead to
a loss of control in the ROP chain. Another two counters
are deployed to keep track of stack pushes and pops. Typi-
cally, ROP attacks do not use push instructions [16] as these
would typically destroy the ROP chain by overwriting point-
ers. That said, if many pop but only a few push instructions
are issued in our window, we have another indicator that a
ROP attack is currently executing.

Effectiveness.
Our design on hardware-assisted CFI effectively mitigates

ROP attacks. In contrast to previous work on coarse-grained
CFI policies for returns (e.g., [12, 19]), we enforce that re-
turns can only target a call site of a function whose label is
currently active. This effectively prevents ROP attacks that
invoke call-preceded gadgets [8] of which more than 2,000
sequences exist only in the standard UNIX C library libc
(see Section 4). Moreover, our approach to return instru-
mentation is more efficient and easier to maintain than a
shadow stack, as in [1], because we do not need to perform
a cumbersome and slow return address match validation.

To prevent ROP attacks from jumping into the middle of
a function, we enforce that call instructions target a valid
function start. This would still allow an adversary to launch
pure return-into-libc attacks where only entire functions are
invoked by exploiting indirect calls. Note that such attacks
are not specific to our design but apply to previous CFI so-
lutions as well. However, return-into-libc attacks typically
still need to invoke at least some ROP sequences to pre-
pare function arguments, which is detected by our approach.
Moreover, assuming a precise control-flow graph as in [1, 4],
our design can be easily leveraged to enforce fine-grained
CFI checks for indirect calls. We would only need to load
all valid labels of an indirect call in a second label mem-
ory area (Call Labels) and, restrict the subsequent CFIBR L

instruction to use a label that can be found in Call Labels.
For our indirect jump heuristics, we already tested sev-

eral thresholds using SPEC CPU2006 benchmarks. Our ex-
periments reveal that between a sliding window of five in-
direct jumps there are never execution traces that contain
less than 3 direct jumps and 3 push instructions. Although
heuristic-based approaches will never provide an ultimate
solution to runtime attack prevention, they can significantly
raise the bar for control-flow attacks. This is the case in our
design, where we provide fine-grained protection of returns
combined with heuristic-based policies for indirect jumps.
Another alternative we are currently investigating is a new
CFI policy for indirect jumps that ensures indirect jumps
can only target a function whose label is active. Since indi-
rect jumps typically remain in the boundaries of the function
where they are executing4, it seems to be a promising direc-

4There are some known exceptions such as stub code for calls
to external library functions in the Linux PLT (Procedure
Linkage Table) section. To support these indirect jumps,
we could enforce that indirect jumps are allowed to target
functions whose label is active or whose next instruction is
a CFIBR L.

Instruction Semantics

CFIBASE baseaddr cfi base reg := baseaddr
CFIBR label [cfi base reg + label] := 1
CFIRET label if [cfi base reg + label] != 1

then STOP
RET label [cfi base reg + label] := 0
DEACT label [cfi base reg + label] := 0

Table 1: Instruction extensions and semantics

tion that we will explore. In particular, we will investigate
whether such a strict CFI policy will raise false positives. For
the time being, we employ the heuristics described above.

6. IMPLEMENTATION PLAN
We intend to implement our hardware-assisted CFI on the

Intel Siskiyou Peak research architecture [14]. Siskiyou Peak
is a 32-bit, 5 stage pipeline, single-issue processor design
targeted primarily at embedded applications. The processor
is organized as a Harvard architecture with separate buses
for instruction, data and memory-mapped IO spaces and is
fully synthesizable.

CFI Label State Table.
We propose that the CFI label state table be embedded in

the data segment of the executing program with an associ-
ated base register (cfi_base_reg) defining the appropriate
data segment offset. This approach supports multi-tasking
environments where the appropriate offset can be managed
by an OS on a task-by-task basis. The CFI label embed-
ded in CFIBR, CFIRET and RET or DEACT would provide the
index into the table. Embedding CFI label state into the
program will result in increased memory bandwidth and in-
creased cache pressure in multi-level memory architectures.
While this is a disadvantage in those contexts, for deeply
embedded processors at the lower end of the performance
scale, where simple physical addressing and Tightly Cou-
pled Memories (TCMs) are typical, this would be less of an
issue. Table management could approach single cycle per-
formance in these usages. Other trade-offs are possible in
relation to table data representation, for example, packing
32 label states into a 32-bit memory word at the expense of
performance and additional logic complexity.

ISA Extensions.
The Siskiyou Peak ISA is a subset of the Intel Architeture

(IA) instruction set. As detailed in previous sections the
ISA will be extended with CFIBR, CFIRET, and either a mod-
ified RET or new DEACT instruction. Table 1 shows the new
instruction semantics. The base address of the CFI state
table, cfi_base_reg, is set using the CFIBASE instruction.

Exception Handling.
A necessary design decision regarding CFI in general per-

tains to the handling of detected CFI violations. In our
scheme we intend to raise a processor exception when transi-
tioning to state 3 of Figure 2. The address of the instruction
which raised the exception will be recorded and execution
will transfer to an exception handler routine which can de-
cide on the correct course of action. This approach affords
flexibility in how CFI violations are dealt with and provides

a means to restart program execution with no loss of conti-
nuity. This may be appropriate for violations resulting from
the indirect jump heuristics.

