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ABSTRACT

Smartphones and tablets have become an integral part of our
daily life. They increasingly store and process security and
privacy sensitive data which makes them attractive targets
for attackers. In particular for the popular Android OS, a
number of security extensions have been proposed that target
specific security and privacy problems caused by Android’s
lack of a fine-grained, dynamic and system-wide mandatory
access control.

In this paper, we tackle the challenge of providing a generic
security architecture for the Android OS that can serve as
a flexible and effective ecosystem to instantiate different
security solutions. In contrast to prior work our security
architecture, termed FlaskDroid, provides mandatory access
control simultaneously on both Android’s middleware and
kernel layers in a consolidated manner. The synchronization
of policy enforcement between the two layers is non-trivial
due to their completely different semantics. We present an
efficient policy language (inspired by SELinux) tailored to the
specifics of Android’s middleware semantics. We show the
flexibility of our architecture by policy-driven instantiations
of selected security models: one is from the existing work
(Saint) while the other one is a new privacy-protecting, user-
defined and fine-grained per-app access control model. Other
possible instantiations include phone booth mode, or dual
persona phone. Finally we evaluate our implementation on
SE Android 4.0.4 illustrating its efficiency and effectiveness.

1. INTRODUCTION

Mobile devices such as smartphones and tablets have be-
come very convenient companions in our daily lives and, not
surprisingly, also appealing to be used for working purposes.
On the down side, the increased complexity of these devices
as well as the increasing amount of sensitive information (pri-
vate or corporate) stored and processed on them, from user’s
location data to credentials for online banking and enterprise
VPN, raise many security and privacy concerns. Today the
most popular and widespread smartphone operating system
is Google’s Android .

Android’s vulnerabilities.

On the downside, the increased usage of smart devices in
security and privacy critical contexts (e.g., mobile banking)
as well as the storage and processing of sensitive data on
them introduce new security and privacy risks. Android
has been shown to be vulnerable to a number of different
attacks such as malicious apps and libraries that misuse

their privileges or even utilize root-exploits

to extract security and privacy sensitive information;

taking advantage of unprotected interfaces
and files [76]; confused deputy attacks ; and collusion
attacks |68} |51].

Solutions.

On the other hand, Android’s open-source nature has made
it very appealing to academic and industrial security research.
Its system architecture and security mechanisms have been
thoroughly scrutinized, and various extensions to Android’s
access control framework have been proposed to address
particular problem sets such as protection of the users’ pri-
vacy ; application centric security such
as Saint enabling developers to protect their application
interfaces ; establishing isolated domains (usage of the
phone in private and corporate context) [12]; mitigation of
collusion attacks , and extending Android’s Linux kernel
with Mandatory Access Control .

Observations.

Analyzing the large body of literature on Android security
and privacy one can make the following observations:

First, almost all proposals for security extensions to An-
droid constitute mandatory access control (MAC) mech-
anisms that are tailored to the specific semantics of the
addressed problem, for instance, establishing a fine-grained
access control to user’s private data or protecting the plat-
form integrity. Moreover, these solutions fall short with
regards to an important aspect, namely, that protection
mechanisms operate only at a specific system abstraction
layer, i.e., either at the middleware (and/or application)
layer, or at the kernel-layer. Thus, they omit the peculiarity
of the Android OS design that each of its two software layers
(middleware and kernel) is important within its respective
semantics for the desired overall security and privacy. Only
few solutions consider both layers , but they support
only a very static policy and lack the required flexibility to
instantiate different security and privacy models.

The second observation concerns the distinguishing char-
acteristic of application development for mobile platforms
such as Android: The underlying operating systems provide
app developers with clearly defined programming interfaces
(APIs) to system resources and functionality — from network
access over personal data like SMS/contacts to the onboard
sensors. This clear API-oriented system design and conver-
gence of functionality into designated service providers
54] is well-suited for realizing a security architecture that
enables fine-grained access control to the resources exposed



by the API. As such, mobile systems in general and Android
in particular provide better opportunities to more efficiently
establish a higher security standard than possible on current
commodity PC platforms .

Challenges and Our Goal.

Based on the observations mentioned above, we aim to
address the following challenges in this paper: 1) Can we
design a generic and practical mandatory access control ar-
chitecture for Android-based mobile devices, that operates
on both kernel and middleware layer, and is flexible enough
to instantiate various security and privacy protecting models
just by configuring security policies? More concretely, we
want to create a generic security architecture which sup-
ports the instantiation of already existing proposals such as
Saint or privacy-enhanced system components , or
even new use-cases such as a phone booth mode. 2) To what
extent would the API-oriented design of Android allow us
to minimize the complexity of the desired policy? Note that
policy complexity is an often criticized drawback of generic
MAC solutions like SELinux on desktop systems ,

Our Contribution.

In this paper, we present a security architecture for the
Android OS, that addresses these challenges by designing a
security framework that can serve as an appropriate ecosys-
tem for different security and privacy protecting models.
Our design is inspired by the concepts of the Flask architec-
ture : a modular design that decouples policy enforcement
from the security policy itself, and thus provides a generic
architecture where multiple and dynamic security policies
can be supported by the system. We aim to demonstrate
that such complex and at the same time flexible security
frameworks can be more efficiently integrated into the design
of today’s smart device operating systems compared to tra-
ditional non-mobile systems. In particular, our contributions
are:

1. System-wide security framework. We present the de-
sign and implementation of a security framework that
extends the Android OS and operates on both the
middleware and kernel layer. It addresses many prob-
lems of the stock Android permission framework and
of related solutions which target either the Middle-
ware or the Kernel level. We base our implementation
on SE Android 7 which has already been partially
merged into the official Android source-code by Google
and is expected to become a standard feature of future
Android versions .

2. Security policy. We developed and integrated type
enforcement at Android’s middleware layer, which has
completely different semantic than the kernel level, and
its synchronization with the kernel enforcement at run-
time. We present our policy language that leverages
the API-oriented design of Android. In particular, as
we will discuss in detail, privacy and security critical
functionalities on Android are concentrated in a small
number of system components forming single access
points to the corresponding functionality. This is an

1h‘l:'cp ://www.osnews.com/story/26477/Android_4_2_
alpha_contains_SELinux

important design aspect that significantly simplifies
policy authoring and achieving a high code coverage.

3. Use-cases. By adjusting the policies, our security frame-
work can instantiate attack-specific related work and
use-cases that go beyond this related work. We demon-
strate with example use-cases how the different seman-
tics of each layer (middleware/kernel) can be used to
provide more powerful and efficient security policies
that are jointly enforced on those layers.

4. Efficiency and effectiveness. We successfully evaluate
the efficiency end effectiveness of our solution by testing
it against a testbed of known attacks, and by deriv-
ing an example system policy that can function as a
baseline policy which allows for instantiating further
use-cases.

The remainder of this paper is structured as follows. In
Section [2] we provide technical background information. We
discuss our adversary model, requirements analysis and chal-
lenges in Section [3} In Section [4] we present the FlaskDroid
architecture and policy language and show its implementa-
tion in Section Bl We demonstrate in Section [6] use-cases for
FlaskDroid’s applicability and evaluate our architecture in
Section [l We discuss related work in Section [§land conclude
this paper in Section [J}

2. BACKGROUND AND CHALLENGES

In this section, we first present a short overview of the stan-
dard Android software stack, focusing on the security and
access control mechanisms in place. Afterwards, we elaborate
on the SE Android Mandatory Access Control (MAC) imple-
mentation. We conclude the section by discussing conceptual
and technical challenges.

2.1 Android Software Stack

Android is an open-source software stack tailored to mo-
bile devices, such as smartphones and tablets. It is based
on a modified Linux kernel, which is responsible for basic
operating system services, such as process scheduling, mem-
ory management, file system support and network access.
Certain subsystems have been modified by Google to be
compatible with the scarce resources of mobile devices, e.g.
available power and memory .

Furthermore, Android consists of an application framework
implementing (most of) the Android API. System Services
and libraries, such as the radio interface layer and native
code libraries, are implemented in C/C++. Android also
provides a Java virtual machine executing the Dalvik byte-
code format, which has been tailored to the specific needs
of resource-constrained devices. Higher-level services, such
as System settings, the Clipboard, the Wifi-, Location- and
Audiomanager, are implemented in Java. Together, these
components comprise the Android middleware layer.

Android applications (apps) are implemented in Java and
may contain native code. They are positioned at the top of
the software stack (application layer) and rely on the pre-
viously described kernel and middleware Services. Android
ships with standard applications completing the implemen-
tation of the Android API, such as a Contacts (database)
Provider. Additional apps can be installed by the user from,
for example, Google Play 2.

*https://play.google.com/store
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Android applications consist of certain components: Ac-
tivities (user interfaces), Services (background processes),
ContentProviders (SQL-like databases), and Broadcast Recei-
vers (mailboxes for broadcast messages). Applications can
communicate with each other on multiple layers: 1) Stan-
dard Linux Inter-Process Communication (IPC) using, e.g.,
domain sockets; 2) Internet sockets; 3) Inter-Component
Communication (ICC), a term abstractly describing IPC
between application components using a light-weight imple-
mentation of OpenBinder , simply denoted as Binder.

ICC on Android is usually implemented using a domain
specific language, the Android Interface Definition Language
(AIDL), which is compiled into Java stub and skeleton code
using the AIDL compiler. Furthermore, predefined actions
(e.g., starting an Activity) can be triggered using an Intent,
a unicast or broadcast message sent by an application and
delivered using the Android ICC mechanism.

2.2 Security Mechanisms

Sandboxing. Android (ab)uses the Linux discretionary
access control (DAC) mechanisms for application sandbox-
ing: Every application installed on the phone is assigned a
unique user identifier (UID) during installation®. Every pro-
cess belonging to the application is executed in the context
of this UID, which effectively mediates access to low level
resources (e.g. files). Based on this mechanism, applications
are assigned a private storage area on the device’s internal
flash memory. Low-level IPC (e.g. using pipes or domain
sockets) is also controlled using Linux DAC.

Permissions. In addition, access control is applied to ICC
by using Permissions : Labels assigned to applications
at installation time after being presented to and accepted
by the user. These labels are checked by reference monitors
at middleware- and application level when security-critical
APIs are accessed. In addition to the default permissions
defined by the Android OS itself, application developers can
define their own permissions to protect their applications’
interfaces. However, it should be noted that the permission
model is not mandatory access control (MAC), since callees
must discretely deploy or define the required permission
check and, moreover, permissions can be freely delegated
(e.g., URI permissions [32]).

Permissions are also used to restrict access to some low
level resources, such as the world read-/writeable external
storage area (e.g. a MicroSD card) or network access. These
permissions are mapped to Linux group identifiers (GIDs)
assigned to an app’s UID during installation and checked by
reference monitors in the Linux kernel at runtime.

Application signing. X.509 certificates are used to en-
sure application integrity and authenticity. Additionally, the
developer signatures are used to enforce a same origin policy
for application updates. However, there is no mandatory
hierarchical public-key infrastructure in place, and as such
most developers use self-signed certificates. The trust model
of the market is based on reputation.

2.3 SELinux

Security Enhanced Linux (SELinux) is an instantiation of
the Flask security architecture and implements a policy-
driven mandatory access control (MAC) framework for the

#Developers may use the same UID (Shared UID, SUID) for
their own applications. These applications will essentially
share the same sandbox.

Linux kernel. An essential design decision of its architecture
is that policy decision making is decoupled from the policy
enforcement logic. SELinux uses the Linux Security Module
(LSM) architecture, which provides various access con-
trol enforcement points for low-level resources, such as files,
local IPC, or memory protections. When an LSM hook is
triggered (e.g., a file is opened), the SELinux LSM module
requests a policy decision from a security server in the ker-
nel which manages the policy rules and contains the access
decision logic. Depending on the security server’s decision,
the SELinux security module denies or allows the operation
to proceed. To maintain the security server (e.g., update the
policy), SELinux provides a number of userspace tools.