Indirect Jump Detection.
It is envisaged the the heuristics associated with indirect

jump detection will be implemented in an fully autonomous
manner with software only responsible for configuring the
appropriate indirect jump window size and thresholds for di-
rect jumps and push and pop stack operations. More specif-
ically, indirect jumps will be counted and when the window
size, e.g. 5, is reached the direct jump and push and pop
counters will be compared against configurable thresholds.
If these thresholds are exceeded, a transition to state 3 in
Figure 2 will occur indicating a ROP attack based on indi-
rect jumps. Conversely, if no thresholds have been exceeded
the counters will be reset and monitoring will continue.

7. SUMMARY AND CONCLUSION
Runtime attacks such as return-oriented programming con-

stitute a powerful attack vector on a broad range of proces-
sor architectures, including embedded systems. With no
doubt, the principle of control-flow integrity (CFI) is a ro-
bust and general defense technique to effectively mitigate
these attacks. In particular, CFI does not require bug-free
programs which is very hard to achieve in practice given
the fact that many programs are still being written in type-
unsafe languages (like C/C++). On the other hand, exist-
ing CFI solutions suffer from performance problems or do a
trade-off between performance and security leading to inse-
cure and coarse-grained CFI policies. Our goal in this paper
is to present a new hardware-assisted CFI framework that
enforces fine-grained CFI policies using a per-function label
approach and a state model where active labels (i.e., cur-
rently executing functions) are maintained in a dedicated
memory area. We also outlined our implementation plan
and elaborated on challenges. We believe that CFI in em-
bedded systems is an enabling technology for other security
services such as runtime attestation of embedded systems.

8. REFERENCES
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.

Control-flow integrity: Principles, implementations,
and applications. ACM Trans. Inf. Syst. Secur., 13(1),
2009.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and
M. Castro. Preventing memory error exploits with
WIT. In IEEE Symposium on Security and Privacy,
S&P ’08, 2008.

[3] Aleph One. Smashing the stack for fun and profit.
Phrack Magazine, 49(14), 1996.

[4] M. Budiu, U. Erlingsson, and M. Abadi. Architectural
support for software-based protection. In Workshop on
Architectural and System Support for Improving
Software Dependability, ASID ’06, 2006.

[5] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented
programming without returns. In ACM Conference on
Computer and Communications Security, CCS ’10,
2010.

[6] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz,
R. Hund, S. Nürnberger, and A.-R. Sadeghi. MoCFI:

A framework to mitigate control-flow attacks on
smartphones. In Network and Distributed System
Security Symposium, NDSS ’12, 2012.

[7] J. DeMott. Bypassing EMET 4.1. http://labs.
bromium.com/2014/02/24/bypassing-emet-4-1/,
2014.

[8] E. Göktas, E. Athanasopoulos, H. Bos, and
G. Portokalidis. Out of control: Overcoming
control-flow integrity. In IEEE Symposium on Security
and Privacy, S&P ’14, 2014.

[9] T. H. Jannik Pewny. Control-flow restrictor:
Compiler-based CFI for iOS. In Annual Computer
Security Applications Conference, ACSAC ’13, 2013.

[10] A. K. Kanuparthi, J. Rajendran, M. Zahran, and
R. Karri. Dynamic sequence checking of programs to
detect code reuse attacks. Technical report, 2013.
http://isis.poly.edu/~arun/tvlsi.pdf.

[11] P. Kocher, R. Lee, G. McGraw, and A. Raghunathan.
Security as a new dimension in embedded system
design. In Annual Design Automation Conference,
DAC ’04, 2004.

[12] V. Pappas, M. Polychronakis, and A. D. Keromytis.
Transparent ROP exploit mitigation using indirect
branch tracing. In USENIX conference on Security,
SSYM’13, 2013.

[13] J. Pincus and B. Baker. Beyond stack smashing:
Recent advances in exploiting buffer overruns. IEEE
Security and Privacy, 2(4), July 2004.

[14] J. Rattner. Extreme scale computing. ISCA Keynote,
2012.

[15] S. Ravi, A. Raghunathan, P. Kocher, and
S. Hattangady. Security in embedded systems: Design
challenges. ACM Trans. Embed. Comput. Syst., 3(3),
Aug. 2004.

[16] H. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In ACM Conf. on Computer and
Communications Security, CCS ’07, 2007.

[17] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A.-R. Sadeghi. Just-in-time code
reuse: On the effectiveness of fine-grained address
space layout randomization. In IEEE Symposium on
Security and Privacy, S&P ’13, 2013.

[18] Y. Xia, Y. Liu, H. Chen, and B. Zang. CFIMon:
Detecting violation of control flow integrity using
performance counters. In Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks, DSN ’12, 2012.

[19] M. Zhang and R. Sekar. Control flow integrity for
COTS binaries. In USENIX conference on Security,
SSYM’13, 2013.

[20] T. Zhang, X. Zhuang, S. Pande, and W. Lee.
Anomalous path detection with hardware support. In
Proceedings of the 2005 International Conference on
Compilers, Architectures and Synthesis for Embedded
Systems, CASES ’05, 2005.