Access Control Model. In an SELinux enabled system,
each object (e.g., files, IPC channels, etc.) and subject (i.e.,
processes) is labeled with a security context, which consists
of the attributes triplet (user, role, type). These attributes
determine to which objects a subject has access based on
Type Enforcement and Role-Based Access Control access
control mechanisms.

Type Enforcement is the primary mechanism for access con-
trol in SELinux and is based on the context’s type attribute.
By default, all access is denied and must be explicitly granted
through policy rules—allow rules in SELinux terminology.
Using the notation introduced in , each rule is of the form

allow Tsuy Toy; : Covj Oc

where T’syp is a set of subject types, Tos; is a set of object
types, Cop; is a set of object classes, and Oc¢ is a set of
operations. The subject types and object types are the
types set in the security context of the subject and object,
respectively. The object classes determine which kind of
objects this rule relates to and the operations contain specific
functions supported by the object classes. If a subject whose
type is in T'syp wants to perform an operation that is in O¢
on an object whose class is in Cop; and whose type is in
Tou;, this action is allowed. For instance, the rule

allow useradd_t passwd_t : file write

defines that a process (subject) with type useradd_t is al-
lowed to write an object with class file and type passwd__t.
This rule is important on multi-user desktop systems, where
the /etc/passwd file contains essential user information and
thus should be protected. The useradd tool adds a new user
to the system by adding the new user’s information to the
passwd file and thus requires write access. A typical SELinux
policy on Fedora Linux 17 currently defines more than 600
types, almost 100 classes, and more than 100,000 allow rules.
We evaluate policy complexities of different SELinux versions
and of FlaskDroid in more detail in Section [Z.1]

The user and role attribute form the basis for SELinux
Role-Bases Access Control, which builds upon type enforce-
ment by defining which type and role combinations are valid
for each user in the policy.

Optionally, SELinux supports Multilevel Security (MLS),
which extends the fundamental type enforcement. When
MLS is enabled, the security context is extended with low
security level and high security level attributes, where the low
level represents the current security level of a subject/object
and the high level represents the clearance level of the sub-
ject/object. Each security level is described by a sensitivity
and a set of categories. Sensitivities are strictly hierarchical
and reflect an ordered data sensitivity model (e.g., TopSe-



cret, Secret, Unclassified) . Categories are unordered and
reflect data compartmentalization (e.g., Research, Human
Resources, Contracts). With MLS enabled, access to objects
is only allowed of the subject holds a high enough security
clearance (sensitivity) and the correct category for the object.

Dynamic policies. SELinux supports to some extent dy-
namic policies based on boolean flags which affect conditional
policy decisions at runtime. Nevertheless, these booleans and
conditions have to be defined prior to policy deployment and
new booleans/conditions can not be added after the policy
has been loaded loaded without recompiling and reloading
the entire policy.

The simplest example for such dynamic policies are booleans
to switch between “enforcing mode” (i.e., access denials are
enforced) and “permissive mode” (i.e., access denials are
not enforced, but at most logged). Other booleans can, for
instance, refine the coverage of the access control, e.g., by
enabling/disabling access control on certain object classes
like files or sockets.

Technically, this mechanism is implemented in the form
of if statements for allow rules in the policy. Thus, only
when the if condition evaluates to True, the rules in the
block of the if statement are considered during access control
decisions.

Userspace Object Managers. A powerful feature of
SELinux is that its access control architecture can be ex-
tended to security-relevant userspace daemons and services,
which manage data (objects) independently from the ker-
nel . Thus, such daemons and services are referred to as
Userspace Object Managers (USOMs). They are responsible
for assigning security contexts to the objects they manage,
querying the SELinux security server for access control de-
cisions, and enforcing these decisions. Prominent examples
for such USOMs include the X Window System server
(Linux’ display manager), GConf [16] (the GNOME set-
tings manager), SE-PostgreSQL [45] (a security-enhanced
object-relational database system), or D-BUS (a message
bus system for inter-process communication).

Alternatively to querying the kernelspace security server,
USOMs could query a userspace security server for access
control decisions.* However, this approach is not any longer
pursuit by the SELinux developers.

2.4 SE Android.

SE Android prototypes SELinux for Android’s
Linux kernel. It aims to demonstrate the value of SELinux in
defending against various root exploits and application vul-
nerabilities on the Android platform . Specifically,
it confines system Services and apps in different kernelspace
security domains even isolating apps from one another by the
use of the Multi-Level Security (MLS) feature of SELinux.
To this end, the SE Android developers started writing an
Android-specific policy from scratch. Although SE Android
is a prototype of SELinux for Android, there are a few key
security extensions tailored for Android that SE Android
brings about. First, SE Android introduces new hooks for
Android’s Binder driver making the latter a Kernelspace Ob-
ject Manager. This ensures that all Binder IPC is subject to
SE Android policy enforcement. Second, it labels applica-
tion processes with SELinux-specific security contexts which
are later used in type enforcement. In contrast to tradi-

“http://oss.tresys.com/projects/policy-server

tional desktop platforms, where new application processes
are spanned when executing a binary, on Android new app
processes are forked from a system process, denoted Zygote,
which is pre-initialized with all important shared libraries
and thus enables fast starts of new app processes. Thus,
security labeling had to be integrated into this mechanism in
order to label the newly created app processes accordingly.
Moreover, the SE Android developers had to start writing
an SE Android specific policy from scratch. This new policy
contains at the time of writing more than 200 types, about
80 object classes, and roughly 1,400 allow rules, which is
magnitudes smaller than previous SELinux policies (see also
Section. Thirdly, since (in the majority of cases) it is a
priori unknown during policy writing which apps will be in-
stalled on the system later, SE Android employs a mechanism
to derive the security context of applications at install-time.
Based on criteria, such as the permissions the app requests
or its developer signature, apps are assigned a security type.
This mapping from application meta-information to security
types is defined in the SE Android policy.

Middleware M AC. While the above listed security mech-
anisms are directly derived from SELinux and address the
lower level of the Android software stack (e.g., files, sockets,
and IPC), SE Android additionally provides simple sup-
port for MAC policy enforcement at the middleware layer®
(MMAC) inspired by various related work . In particular,
MMAC consists of three distinct mechanisms: 1) Install-time
MAC, which, similar to Kirin , performs a policy-driven
install-time check of new applications and denies installa-
tion when the application requests a defined combination
of permissions; 2) Permission revocation, which is realized
similar to existing implementations found in custom roms®,
commercial products’, or related work . This
mechanism overrules the default Android permission check
with a policy-based decision to allow/deny an application to
leverage a granted permission; 3) Intent MAC, which protects
with a white-listing enforcement the delivery of Intents to
Activities, Broadcast Receivers, and Services. Similar mecha-
nisms are employed, for instance, in . However, in
SE Android, the white-listing rules are based on the security
type of the sender and receiver of the Intent message as well
as Intent data such as the Action string.

3. REQUIREMENT ANALYSIS FOR ANDROID

SECURITY ARCHITECTURES
3.1 Adversary Model

We consider a strong adversary with the goal to get access
to sensitive assets. Typical examples of attacks are stealing
confidential data, violating the user’s privacy, as well as com-
promising system or third-party applications. That means
we consider a strong adversary model that is able to launch
software attacks targeting different layers of the Android
software stack.

Middleware Layer.
Recently, different attacks operating at Android’s middle-
ware layer have been reported. Prominent examples are:

®See also http://selinuxproject.org/page/SEAndroid#
Middleware_MAC

®CyanogenMod - http: //www.cyanogenmod . com)
"3LM - http://www.31m. com
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Overprivileged 3"? party apps and libraries These at-
tacks consist of privacy violations that range from ques-
tionable privacy practices of 3rd party app developers
to spyware-like behavior. For instance, popular apps
like WhatsApp @ Path , or Facebook
have been publicly debated to overstep the necessary
boundaries of their access to user’s private data, e.g.,
by uploading the entire contacts database of the Con-
tactsProvider instead of only the subset of contacts
information required for correct app functionality.

Moreover, advertisement libraries, frequently included
in 3"? party apps on Android, have been shown to
exploit the permissions of their host app to collect
information about the user , including privacy sen-
sitive data such as contacts or location.

Malicious 3" party apps In the recent past the number
of mobile malware has steadily increased . The
predominant observed malicious behavior consists of
leveraging dangerous permissions to cause financial
harm to the user (e.g., sending premium SMS). Ad-
ditionally, as supported by academic studies, the ex-
filtration of user-private information is in fact also a
prevalent characteristic of mobile malware such
as the Geinimi Trojan .

Confused deputies Confused deputy attacks concern ma-
licious applications, which leverage unprotected inter-
faces of benign applications (denoted deputies) to indi-
rectly access protected functionality or data and thus
escalate their privileges at runtime. Recent research
has identiﬁed confused deputies in system apps such
as Phone or Settings \ (e.g., to trigger phone
calls), as Well as in 37 party apphcations i (e.g.,
to retrieve contacts information).

Collusion attacks Collusion attacks concerns malicious ap-
plications that collude in order to merge their permis-
sion sets and gain a permission set which has not been
approved by the user. A prominent example for a collu-
sion attack is Soundcomber , where one application
has the permission to record audio and monitor the call
activity, while a second one owns the Internet permis-
sion. When both applications collude, they can capture
the credit card number (spoken by the user during a
call) and leak it to remote adversary. Collusion attacks
can be further subclassified according to the channel
over which they communicate , e.g., overt chan-
nels like sockets versus covert channel like file locks or
volume level.

Sensory malware Sensory malware leverages the informa-
tion from onboard sensors in order derive user’s privacy
sensitive information. For instance, the accelerometer
provides information about the movement of the phone,
which can be used to infer the user input to the virtual

keyboard, e.g., passwords .

Root Exploits.

Besides attacks at Android’s middleware layer, various
privilege escalation attacks on lower layers of the Android
software stack have been reported Eﬂ which grant the
attacker root (i.e., administrative) privileges on the sys-
tem. Leveraging these privileges, an attacker can bypass

the Android permission framework. For instance, instead
of querying contacts information from the ContactsProvi-
der, he can directly access the contacts database on the
file-system. Moreover, processes on Android executing with
root privileges automatically inherit all available permissions
at middleware layer and are hence omnipotent at both layers.

It should be noted that attacks targeting vulnerabilities
of the Linux kernel are out of scope of this paper. This is
motivated by the fact that SE Android is a building block
in our architecture (see Section and as part of the kernel
it is susceptible to kernel exploits.

3.2 Requirements

Based on our adversary model we now derive the necessary
requirements for an efficient and flexible access control archi-
tecture for mobile devices. Essentially, these requirements
are valid for various mobile operating systems. In this paper
we focus on the popular and open-source Android OS.

Access Control on Multiple Layers..

To mitigate the attacks at middleware layer, a large body
of literature has been established that aims at extending
Android’s middleware with attack-specific access control [23] .
.Kg'r!i-ﬁeve.l %AE Eowever, any security extension to
the middleware can be circumvented by privilege escalation
attacks at the lower level, e.g., by using root exploits, as ex-
plained in our Adversary Model (Section. Mandatory ac-
cess control solutions at kernel level, such as SE Android [55| .
or Tomoyo [37], help to defend against or to constrain these
low-level pr1v1lege escalation attacks |74 n . .

Middleware M AC. However, kernel level MAC provides
insufficient protection against security flaws in the middle-
ware and application layers, and lacks the necessary high-
level semantics to enable a fine-grained filtering at those
layers . For instance, by design the inter-process
communication (IPC) between two applications A and B is
very often interposed by a middleware system component C
that mediates this communication. A low-level MAC, e.g.,
on Binder IPC, lacks the required semantics to handle access
control on such indirect communication channels between
the two applications: It could prohibit the IPC A — C or
C — B, but its semantics do not allow to recognize the logi-
cal communication channel A - B. General prevention of
the communication between A and C or B and C would
not make sense, because the correct and stable functionality
of applications like A and B depends on the capability to
communicate with system components like C. Moreover, pro-
hibiting Binder IPC at kernel level easily causes unexpected
security exceptions that cause application crashes. Further-
more, the extensive permissions a process executing with
root UID holds at Android’s middleware layer effectively
circumvent the default permission-based security mechanism.
A middleware MAC is able to address these problems of
kernel level MAC, since it is based on middleware semantics.

Thus, a first challenge is to provide simultaneous MAC
defenses at the two layers. Ideally, these two layers can be
dynamically synchronized at run-time over mutual interfaces.
At least, the kernel MAC is able to preserve security invari-
ants, i.e., it enforces that any access to sensitive resources/-
functionality is always first mediated by the middleware
MAC and no (low-level) privilege escalation attack, such as
a root exploit, bypasses these middleware access control.



Multiple stakeholders policies..

Mobile systems involve different parties such as the end-
user, the device manufacturer, app developers, or other 37
parties (e.g., the end-user’s employer). These stakeholders
also store sensitive data on the device. Related work, such
as Saint , TrustDroid , or TISSA , propose special
purpose solutions to address the security requirements and
specific problems of app developers, 3" parties (here compa-
nies), or the end-user, respectively. Naturally, the assets of
different stakeholders are subject to different security require-
ments, which are not always aligned and might conflict. Thus,
one objective for a generic MAC framework that requires
handling of multiple stakeholders is to support (basic) policy
reconciliation mechanisms for dynamic policies from these
stakeholders . For instance, discusses different
strategies for reconciliation, such as all-allow (i.e., all stake-
holder policies must allow access), any-allow (i.e., only one
stakeholder policy must allow access), priority (i.e., higher
ranked stakeholder policies override lower ranked ones), or
consensus (i.e., at least one stakeholder policy allows and
none denies or vice versa).

Context-awareness..

The security requirements of different stakeholders may
depend on the context the device is currently used in. For
instance, the security policy of an enterprise might dictate
that certain assets, such as apps, may only be accessed during
working hours or while the device is located on enterprise
premises. Thus, our architecture shall provide support for
context-aware security policies.

Support for different Use-Cases..

Our architecture shall serve as a basis for different security
solutions applicable in a variety of use cases. For instance,
by modifying the underlying policy our solution should be
able to support privacy-preserving use cases (as shown in
Section@)7 such as a privacy-preserving phone-booth mode,
the selective and fine-grained protection of app interfaces ,
or multiple isolated security domains, e.g., dual-persona
smartphones that isolate enterprise and private interests
from each other ,

Advantage of mobile OSes for policy complexity..

At first glance it may seem very challenging to realize
a fine-grained and flexible access control on both the mid-
dleware and Kernel-level. In particular, SELinux and
similar Mandatory Access Control solutions on desktop and
server systems are notorious for their extremely complex
policies (cf. Section and a comparable complexity could
be expected for our solution. However, the design of mo-
bile operating system differs in one important point from
the design of traditional platforms: Security and privacy
critical functionality is concentrated in a small number of
privileged system components, which expose these function-
ality through clearly defined interfaces to applications. This
is a distinct advantage for reducing the policy complexity in
FlaskDroid: 1) The privileged system components form a
single point of access to their functionality and instrumenting
them as MAC enforcement point achieves inherently a high
degree of coverage; 2) The extend of the policy primitives
(e.g., object classes and operations) and rules is significantly
reduced, since only a small number of system components
has to be instrumented as MAC enforcement points.
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Figure 1: FlaskDroid concept

4. FlaskDroid ARCHITECTURE

In this section, we explain the high-level concept of FlaskDroid
and its architecture. We present the policy language em-
ployed in our system, provide an overview of our FlaskDroid
architecture, and elaborate in more detail on particular de-
sign decisions made therein.

4.1 Overview

In this paper, we introduce our FlaskDroid architecture,
our enhancement to the Android operating system that is
inspired by the Flask security architecture . The high-
level idea is depicted in Figure [1} various Object Managers
at middleware and kernel-level are responsible for assigning
their objects security contexts. Objects can be, for instance,
kernel resources such as files or IPC and middleware resources
such as Service interfaces, Intents, or ContentProvider data.
As shown in Figure[l] on access to these objects by subjects

(i.e., apps) to perform a particular operation, the managers

enforce an access control decision that they request from a
security server at their respective layer (AccessControlCheck).
Thus, our approach follows the concept of a userspace policy
manager (cf. Section[2.3). Moreover, to enable more dynamic
policies, the policy check in FlaskDroid depends not only on
the Subject, Object, and Operation performed, but also the
System State, which determines the actual security context
of the objects and subjects at runtime. For instance, while
the dialer app is allowed to access the user’s contacts data
in one state, it may not be allowed to do so in another state

(cf. Section [6.6).

Each security server is also responsible for the policy man-
agement for multiple stakeholders such as app developers,
end-user, or 3"¢ parties. A particular feature is that the
policies on the two layers are synchronized at runtime, e.g.,
a change in enforcement in the middleware at runtime, must
be supported /reflected at kernel-level. Thus, by decoupling
the policy management and decision making from the en-
forcement points and consolidating the both layers, the goal
of FlaskDroid’s design is to provide fine-grained and highly
flexible access control over operations on both middleware
and kernel-level.



4.2 Access Control

Access control can be abstractly described as a function
Ac(p17p27 e 7p”7«) = 0/1

which maps a number of input parameters to a DENY (0) or
ALLOW (1) decision. The access control policy consists of a
set of access control rules R and a default decision 1 € {0,1}.
Each access control rule r € R is defined as a tuple

TR (p17p27"' 7p7b)

where p1,p2,...,pn denote the parameters of the rule. An
access control decision is then defined as

IreR:rw~(p1,p2,...,0n) = AC(P1,p2,...,Dn) > L

AreR:rw(pi,p2,...,pn) = AC(p1,p2,...,Pn) — L

This means that if there exists a rule r € R which matches
the input parameters p1,p2,...,pn, AC returns the inverse
of the default decision, or if no such rule exists, it returns
the default decision. An access control system implements
whitelisting, if L =0, or blacklisting, if 1 = 1.

The access control rules for type enforcement in SELinux
(cf. Section consists of a quadruplet (p1,p2,ps, pa) where,
according to the notion in Section [2.3

p1 = Tsupj
p2 = Tow;
ps = Cou;
pa = Oc

and we will explain this in more detail in Section when
we introduce the access control policy in FlaskDroid.

However, at this point we shortly illustrate the above
described access control at the example of the default Android
permission check. This permission check implements a simple
whitelisting access control AC(p1,p2), where parameter p; =
UIDcalier denotes the UID of the calling app represented as an
Integer and parameter p2 = Permission denotes the permission
the calling app must hold represented as a String. Each rule
r e RP“™™ is a tuple of the form (UID, Permission), defining
that a UID holds a permission Permission. To illustrate this
more concretely, consider an application with UID = 10010
which only holds the CONTACTS permission, i.e., there exists
a rule r e RT*™™ with r = (10010, CONTACTS). Thus, when
this app accesses the ContactsProvider to query contacts
information, the permission check

AC(10010, CONTACTS) ~ 1

would allow this access. However, if the same application
would try to open an Internet socket, the corresponding
permission check

AC(10010,INTERNET) ~ 0

would deny this operation since no rule r = (10010, INTERNET)
exists for this UID.

Similarly, different related works which extend Android’s
security architecture at the middleware layer
or kernel-level can be expressed as MAC-
enhancements to the Android OS and thus be represented by
policy rules of the form (p1,p2,...,pn). We will show this
in more detail in Sections |§| and.

With FlaskDroid we aim at a security architecture that
provides the enforcement of access control rules that are

generic enough to allow for the instantiation of different
security models.

4.3 Policy

In this section we explain the policy language used in
FlaskDroid to epxress the access control rules.

4.3.1 Policy Language and Extensions

In FlaskDroid, we employ SELinux’s policy semantics for
expressing policies on both middleware and kernel-level. A
detailed description of the SELinux policy language and all
its features is out of scope of this paper—the reader is referred
to for a more elaborate explanation and to Sectionfor
a summary—and here we outline only the subset of features
important for our architecture.

The fundamental building block for SELinux’ policies and
thus for our middleware MAC is type enforcement. Each
subject and object in the system has been assigned a type.
Objects are further distinguished by their class, e.g., file
or socket, and operations the object class supports, e.g.,
read, write, open. Thus, each policy rule r € R consists
of the quadruplet p1 = subject_type, pa = object_type,
ps = object__class, and ps = operation, which express that a
particular subject type is allowed/denied to perform a certain
operation on an object of a particular class and type. List-
ing [I7 in Appendix [A] shows the definition of some types as
well as their grouping in attributes — synonyms representing
a set of types within policy definitions. To allow for more dy-
namic policies, SELinux introduces so called booleans which
allow conditional policy rules, i.e., the validity of a rule r
can depend on the current value of an assigned boolean b,..
Thus, also the result of the access control check AC depends
on the current state of all defined booleans. For readability,
we refer to the conditional boolean of a rule r as parameter
ps in r. Similarly, we introduce a new parameter ps for AC
which represents the current state of all booleans present in
the access control system and hence might affect the access
control decision.

To make use of the middleware’s rich semantics and the
available contextual information — both of which allow for
more powerful policy rules — we extend the middleware policy
language with new default classes, constructs and transition
definitions which we will present in the subsequent sections.

New default classes.

Similar to classes at the kernel-level, like file or socket, we
introduce new default classes and their corresponding opera-
tions to represent common objects at middleware level. The
most basic classes are directly derived from the fundamental
building blocks of Android applications and communication
channels available, namely Activity, Service, ContentProvider,
Broadcast, and Intent. Operations for these classes are de-
rived in the same manner, for example, startActivity, query
a ContentProvider, or receive a Broadcast. Classes can also
be derived from another class, thus inheriting all operations
of the parent class while new operations for the child class
can be optionally added. Listing in Appendix presents
examples for the definition of basic classes such as activity_c
or service_c and illustrates inheritance at the example of
intentService ¢ which inherits from service c¢ as well as sev-
eral ContentProviders like contactsProvider ¢ which inherit
from the contentProvider c class.
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Application Types.

A further extension is the possibility to define criteria by
which applications are labeled with a security type. This is
motivated by the fact that at the time a policy is written,
one cannot predict which apps will be installed in the future.
Thus, metrics are required to label apps upon installation.
This is consistent with the extensions of SE Android (cf.
Section , where a similar mechanism is used to label
newly spawned application processes based on pre-defined
criteria.

Listing [1] illustrates an example policy snippet defining
the criteria for assigning a type to applications (i.e., labeling
apps). The criteria at middleware level can be, for instance,
the application package name, the requested permissions,
the developer signature, or potential, non-standard meta-
information such as an external signature (lines 10-50). To
illustrate this more concretely, consider a newly installed
application whose package name equals com.android.apps.tag.
According to the lines 30-33 in the policy in Listing [T} this
app would be assigned the type app_tag t, since this the
criteria for type app_ tag_t match the new app. If no criteria
matched a specific app, a default type is assigned (line 4). In
FlaskDroid, labels are assigned to the sandbox of applications,
i.e., to their UID or in case of shared UIDs to their shared
UID. The latter decision is motivated by the fact that UID
is the smallest identifiable unit provided by Binder.

Listing 1: Ezample policy snippet illustrating the definition
of criteria for assigning an app a specific type.

J*

Default type

*

default AppType untrustedApp_ t;

/*
Define criteria to assign types to apps

*/
appType app_ cased_t

Developer:signature=0xFEF9...;

Package:package name=de.cased.trust.app;
ExternalSignature:keyFileLocation=/etc/key file;
ExternalSignature:signatureFileLocation=assets/sig.file;

5
appType android_t

/* All of packages under this UID x/

Package:package name=android;

Package:package name=com.android.keychain;
Package:package name=com.android.settings;
Package:package name=com.android.seandroid__manager;
Package:package name=com.android.providers.settings;
Package:package name=com.android.systemui;
Package:package name=com.android.vpndialogs;

b5
appType app_tag_t

Package:package name=com.android.apps.tag;
)
appType app_ backupconfirm_t

Package:package name=com.android.backupconfirm;

3

appType app_ telephony t

a1|{

42
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44| }

45
46
47
48
49
50
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Package:package name=com.android.phone;
Package:package name=com.android.providers.telephony;

appType app_ bluetooth_t

Package:package name=com.android.bluetooth;

)

[]

Intent types.

Similarly to apps, also Intents may be the object of ac-
cess control enforcement, e.g., if a particular app is allowed
to send or receive an Intent of a particular type. Thus,
also for Intents we require criteria to label Intent objects.
Listing [2] illustrates the definition of such criteria for assign-
ing a type to Intent objects. It leverages the information
available about Intents such as their action string or cat-
egory, or receiving component (lines 7-11). Again, if no
criteria matched an Intent, a default type is used (line 4).
For instance, the example in Listing [2] would assign an In-
tent with action string android.intent.action. MAIN, category
android.intent.category. HOME, and type app__launcher t
of the receiving component the type intentLaunchHome__t.
In contrast to apps, which are labeled once during installa-
tion, Intents are labeled on-demand at runtime during policy
checks which involve Intent objects and, naturally, the as-
signed type is bound to the life-time of the corresponding
Intent object.

Listing 2: Policy snippet showing definition of criteria for
assigning an Intent a specific type.

/%

Default type

*/

defaultIntentType untrustedIntent_ t;

intentType intentLaunchHome t

Action:action_ string=android.intent.action. MAIN;
Categories:category=android.intent.category. HOME;
Components:receiver__type=app_ launcher_ t;

};

Context definitions and awareness.

We extend the policy language with an option to define
device contexts. A context is an abstract term that represents
the current security requirements of the device. It can be
derived from different criteria, such as physical criteria (e.g.,
the location of the device) or the state of apps and the system
(e.g., the app being currently shown on the screen). This
extension is aimed towards enabling context-aware policies.
For instance, one can dynamically revoke the permission
to query the contacts database. Listing [3] shows the dec-
laration of three contexts, work_con, phoneBooth_con, and
iptablesExecForbidden_con. Each declared context can be
either active or inactive and we explain in the subsequent Sec-
tion how contexts are activated/deactivated by dedicated
Context Provider components.

Listing 3: Policy snippet showing declaration of contexts.

T

1
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context work_ con;
context phoneBooth_ con;
context iptablesExecForbidden_ con;

[

To actually make use of context-aware policies, access
control rules defined in our policy language may depend on
optional boolean parameters, which in turn depend on the
currently active contexts. This booleans exist only at the
middleware and affect only the policy decision making in the
user-space security server for the middleware. To similarly
map contexts to the kernel-level, we introduce special boolean
definitions which point to a boolean at kernel level instead
of adding a new boolean at middleware. Changes to such
kernel-mapped boolean values triggers a call to the SELinux
kernel module to update the corresponding SELinux boolean
(cf. Section . On a context switch reported by the
system, all boolean variables that relate to the new context
are set to their respective values. This enables or disables the
policy rules which depend on these boolean values. When
a context is unset, all related booleans can be optionally
auto-reverted to their original value or, alternatively, one
can define other contexts which trigger a change of those
booleans.

Listing[] presents the definition of a boolean phoneBooth_b
at middleware level (line 4) and references to a boolean al-
lowIPTablesExec_ b defined in the underlying SE Android
policy (line 9). Both, contexts (cf. Listing [3)) and booleans,
are used in switchBoolean statements (lines 15-26), which de-
fine which booleans are (un)set depending on which context
is (in-)active. To illustrate this, consider the switchBoolean
statement in lines 15-20 in Listing @} which defines that as
soon as the context phoneBooth__con is active, the middle-
ware boolean phoneBooth__b has to be set to true. As soon
as the phoneBooth__con context is deactivated, the phone-
Booth__b boolean should be reset to its original value, i.e.,
False (line 4). The switchBoolean in lines 22-27 works iden-
tical, however, for the context iptablesFExecForbidden and
the boolean allowIPTablesExec b which is an SE Android
boolean and hence the change in value is mapped to the
kernel-level.

Listing 4: Policy snippet showing how booleans are linked
with contexts.

J*

Middleware boolean definitions
*

bool phoneBooth_b = false;

*
Kernel boolean defintion used for sync with SE Android
*

kbool allowIPTablesExec b = true;

/*
Dynamic policies

*/

switchBoolean

{

context=phoneBooth_ con;
auto_ reverse=true;
phoneBooth_b=true;

};

switchBoolean

{

24
25

26

context=iptablesExecForbidden_ con;
autoReverse=true;
allowIPTablesExec_ b=false;

27| }

29/ [...]

Policy rules.

Listing [5| shows the definition of some example access
control rules. For defining access control rules as described
in Section [£:2] we leverage the default SELinux allow rule
syntax. Thus, each rule is of the form

7= (p1,p2,P3,P4)

where
p1 = subject_type
p2 = object_type
ps = object_class
pa = operation

To ease writing policies, all parameters can be sets of logically
disjunct parameters, i.e., the parameter matches if any of
the set members matches. For instance, the rule in line 5
of Listing Listing [f] has as subject _type parameter the set
of types {app__system__t app__contacts_t app__launcher_t},
as object_type the type allContactsData__t, as object class
parameter the class contactsProvider__c, and as operation
the function query. Optionally, these rules can also depend
on boolean parameters which enable or disable policy rules.
This dependency is noted in form of if statements in the rules.
For instance, the two rules in lines 17 and 18 in Listing [5]
depend on the boolean phoneBooth__b and are only valid if
phoneBooth__b is True or are invalid if is False, respectively.

To further ease writing access control policies, a rule can
be defined as

r = (self, ps, ps)
where
ps = object_class
pa = operation

if p1 = p2, meaning that this rule applies always when subject
type and object type are identical. Lines 1-3 of Listing
show examples of such rules. For instance, the rule in line 3
states, that any app can send and receive broadcasts to and
from apps with the identical type.

Additionally, we add the keyword any, which can be used
as a wildcard for the subject type, object type, object class,
and operations and matches any argument. For example,
the rule

r = (any,app_untrustedApp__t,contentProvider_c, any)

would allow any operation by any subject type on a Content-
Provider component of an app with type app_ untrustedApp__t.

Listing 5: Policy snippet showing definition of access control
rules (optionally depending on boolean parameters).

self: app_ ¢ {checkPermission};
self: activity__c {finish moveTask};
self: broadcast_c {receive send};
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allow {app_system_t app_contacts_t app_launcher_ t}
allContactsData_t: contactsProvider c {query};

allow {app_system_t app_telephony t app_contacts_t
app__launcher_t} {app_system_t app_ telephony_ t
app_ contacts_t app_launcher t}: package c¢
{getPackagelnfo getPackageInfoWithUninstalled
getPackageUID getPackageGIDs getPackagesForUid
getNameForUid getUidForShared User
findPreferred Activity querylntentActivities
getInstalled Applications
getInstalled ApplicationsWithUninstalled
getInstalledPackages
getInstalledPackagesWithUninstalled };

allow {app_system__t app__telephony_t app_ contacts_t
app_launcher t} {app system t app telephony t
app_ contacts_t app_ launcher_t}: app_c
{checkPermission };

allow {app_system_t app_ telephony t app_ contacts_t
app_launcher t} {app telephony t app contacts t}:
activity c {start};

allow {app_system t app telephony t app contacts_t
app_ launcher t} {app_system_t app_telephony t
app__contacts_t app_ launcher_t}: activity__c¢ {moveTask
finish};

if(~phoneBooth__b)

allow {app_system_t app_ telephony t app_contacts_t
app_launcher t} {app system t app telephony t
app__contacts_ t appﬁlauncherit}: activity_c {start
moveTask finish};

allow app__telephony_ t allContactsData__ t:
contactsProvider ¢ {query};

};
(-]

4.3.2  Dynamic Policies and Multiple Stakeholders

A particular challenge for the design of FlaskDroid is the
support for protecting the interests of different stakeholders
on the mobile device. This requires, that policy decisions
consider the policies of all involved stakeholders. These
policies can be, for instance, pre-installed (i.e., system policy
or enterprise policy), delivered with application packages
(i.e., app developer policies), or configured manually via
a GUI (i.e., user policies). Thus, in FlaskDroid 3™ party
developers have the choice to deploy custom policies for their
applications. Note, that this is completely voluntary on their
part and they may choose to opt in and rely on our security
framework to enforce their policies. In case they opt out
from using our framework (or they are unaware of it), their
applications are still subject to the system and user policy
enforcement.

Moreover, developers who opt in can instrument their app
as a userspace object manager for their own data objects and
FlaskDroid supports them by providing the necessary inter-
faces to the system security server as part of the SDK. For
instance, a 3" party application could contain a ContentPro-
vider component to manage sensitive data, e.g., user account
information like email addresses, full names, or telephone
number. Further, the developer of this application wants to
provide access to this data to other 3"¢ party applications
which have been signed by another developer that is in a set
of endorsed developers. Additionally, this access should be
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fine-grained on a per data basis, i.e., some endorsed devel-
opers should be able to retrieve only email addresses from
the account information, while others should be able to only
retrieve the phone number. To implement this system with
FlaskDroid, the 3" party developer would deploy a policy in
which he defines criteria to label other 3" party applications
on the system with a type according to their signature (i.e.,
endorsed for email address, endorsed for phone numbers, not
endorsed). To enforce this policy, he would instrument the
ContentProvider component such that it queries the Userspace
Security Server via the SDK-provided function when another
application access the ContentProvider. Based on the access
decision, the ContentProvider returns only the data for which
the calling app has been endorsed. A concrete design for such
enforcement is provided, e.g., in our technical report .

A particular challenge when supporting multiple stakehold-
ers is the consolidation of the various stakeholders’ policies.
Different strategies for reconciliation are possible
and supported by our architecture, based on namespaces
and global/local type definitions. For instance, as discussed
in [65], all-allow (i.e., all stakeholder policies must allow
access), any-allow (i.e., only one stakeholder policy must
allow access), priority (i.e., higher ranked stakeholder poli-
cies override lower ranked ones), or consensus (i.e., at least
one stakeholder policy allows and none denies or vice versa).
However, choosing the right strategy strongly depends on
the use-case for which the access control policy is developed.
For example, on a pure business smartphone without a user-
private domain, the system (i.e., company) policy always has
the highest priority, while on a private device a consensus
strategy may be preferable.

4.4 Architecture Components

Figure 2] provides an overview of our architecture. In the
following paragraphs we will explain the individual compo-
nents that comprise the FlaskDroid architecture.

4.4.1 SE Android Module

At the kernel-level, we employ the SE Android module pro-
vided in the SE Android revision of the Android sources .
As explained in Sections and SELinux/SE Android
provides a powerful basis for enforcing a fine-grained policy
on kernel-level objects and classes, such as files or IPC.

In our design, we leverage SE Android primarily for the
following purposes (cf. Figure [3)): First, it is an essential
building block for hardening the Linux kernel thereby
preventing malicious applications from (easily) escalating
their privileges by exploiting vulnerabilities in privileged
(system) services/daemons. Even when an attack, usually
with the intent of gaining root user privileges, is successful,
SE Android can constrain the privileges of the application by
restricting the privileges of the root account itself. Second,
it complements the policy enforcement at the middleware
level. Kernel-level MAC prevents applications from bypassing
the middleware enforcement points (in Flask terminology
defined as Userspace Object Managers (USOMs)) by enforcing
that any privileged operation must go through the Android
software stack in a top-down fashion and hence pass all policy
enforcement points.

Figure [] provides two examples for enforcing Android’s
security model with SE Android and preventing apps from
bypassing middleware enforcement points: direct access to
low-level system resources such as the radio daemon or the
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control mechanisms cannot be bypassed.

contacts database file can be restricted to be only permissible
if coming from the system phone app or system contacts
management app. These apps in turn implement access con-
trol at middleware level on their public interfaces over which
they expose radio or contacts management functionality to
other apps.

Similarly, the SELinux concept of domain-transitions—
whereby the type of a subject (i.e., process) changes to a
new type®—can be leveraged to prevent applications from
performing low-level operations: For example, a SELinux

8Tt is worth noting that process transition is a capability
that a subject needs to have in order to perform a domain

12

=P Compliant access ===+ Non-compliant access

o

Figure 4: Concrete examples for enforcing Android’s secu-
rity model with SE Android.

Kernel level MAC

policy could dictate that the privilege to configure the ker-
nel netfilter at runtime is limited to specific (system) apps.
Using the dynamic policy support of SELinux (cf. boolean
flags/conditional policies in Section it is possible to re-
configure these access control rules at runtime depending
on the current system state. For example, as explained in
more detail in Section a boolean flag could be used to
allow 37 party firewall apps to access the kernel netfilter
configuration when the device is not connected to the com-
pany network. When connected to the company network,
access to the kernel netfilter configuration is restricted so
that sensitive network traffic cannot be redirected easily.

transition. Thus, domain transitions are forbidden unless
explicitly allowed by the security policy.



USOM Example operation

Service USOMs
PackageManagerService  getPackagelnfo getPack-
ageUID findPreferred Activity
getInstalled Applications  in-
stallPackage uninstallPackage
start Activity moveTask gran-
tURIPermission sendBroadcast
receiveBroadcast registerBroad-

ActivityManagerService

castReceiver

AudioService adjustStreamVolume get-
SreamVolume  setStreamVol-
ume setRingerMode setVi-
brateSetting

PowerManagerService acquireWakeLock isScreenOn

reboot preventScreenOn

SensorManager getSensorList getDefaultSensor
unregisterListener registerLis-
tener

LocationManagerService  getAllProviders requestLoca-

tionUpdates addGpsStatusLis-
tener addProximityAlert get-
LastKnownLocation

getPrimaryClip setPrimaryClip
getPrimaryClipDescription ad-
dPrimaryClipChangedListener

ClipboardService

SMSManager copyMessageTolcc deleteMes-
sageFromlcc disableCellBroad-
cast sendTextMessage

TelephonyManager getCellLocation getDeviceld lis-

ten getNetworkType getCellLo-
cation getMsisdn

AccountManagerService  getAccounts addAccount
clearPassword  getPassword
grantAppPermission

ContentProvider USOMs
ContactsProvider2 query insert update delete
writeAccess readAccess bulkIn-
sert
query insert update delete
query insert update delete
query insert update delete
bulkInsert
query insert delete

MMSSMSProvider
TelephonyProvider
SettingsProvider

CalendarProvider2

Table 1: List of system Userspace Object Managers in
FlaskDroid with example operations controlled by each man-
ager. Currently, the USOMs implemented in FlaskDroid
comprise 136 policy enforcement points.

Our middleware extension is hereby the trusted user space
agent that controls the SELinux dynamic policies and can
map system states and contexts to SELinux boolean variables

(cf. Section [4.3).
4.4.2 Userspace Object Managers

In our architecture, middleware Services and apps act
as Userspace Object Managers (USOMs) for their respective
objects. These Services and apps can be distinguished into
system components and 3"? party components. The former,
i.e., pre-installed mandatory services and apps, inevitably
have to be USOMs to achieve the desired system security
and privacy, while the latter can use interfaces provided by
the Userspace Security Server to optionally act as Userspace
Object Managers (cf. Section .

Table [I] provides an overview of the system USOMs in
FlaskDroid and shows some typical operations each USOM
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controls. Altogether, the USOMs implemented in FlaskDroid
currently comprise 136 policy enforcement points.

In the following, we explain how we instrument the Servi-
ces and ContentProviders as Userspace Object Managers. In
particular, we highlight the roles of the PackageManagerSer-
vice and ActivityManagerService in the design of FlaskDroid.

PackageManagerService.

The PackageManagerService is responsible for (un)installation
of applications. It also maintains a global state of package
meta information, such as a mapping between package names
and their UID, install directories on the filesystem etc. More
importantly, it maintains a global list of all available Ac-
tivities, Services, Broadcast Receivers, and ContentProviders
contained in the installed applications in order to find a pre-
ferred component for doing a task at runtime. For instance,
if an email client sends an Intent to view a PDF document
available as an attachment, the PackageManagerService looks
for a preferred Activity able to perform the task; if there is
no preferred Activity, it prompts the user with a selection of
applications that can read a pdf file and waits for the user’s
choice.

As a Userspace Object Manager, we extend the function-
ality of the PackageManagerService to assign consolidated
middleware- and kernel-level app types to pre-installed sys-
tem applications at boot time and newly installed applica-
tions at install time using the criteria defined in the policy
(cf. Section . More explicitly, we assign app types to
the UID of the application, also considering shared UIDs be-
tween different apps. For instance, considering the app Type
definition in line 30 of Listing [I]in Section[£.3.1] the Package-
ManagerService would assign the security type app_ tag t
to the UID under which the package com.android.apps.tag
executes. Thus, whenever a policy check for access con-
trol AC(p1,p2,ps3,pa) is performed for an operation of this
app, then p1 = app_tag_t (if the app is subject) or ps =
app__tag_t (if the app is object) or both p1 = p2 = app_tag_t
if two components of this same app interact. Object-specific
types and classes, on the other hand, are specific to the
middleware or kernel layer and are used to define policy
rules specific to the semantics of their respective layer. For
instance, the object classes contactsProvider_c or location-
Service__c are middleware specific classes.

Similarly, we extend the logic for finding a preferred com-
ponent for performing a task at runtime. This implicitly
affects the interaction between the system and the user. By
default, if several components are suitable to perform a given
task (e.g., in the above example several PDF viewers are
installed) but no component is set as preferred, the user is
prompted to chose one of the potential receivers for perform-
ing the task. By filtering this receiver list based on policies,
the user-prompt contains only options which would be al-
lowed by the policy, while impossible choices are omitted.
The filtering is based on the type of the application that
triggers the task, the type of the Intent that describes the
task, and the type of the potential receiving apps. Thus, let
Recv_t to be the type of a potential receiver, Intent_t the
type assigned to the Intent, and Sender_t the type of the app
that triggers the task. Then, each receiving app is filtered for
which either no allow rules exists that allows type Recv_t to
receive an Intent of type Intent_t or that allows type Recv_t
to communicate with type Sender_t.



Moreover, PackageManagerService is responsible for dis-
covering developer provided policies in the application in-
stallation packages and forwarding them to the Userspace
Security Server. The USSS parses them and considers them
during access control decisions that involve the corresponding

application (see Section [4.4.3]).

ActivityManagerService.

The ActivityManagerService as part of the Android system
server process is responsible for managing the stack of Activi-
ties of different applications, Activity life-cycle management,
as well as providing the Intent broadcast system. As a USOM,
the ActivityManagerService is responsible for labeling Activity,
Intent and Broadcast objects and enforcing access control on
them. Activities are labeled according to the apps they belong
to, i.e., the UID of the application process that created the Ac-
tivity. Subsequently, access control on the Activity objects is
enforced during operations that manipulate Activities, such as
moving Activities to the foreground/background or destroying
them. Listing [I8] in Appendix [B] shows some examples of
these object specific operations for these object classes.

In Section [£:31] we explained how Intents are labeled
depending on available meta-information, such as the ac-
tion and category string or the sending app process (UID).
Broadcasts are simply Intents which are delivered to a list of
registered receiver apps. To apply access control to the Broad-
casts, the ActivityManagerService filters out all receivers which
are not allowed to receive Intents of the previously assigned
type (e.g., to prevent apps of lower security clearance from
receiving Broadcasts by an app of a higher security clearance).
Thus, for each receiver a policy check AC(p1,p2,ps,pa) is
performed, where p; is the security type of the receiver, p2
is the security type of the Intent, ps is the object class such
as intent_ c or broadcast__c, and p4 is the operation such as
receive. send, or receiveSticky (cf. Listing in Appendix.
Moreover, the sender of the Broadcast can assign a custom
label to his Intent in order to further classify or also to
declassify this Intent if in accordance with the policies.

Content Providers.

As described in Section ContentProviders are the pri-
mary means for apps to share data. This data can be accessed
over a well-defined, SQL-like interface. As Userspace Object
Managers, ContentProviders are responsible for assigning la-
bels to the entries they manage during insertion/creation of
data and for performing access control on update, query, or
deletion of entries. The exact mechanism how they realize
this can be based on different approaches: 1) more generic,
but rather coarse-grained, based on the URI that identifies
particular data entries within a ContentProvider; or 2) more
fine-grained by integrating it into the storage back-end (e.g.,
SQLite Database), but losing generality. Currently, almost
all ContentProviders are implemented as an SQLite database.
Therefore, object labeling and access control can be achieved
at the level of rows, columns or even cells within the database.

Services.

A Service is a component of an application which provides
a particular functionality to other (possibly remote) com-
ponents and exposes its interface as a Binder object that is
generated based on an interface specification described in
the Android Interface Definition Language (AIDL, cf. Sec-
tion , To instantiate a Service component as a Userspace
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Object Manager, we opted for an semi-automated approach.
In FlaskDroid, we provide an extension of the AIDL language
and its corresponding code generator. Interfaces generated
from an AIDL definition automatically contain a policy-based
access control check on calls to the Service interface and each
offered function. Additionally, the developer of the Service
can add type-tags to the function definition in AIDL to fur-
ther restrict access to this function and our code generator
automatically adds this check to the produced interface code.
Modifying the AIDL tool is inspired by the approach pre-
sented in . Since the AIDL tool is used during build of
the system as well as part of the SDK for app development,
this solution applies to both system Services and 3"¢ party
apps in the same way.

4.4.3 Userspace Security Server

To implement the policy decision point for userspace types
and objects, two approaches are feasible: (1) Moving the pol-
icy decision point into the Linux kernel (e.g., the SE Android
security server), which is queried by the USOMs directly, or
(2) implementing a Userspace Security Server (USSS) which
is responsible for all userspace policy decisions.

For FlaskDroid, we opted for the second approach by
providing a clear separation of security issues between the
userspace and the kernelspace components. Our design not
only avoids overloading the kernel security server with access
control rules which only make sense for middleware entities
(subjects and objects) but, as described in Section also
enables the use of a more dynamic policy schema (different
from the more static SELinux policy language). This enables
us to take advantage of the rich semantics (e.g., contextual
information) in the middleware layer.

Our Userspace Security Server exposes an interface to the
USOMs which allows querying for access control decisions
(cf. Figure. This is similar to the default permission check
of Android, which is part of the SDK and can be called by
any application through public interfaces. As explained in
Section [£:3] our policy check is based on (1) the subject type
(usually the type associated with the calling app UID), (2) the
object type (e.g., contacts_email or the type associated with
the called app UID), (3) the object class of the object (e.g.,
contacts__data or Intent), and (4) the operation on the object
(e.g. query). This policy check implements the access control
decision AC introduced in Section 1.2

Regarding policies from multiple stakeholders (cf. Sec-
tion, we take a conservative approach and require 3"
party developers to define their custom policies including
types, object classes, and operations. This policy is then
included in the application package file and parsed by the
PackageManagerService during the installation process. How-
ever, since we allow developers to define their own types,
etc., we use namespaces to avoid name collisions between
different policies. Thus, we allow parallel sets of policy rules,
e.g., R5Y°*™ for a pre-installed system policy, R%°*° for
the policies deployed by the application with UID = 10010
or RY*¢" for policies defined by the end-user. Upon policy
check, we identify the corresponding policies upon which the
policy decision is based. For example, if AC(p1,p2,ps,pa) in-
volves a system app and a third party app with UID = 10010,
this check has to consider both R°Y***™ and R'%°*°. Nat-
urally, the different policies might conflict (e.g., RIystem
allows access and R'%°'? denies) and thus a reconciliation of
the access control is required. As described in Section [4.3.2]



our architecture allows us to define different consolidation
strategies for the userspace policies, which the USSS then
applies during access control decisions.

4.4.4 Context Providers

In Section we presented our current mechanism for
defining context-aware policies. By mapping contexts to
booleans, policy rules are dynamically enabled/disabled at
runtime in dependence on the contexts.

To allow for flexible control of contexts and their defini-
tions, our design leverages Context Providers. This providers
come in form of plugins to our Userspace Security Server (see
Figure [2)) and can be arbitrarily complex (e.g., uses machine
learning) and leverage available information such as the net-
work state or geolocation of the device to determine which
declared contexts they activated/deactivate. Decoupling the
context monitoring and definition from our policy provides
that context definitions do not affect our policy language
except for very simple declarations (see Listing [3). Thus,
instead of defining the exact parameters for a context in the
policy, e.g., longitude and latitude for geolocation, we only
declare contexts and the Context Provider inform the USSS
which contexts are active.

Moreover, the Userspace Security Server provides feedback
to Context Providers, for instance, the executed access control
decisions. Thus, this feedback also contributes to the current
system context. A good example for the usefulness of such
a feedback channel is an architecture like XManDroid 7
which aims at mitigating collusion attacks between different
apps. In XManDroid, the set of allowed IPC channels of an
app is directly dependent on its past IPC behavior. This
approach can be instantiated with FlaskDroid with a plugin
that models the currently established IPC channels (e.g., as a
graph ) based on the granted access control decision. The
plugin internally evaluates this graph and sets the contexts
such that each application’s IPC channels are restrained such
that no collusion attack is feasible.

S. IMPLEMENTATION

We implemented a prototype of FlaskDroid based on
SE Android in revision 4.0.4 on a Samsung Galaxy
Nexus phone. In the remainder of this section, we provide
technical details on how we realized our prototype.

5.1 Policy Implementation

Listing [6] presents the full grammar of our policy language
as implemented and used in the Listings throughout this
paper. The grammar is noted in Eztended Backus-Naur
Form. We implemented a Python-based compiler for this
language, using the pyparsing and ElementTree libraries,
which produces an XML representation of the policy. For
sanity checks, the compiler tool verifies the XML output
against an XML Schema of the policy language as supported
by our extensions on the device.

Listing 6: Grammar of our policy language presented in
FEzxtended Backus Naur Form

Policy ::= DefaultDecision, DefaultAppType,
DefaultIntentType, PolicyElements ;

(* Default definitions x*)
DefaultDecision ::= ““‘defaultDecision’’, DecisionValue ;
= “‘defaultApp Type’’, Identifier ;

DefaultAppType ::
DefaultIntentType ::= ‘“defaultIntentType’’, Identifier ;

(* Policy construct x)

PolicyElements ::= {Attribute}, {Type}, {Boolean}, v
{KBoolean}, {Class}, {Rulestatement}, {Context}, »
{SwitchBoolean}, {AppType}, {IntentType} ;

(* Policy element definitions x*)
Attribute ::= “‘attribute’”’, Identifier, ;" ;

Type ::= “‘type”’, #(Identifier), ;7" ;

Boolean ::= “‘boolean’’, Identifier, ‘‘="’, BooleanValue, ;" ;

KBoolean ::= “kboolean’’, Identifier, ‘‘="", BooleanValue, ‘;’’;

Class ::= ““class”’, Identifier, [ ‘“inherits”’, Identifier |, [ ¥
Braceldentifierlist | 57" ;

Rulestatement ::= ““if”’, ““("’, Identifier, )", “{”’, 1x(Rule), ¥
“}7?’ “;77' 1*(Rule) ;

Rule ::= “allow”’, SubjectType, ObjectType, ‘:”, ¥
ObjectClass, Permission ‘;”’
| “self”’, “:”’, ObjectClass, Permission ‘" ;

Context ::= “‘context’’, Identifier, ;" ;

SwitchBoolean ::= “‘switchBoolean’’, sbBody, ;" ;

sbBody ::= “/{”’, contextAssignment, autoReverse, v
1x(BoolAssignment), “};

contextAssignment ::= “‘context’’, “="’) Identifier,

autoReverse ::= ‘“‘auto__reverse’’, ““="") BooleanValue, ‘" ;

AppType := “‘appType’’, Identifier, DomainAssignmentlist, »

XN

XTI
’

7 )
IntentType ::= ““intentType”’, Identifier, ¥
DomainAssignmentlist, ¢’

(* Basic constructs x)

KVAssignment ::= Identifier, “="’, Value, ‘;’;

BoolAssignment ::= Identifier, ““="’) BooleanValue,

Assignmentlist ::= ““{”’, 1x(KVAssignment), “}”";

DomainAssignmentlist ::= ““{”’, 1x(Identifier, “‘:”,
KVAssignment), “}77;

Identifierlist ::= Identifier, *(whitespace, Identifier) ;

BracketIdentifierlist ::= “/”, Identifierlist, ‘/””;

Braceldentifierlist ::= “‘{”, Identifierlist, “‘}”";

SubjectType ::= (Identifier | Braceldentifierlist) ;

ISP LN
F)

ObjectType ::= (Identifier | Braceldentifierlist) ;
ObjectClass ::= (Identifier | Braceldentifierlist) ;
Permission ::= Braceldentifierlist ;

(* Basic definitions )

DecisionValue ::= “‘deny’” | “allow’ ;

BooleanValue ::= “‘true’ | “‘false’ ;

Identifier ::= 1x(alphanum | ¢ ") ;

Value ::= [ :4~77]7 1*(alphanum | 4:777' :4_.77| :4_77| u/u) ;

(* Basic terminals )

alphanum ::= { alpha | digit } ;

alpha = (‘A’)' . ‘ IIZ!!‘ I{a)7‘ . ‘ I{Z”.
dlglt = ‘:0!’| ‘ 4:9:’;

whitespace ::= 7 white space characters ? ;

While the policy language is very close to the SELinux
policy language and more suitable for human readers, the
XML output is contains performance-oriented optimizations
which decrease human readability. For instance, it unrolls
attributes and type sets in allow rules, such that lookup of
policy rules during policy checking performs more efficiently.
For instance, Listingm presents in line 2 a compact example
rule to allow the Exchange app and the eMail app to bind to
services of the Exchange app and the eMail app. The com-
piler would unroll this rule and produce output containing
four separate rules expressing the same security objectives,
as shown in lines 4-7 of Listingm

Listing 7: FEzample policy in compact form and set of rules
expressing the same security objectives.

1‘ /# Compact form for allow rule */
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allow { app_exchange t app_email t } { app_exchange t
app_email_t }: service_c {bind};

/* Equivalent set of rules for the same security objectives */

allow app_exchange t app_exchange t: service c {bind};

allow app__exchange_t app_ email_t: service_c {bind};

allow app email t app exchange t: service c {bind};

allow app_email t app_email t: service_c {bind};

5.2 Userspace Security Server

The Userspace Security Server acts as the central policy
decision point for access control on objects in userspace
and is implemented as part of the Android system server
(com.android.server). It currently comprises 3741 lines of
Java code. At system initialization, it loads and parses the
XML-based policies and creates an in-memory representa-
tion. Access control rules are represented using a dedicated
AccessControlPolicy class. To increase performance, we im-
plemented a central Access Vector Cache (AVC) which stores
policy decisions by mapping the tuple (SubjectType, Object-
Type, ObjectClass, Permission, Boolean) to the correspond-
ing policy decision using a Java HashMap data structure.

Interfaces.

Since the Userspace Object Managers (USOMs) may be
scattered throughout the middleware- and application layers,
the USSS provides an API for policy checks that is exposed
to applications and other system components through the
Context class. However, some middleware USOMs which
account for the bulk of the policy checks, e.g., the Activity-
ManagerService and the PackageManagerService, are executed
inside the system server as well, so no ICC is required to
query the USSS.

Figure[f] presents the policy check mechanism and in partic-
ular the interface exposed to USOMs. The interface consists
of a function call checkPolicy, which is triggered by USOMs
when, e.g., an app accesses a managed object through an
operation (step 1). The parameters to checkPolicy (step 2)
are the UID of the calling app, the security type of the ob-
ject, the class of the object, and the operation. While the
object manager defines the object type, object class, and the
operations it supports, it is oblivious of the security type of
the subject. Instead, the USSS resolves the provided UID
to its security type using the criteria defined in the app Type
statements the policy (cf. Section. Alternatively, if the
access control check is triggered system centric (e.g., on Inter
Component Communication between two apps), checkPolicy
can be called with the UID of the object manager instead
of the object type and the USSS will map both subject and
object UID to their security types. Mapping the UIDs to
security types within the USSS allows for a more flexible
type assignment and further eases the implementation of
multiple, simultaneous security policies for different stake-
holders (see below and Section . After resolving the
security types, the USSS performs the access control decision
AC(subject__type,object__type,object__class, operation) as de-
fined in Section E3.1] and returns the decision to the USOM
for enforcement.

Multiple stakeholders.

As explained in Section [£:3.2] multiple stakeholders may
have interest in deploying access control rules on the device
to protect their respective assets. In our implementation, we
opted for supporting policies included in application packages
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(APKs) of 3" party apps in addition to the pre-installed
system policy. The PackageManagerService is instrumented
such that it extracts policy files included in APKs during app
installation and injects them into the USSS. To differentiate
between the different policies, we leverage namespaces. In
each namespace, security types and objects classes can be
defined that are independent of the other namespaces. Thus,
for instance, app developers can define app-specific policies
with custom app and Intent types which are valid only within
their own namespace.

Figure [5| illustrates policy checks with namespaces, here
System, Object, and Subject. Since 3"¢ party app policies
should not interfere with other 3" party app functionality,
except when the other apps interact with the app, the Object
and Subject policies during the check are the ones deployed
by the Object and Subject app. If the Subject or Object app
is a system app, their policies are covered by the mandatory
System policy. These Subject and Object policies are op-
tional, i.e., they are only available if the 3"¢ party developer
opted in to use FlaskDroid and deployed a policy in the APK
of his app. If either Object or Subject app did not deploy a
policy, the respective check always yields Allow.

Since the Subject and Object policies are specific to the
app that deployed it and are only used when the app is
involved in an access control decision, it would be inefficient
if we would require authors of app-specific policies to define
extra app type definitions for their own app. Thus, we allow
in these policies a special, reserved type self_t for the subject
or object type of an allow rule. This special type represents
the app that deployed this rule. For instance, the rule

r = (trustedApp_t,self t,contentProvider c, query)

would define, that any app with security type trustedApp
is allowed to query a ContentProvider component belonging
to the app that deployed that rule. When querying an app-
specific policy, our USSS automatically adjusts the subject
or object argument of the query depending on whether the
app owning this policy is acting as subject or object. In
Figure for instance, the object type parameter would be
automatically mapped to the self t type for the second check
based on the Object policy policy and similarly the subject
type parameter in the third check to the Subject policy would
be automatically set to self t.

Figure[f|also shows that in our implementation we opted for
a conservative consensus approach for policy reconciliation,
i.e., at least one policy checks allow access and none denies.
Since the system policy check is mandatory, the system policy
must always consent into an access.

Context-awareness.

To implement context-aware policies, we implement dif-
ferent Context Providers, which register Listener threads to
be notified about context changes similar to the approach
taken in . In our current implementation, the context
is derived from the location information provided by the
GPS sensor, the user presence detected by the ActivityMa-
nagerService, the ActivityStack, and a notification Intent by
the telephony app. These information are matched against
defined contexts within the Context Providers. For instance,
the notification Intent is send by the telephony app, when
the user activated/deactivated the Phone Booth Mode (see
Section and the geolocation is used to determine if the
user is currently at his workplace. When a Context Provider
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since external 3¢ parties may not deploy policies.

matches these criteria to a defined context, it informs the
USSS that the corresponding context declared in the policy
(e.g., phoneBooth_con or work_con in Listing [3]) is active/in-
active. The USSS than maps the context to boolean values as
defined by the switchContext statements in the policy (cf. Sec-
tion . Abstractly, this equals setting the parameter ps as
defined in Section 311

Synchronisation with Kernel MAC.

As explained in Section [£4.1] our middleware extensions
take the role of a trusted user space agent which manages
SE Android’s booleans (represented by kbool variable in the
policy and used in switchBoolean statements, cf. Section.
SE Android provides to this end user space support (in
particular android.os.SELinuz), which enable runtime config-
uration of the kernel MAC booleans. Self-contained system
and kernel MAC policies ensure that only the system server
is allowed to use this mechanism.

5.3 Userspace Object Managers

We instrumented essential Android subsystems like the
PackageManagerService and ActivityManagerService, as well
as System Applications like the ContactsProvider, the MMS-
SMSProvider, or the LocationManager as Userspace Object
Managers in order to enforce fine-grained policy-driven access
control on objects they manage. After analyzing the security-
critical operations regarding the objects these components
manage, we integrated hooks to query the USSS for policy
decisions at strategical valuable locations in the control flow
from public APIs of the respective USOMs.

PackageManagerService.

As explained in Section [I.4] the PackageManagerService is
responsible for (un)installation of application packages and
for maintaining a global list of application components that
could be queried at runtime in order to perform a specific
task.
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The PackageManagerService is instrumented as a USOM by
the following extensions: (1) introducing a mechanism to tag
newly installed and pre-installed applications with security
labels and maintaining a list of labels assigned to all installed
applications, and (2) introducing policy enforcement points
in APIs that query information about other packages or
access the PackageManagerService’s global list of application
components to obtain a suitable component that can perform
a task on another application’s behalf e.g., an Email client
calling a PDF reader to read an email attachment.

Security labeling of application packages is achieved by
extending the relevant Java class to include a security label
field for each package (Shared UID), and by hooking the Pack-
ageManagerService’s function calls responsible for installing
apps with calls to label them during the installation process;
pre-installed apps are labeled during the phone’s boot cycle.
It is important to note that the criteria for labeling apps with
a particular security label is based on meta information in
the application package e.g., granted permissions, developer’s
signature etc. The exact meta information chosen to label
the app is stipulated by the system policy.

In addition, pre-defined UIDs in the system are reserved for
particular system components, for instance daemons. List-
ing [§] shows the pre-defined UIDs on Android 4.0.4 as found
in system/core/include/private/android__filesystem__config.h.
With the exception of the system UID (AID_SYSTEM) and
NFC UID (AID_NFC) these UIDs are not assigned to an ap-
plication package managed by the PackageManagerService.
Thus, in our implementation we map these UIDs by default to
pre-defined types (e.g., aid_root_t or aid_audio_t) which
are hence mandatory types in our system policy.

Secondly, policy enforcement points are introduced in those
function calls of PackageManagerService that query a pre-
ferred component to perform a specific task at runtime. For
instance, when a third-party application with a security label
Sa wants to read a document, the PackageManagerService
is queried to look for suitable document readers. After the
PackageManagerService resolves a suitable document reader
to perform the required task, our policy enforcement points
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Listing 8: Pre-defined, reserved UIDs for Android system
components

AID_ ROOT 0 /# traditional uniz root user */
AID_SYSTEM 1000 /* system server #/

AID_RADIO 1001 /* telephony subsystem, RIL */

AID_ BLUETOOTH 1002 /* bluetooth subsystem x/

AID GRAPHICS 1003 /* graphics devices */

AID_INPUT 1004 /* input devices */

AID AUDIO 1005 /# audio devices */

AID CAMERA 1006 /* camera devices */

AID_LOG 1007 /* log devices */

AID COMPASS 1008 /# compass device */

AID_ MOUNT 1009 /# mountd socket */

AID_WIFI 1010 /* wifi subsystem */

AID__ADB 1011 /* android debug bridge (adbd) x/

AID_INSTALL 1012 /# group for installing packages */

AID_ MEDIA 1013 /+ mediaserver process */

AID_DHCP 1014 /* dhcp client */

AID SDCARD_RW 1015 /* external storage write access */

AID VPN 1016 /+ vpn system x/

AID KEYSTORE 1017 /x keystore subsystem #/

AID_USB 1018 /* USB devices */

AID_DRM 1019 /* DRM server x/

AID_AVAILABLE 1020 /* available for use */

AID_GPS 1021 /* GPS daemon x/

AID_UNUSEDI1 1022 /* deprecated, DO NOT USE =/

AID MEDIA RW 1023 /* internal media storage write
access */

AID_MTP 1024 /x MTP USB driver access */

AID_UNUSED2 1025 /x deprecated, DO NOT USE x/

AID DRMRPC 1026 /# group for drm rpc */

AID NFC 1027 /* nfc subsystem */

AID SHELL 2000 /* adb and debug shell user x/
AID CACHE 2001 /* cache access */
AID_DIAG 2002 /* access to diagnostic resources x/

query the USSS to check if the resolved document reader can
in fact be used by the caller. To facilitate the policy check,
PackageManagerService passes security labels of the caller
(S4), the callee (say Sp) and the operation to be performed
(“package query”) to the USSS. Thus, our policy enforcement
points ensure that runtime component queries adhere to our
userspace system policy.

Activities and Broadcasts.

As explained in Section the ActivityManagerService
is responsible for the life-cycle management of Activities as
well as providing the Intent broadcasting subsystem. More
explicitly, the ActivityStack subsystem of the ActivityMana-
gerService is responsible for starting/destroying Activities,
maintaining which application is shown in the foreground on
the screen, or reordering the stack of Activities.

We extended the relevant management functions of Activity-
ManagerService for Activities (i.e., GUI objects, cf. Section
with calls to the USSS in order to verify that the particular
functions are permitted to proceed depending on the subject
type (i.e., the calling app), object type (i.e., the app owning
the Activity being modified), and the current phone state.
Thus, it provides fine-grained access control over the Ac-
tivity operations such as moving another Activity into the
foreground on the screen.

For access control on Intent Broadcasts, we followed a
design pattern as proposed in other works . Similar
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to these works, we verify for each sender-receiver pair of
a Broadcast that this communication is policy compliant
and remove non-compliant receivers before executing the
broadcast operation. Again, the check is based on the subject
type (i.e., the app receiving the Broadcast), the object type
(i.e., the app broadcasting), and the phone state. Moreover,
additional checks based on the Intent type have been added
to verify that the broadcasting app is allowed to send this
type of Intent, that the receiver is allowed to receive this
type of Intent, and if the sender declassified the Intent.

Services.

We extended the code generator of Android’s AIDL tool
to automatically include a policy check within each function
(declared in the applications AIDL file) of the onTransact
method responsible for multiplexing incoming calls to the Ser-
vice. We further extended the lexer and parser of Android’s
AIDL tool to recognize if an interface function declaration
is tagged with an object type and thus add a second policy
check to the tagged functions’ code with respect to the object
type declared by the developer. Modifying the AIDL tool
is inspired by the approach presented in . Since the
AIDL tool is also used during build of the system, these
extensions affect all system Services as well and provide a
very convenient way to enforce fine-grained policy-driven
access control to system Services’ interfaces.

Content Providers.

As argued in Section [I.4] how a ContentProvider can work
as a Userspace Object Manager depends on the storage back-
end of the Provider. However, we implemented one particular
design pattern for SQLite database-based ContentProviders.
For a detailed technical description of this mechanism, we
refer to our related technical report and provide here a
summary at the example of the ContactsProvider. In the
system ContactsProvider, we leverage the contacts’ groups
(e.g., “friend”, “work”, “family”, etc.) and the mimetype of
contacts’ data (e.g., “email address”, “postal address”, etc.)
as object types. Upon insertion or update of entries, we
verify that the subject type of the calling app is permitted to
perform this operation on the particular object type. Filter-
ing queries to the database is technically more involved. Our
solution is based on SQL Views® by creating one View for
each subject type and redirecting the query of each calling
app to the View for its type. Each View implements a fil-
tering of contacts/contacts’ data based on an access control
table that represents the access control matrix for subjec-
t/object types. The values of the access control matrix are
retrieved from the USSS upon database creation or when
a new application with permission to access this provider
is installed. The same design pattern can be leveraged on
any SQLite database-based ContentProvider and similarly
the retrievable access control matrix can be leveraged by
any kind of ContentProvider. Further, this technique scales
well to multiple stakeholders by using nested views, i.e., each
level of the nesting corresponds to one stakeholder.

9A virtual SQL table, which represents a subset of the orig-
inal table’s content based on an inherent select statement.
Views can be used instead of Tables in SQL commands.



6. USE-CASES / INSTANTIATIONS

As mentioned in our threat model (cf. Section [3.1)), the
recent incidents on smartphone privacy and security breaches
have led to a demand for privacy protecting as well as (en-
terprise) security solutions in practice. In the following we
will introduce some of them and show how FlaskDroid can
instantiate them. Moreover, we will discuss how FlaskDroid
can go beyond these specific solutions, for instance, by se-
curely integrating virus scanner or firewall management apps
into the overall system.

6.1 Privacy Enhanced System Services and Con-

tent Providers

System Services and ContentProviders are an integral part
of the Android application framework and implement the
APT exposed to 3"¢ party apps. Prominent services are,
for instance, the LocationManager or the Audio Services and
prominent ContentProviders are the contacts app and SM-
S/MMS app. By default, Android enforces permission checks
on access to the interfaces of these Services and Providers.

Problem description: However, it is known that the
default permissions are too coarse-grained and protect ac-
cess only to the entire Service/Provider but not to specific
functions or data. Moreover, they are static and cannot be
selectively revoked. Thus, the user cannot control in a fine-
grained fashion which sensitive data can be accessed how,
when and by whom. For instance, the popular WhatsApp
service has recently been shown to upload user’s contacts
data . Also other apps such as Facebook have access to the
entire contacts database although only a subset of the data
(i-e., email addresses) is required for their correct functioning.
On the other hand, recent attacks demonstrated how even
presumably privacy-unrelated and thus unprotected data
such as the accelerometer readings can be misused against
user’s security and privacy .

Solution: Our modified AIDL tool automatically gener-
ates policy checks for each Service interface and function in
the system during build of the system, thus enabling policy-
based access control to each system Service interface and func-
tion. We tagged selected query functions of the system Audi-
oService, LocationManager, and SensorManager with specific
security contexts (e.g., object__type asfineGrainedLocation_t,
object__class as locationService_c, and operation as getLast-
KnownLocation) to achieve fine-grained access control on this
information. Our policy could state, that calling functions of
this object type is prohibited while the phone is in a security
sensitive state. Thus, retrieving accelerometer information or
recording audio would not be possible when, e.g., the virtual
keyboard/PIN pad is in the foreground or a phone call is in
progress (both definable phone states).

In Sectionwe explained how ContentProviders (e.g. the
ContactsProvider) can act as Userspace Object Managers. As
an example, users can refine the system policy access control
to their contacts’ data. A user can, for instance, grant the
Facebook app read access to their “friends” and “family” con-
tact’s email addresses and names, while prohibiting it from
reading their postal addresses and any data of other groups
such as “work”. For technical on how this is implemented
and on the policies, we refer to our technical report ,

6.2 Privacy-Enhanced Image Media Store

Modern Android smartphones are equipped with cameras.
Photos a user takes may contain sensitive information, where
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the sensitivity is defined by the current usage context of the
device. For example, in case a device is used for business and
private purposes, photos taken while on company premises
or during working hours should not be accessible by private
apps. In addition, a user may want to protect his private
images from being accessed by the employer.

Problem description: When a photo taken by the user
is stored on the device, meta-information about the photo
(filename, location etc.) and the photo file itself are ac-
cessible by all apps which can access the external storage
area. While meta-information is stored in the Mediaprovider
ContentProvider, the photo itself is stored on the external
storage area of the device, which is implemented using either
an embedded flash module or a removable SD card. An-
droid uses the VFAT file system for this storage area, which
does not provide fine-grained access control. While recent
Android versions use a file system which supports access
control, Android emulates a VFAT file system on top of it by
means of a File System In Userspace (FUSE). A reference
monitor in the kernel checks Linux GID based permissions
(READ_EXTERNAL_STOR,AGE/WRITE_EXTERNAL_STORAGE) when-
ever apps try to access this storage area. Thus, all apps
which hold these permission can access all photos.

Solution: In FlaskDroid, the sensitivity of a photo is
defined by the usage context a photo was taken in. This
information can either be derived from user input by asking
the user whenever a photo is taken, or by context deriviation
from sensor information (cf. Section . We assign a
security context to the photo metadata stored by the camera
app in the Mediaprovider, which acts as a Userspace Object
Manager.

A technical challenge for access control on the photo files
themselves is the fact that the VFAT file system does not
support extended file system attributes, a prerequisite for
storing the SELinux security context for file objects. When
the VFAT file system is emulated by the previously described
FUSE module, this module can be instrumented to act as a
Userspace Object Manager and mediate access based on the
type of the accessing app. Alternatively, a file system with
support for extended attributes for the external storage area,
as proposed in [23], can be used.

It should be noted that when using removable media,
FlaskDroid’s access control mechanisms can be circumvented
by removing the SDCard and accessing it from a secondary
device. This challenge can be addressed by encrypting the
contents of the SDCard with a key bound to the mobile
device.

6.3 Multi-level Security

Smartphones are increasingly applied in scenarios where
different security domains are desired. The most prevalent
example today are corporate smartphones which are simulta-
neously used for private purposes or vice versa (i.e., based on
“Bring your own device” philosophy). Previous work has
acknowledged this need for domain isolation on dual used
smartphones and our FlaskDroid architecture can efficiently
and effectively instantiate this use-case.

Problem description: Android does not provide support
for declaring different security domains and strongly isolating
them from each other. Thus, malicious apps in or attacks
against the private domain on the phone can compromise
the corporate domain.



Solution: Our architecture supports multi-level security
(MLS) and thus with FlaskDroid business applications can
be clearly distinguished and labeled with a corresponding
type during installation (cf. Section@. At runtime, the non-
business and business domain are securely isolated from each
other at middleware level and kernel level. For instance, only
apps from the business domain are permitted to contact the
Services of another business domain app. Moreover, contacts
created for the business domain (i.e., of group “work”) could
only be read and written by application from the business
domain (see also the use-case in Section. Similarly, our
consolidated kernel- and userspace policies can ensure that
despite DAC, files created by a business app could only be
accessed by other business apps.

6.4 Secure Logs

A further use-case of our interest concerns the log facility
of Android. Android applications can write entries to the
log facility by either writing directly to the world-writeable
/dev/log/* device files, by using the log and logwrapper tools
or the Android Log API. By modifying the Android-specific
logger kernel driver, the UID of the application writing to
the logfile is saved upon write. On the middleware level,
the UID of the application is associated with the userspace
subject type.

Listing 9: Ezample policy snippet illustrating implementing
different security types on log entries

self: log ¢ { read };
allow systemApp_a any: { log_c syslog_c } { read };

anymore'!. In comparison, our approach allows 3"% apps to
access their own log entries, which is a benefit for application
developers and preserves legacy-compliance.

6.5 Firewall and Anti-Virus Apps

In default Android, certain permissions like Internet or
Bluetooth are mapped to Linux groups (cf. Section 4
Similarly, our architecture is used to introduce new capa-
bilities, which, in contrast to permissions, can be revoked
at runtime using booleans. As example, we introduced the
capabilities that a 3"® party app can act as a manager for
the Linux kernel packet filter, i.e., it can execute the iptables
tool with sufficient privileges, and the capability to inspect
other apps’ APK packages (both, the public and the private
portion, cf. forward locking) in order to perform anti-virus
scans. While this could be achieved by adding new permis-
sions to the system, using FlaskDroid is much more flexible
and allows for efficient upgrades of the policy as well as more

Problem description: Applications holding the READ_LOGSfine-grained access control.

permission effectively become member of the log group which
has read access to /dev/log/* (enforced by the Linux DAC,
similar to the Internet permission; cf. Section [2.1))). Applica-
tions by default use the logcat tool available on the phone
to read and parse the entries in /dev/log/*'°. However, the
capability to read the logs has been shown to be a security
and privacy threat. For instance, sensitive location infor-
mation are frequently logged by apps and thus could be
retrieved from the log and even Facebook credentials
were discovered in log entries .

Solution: SELinux is used to enforce that only the An-
droid logcat tool is allowed to read from /dev/log/*. With
logcat now being the only access point to log entries, it can be
extended as a Userspace Object Manager: Upon read access,
the log facility filters all entries from the result, for which the
reader does not have the required security clearance. Policy
checks from the logcat tool to our middleware USSS are
performed via a dedicated socket provided by the USSS. This
strongly resembles the exemplary use-case for the SELinux
access control on the /etc/passwd file on Linux systems. Only
the passwd tool is allowed to modify this security sensitive
file and is inherently trusted to enforce that users can only
modify their own entries. However, in contrast to this de-
fault use-case, our secure logs require the joint operation
of both middleware and kernel-level. Listing El presents a
simple policy for enforcing access control on log entries. In
this case, every application has read access only to his own
logging information in the default log, but no other (line 1).
Only apps belonging to the system application attribute are
allowed to read all log entries from both the default log and
the system log (line 2).

It should be noted that since Android version 4.1, the
READ_LOGS permission is not available to 3"¢ party apps

OWhile it is possible to read /dev/log/* directly, in practice,
all applications we analyzed use the logcat tool.
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Problem description: Default Android does not support
this use-case and requires the user to root his phone to enable
contemporary available firewall and anti-virus apps with
the above described functionality. Naturally, this severely
impedes the platform security and opens the door for other
malware that leverages the root privileges.

Solution: We install the iptables binary with setuid bit
and user root. Additionally, we assign this binary an SELinux
security label with fwapp as role, so that only apps that
have been assigned this role (or that inherited this role) can
execute the binary. Similarly, we introduce a role avapp
which is allowed to inspect the private files of other apps.'?
These SELinux roles are assigned to apps during installation
(i-e., to their UID) and in future work we plan to extend
this install process such that apps can requests roles in
their manifest and depending on user consensus or their app
type (cf. Section the role is granted or denied to the
application.

6.6 Phone Booth Mode

Users may lend their mobile device to an acquaintance
(or even stranger) to make a phone call. The goal of this
use-case is to temporarily lock the device in a secure state in
which it can be handed out to another person for the sake of
making a phone call. In this mode, the phone is configured
to grant access only to telephony-related features and apps
(c.f. Figure @, and access to privacy-sensitive data, such as
contacts and call log entries, is denied.

Problem description: The user loses or gives up physi-
cal control over his device and has to trust the other person
to not violate his privacy by, for example, inspecting the
entire call history and contacts database visible within the

"http://code.google.com/p/android/issues/detail?
1d=34792

"#This includes, that the DAC permissions are relaxed, since
the access must be allowed by DAC and MAC
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Figure 6: Phone Booth Mode

dialer app or even exploring other apps and data on the
phone.

Solution: Our fine-grained access control within the Acti-
vityManagerService and ActivityStack allows us to control if
another application can be moved into or off the foreground
on the screen (cf. Figure@. The user can trigger a transition
into a special phone-context “phone booth mode” by pressing
a button, in which the policy dictates that the dialer app is
the only app permitted to be in the foreground. Simultane-
ously, the policy defines that all access to the CallLogProvider
and ContactsProvider must be denied, meaning they return
empty results to all queries, thus preventing the phone app
from auto-completing entered telephone numbers or from
showing the call log/contacts data. In this mode, the user
can safely lend his phone to another person for the sake of
making a phone call.

To exit this specific phone state, the phone app informs the
Userspace Security Server about the changed state and thus
resets the corresponding Boolean value to its original state.
To authenticate this operation, different options exist. For
instance, the user is prompted to enter his PIN or configured
password (or on more recent hardware, using biometrics) and
only if the authentication succeeded, the phone app changes
the state.

Moreover, the same approach could be used to provide a
generic “kiosk mode” as well, which locks the user into a
single application, such as a game when handing the phone
to a child.

The policy for implementing the phone booth mode was
already used in listings in Section [£.3] but listing [I0] presents
summary of the relevant parts. The policy defines a separate
boolean phoneBooth_b (line 1) to represent the phone state,
i.e., either the phone booth mode is activated or not. To man-
age this boolean, we use a dedicated context phoneBooth_con
(line 3) and switchBoolean (lines 5-10), which defines that
on activating this switch the phoneBooth_b boolean is set to
true and automatically reset to false if the phoneBooth_con
context is deactivated. The snippet shows the rules for nor-
mal operation of the phone (lines 12-30), including querying
contacts, switching Activities, etc. However, part of these op-
erations are only allowed if the phone is not in phone booth
mode (lines 26-30), meaning that this rules are disabled if the
phone booth mode is active (i.e., the phoneBooth_b boolean
is true). The affected rules address the switching of Activities
(line 28) and the querying of the contacts database (line 29).
Since the phone booth mode is activated from within the
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phone app, which is shown in foreground, deactivating these
rules results in forcing the phone app to stay alive and in
foreground on the screen as well as blocking any access by
the phone app to the contacts data (and calllog).

Listing 10: Ezample policy snippet implementing a phone
booth mode.

bool phoneBooth b = false;
context phoneBooth_ con;

switchBoolean

{
context=phoneBooth_ con;
auto_ reverse=true;
phoneBooth_b=true;

};

self: app_ ¢ {checkPermission};
self: activity__c {finish moveTask};
self: broadcast c {receive send};

allow {app_ system__t app_ contacts_t app_ launcher_t}
allContactsData_t: contactsProvider ¢ {query};

allow {app__system__t app__telephony_t app_ contacts_t
app_ launcher t} {app_ system_t app_telephony t
app__contacts_t app_launcher_t}: package c¢
{getPackagelnfo getPackageInfoWithUninstalled
getPackageUID getPackageGIDs getPackagesForUid
getNameForUid getUidForSharedUser
findPreferred Activity queryIntentActivities
getInstalled Applications
getInstalled ApplicationsWithUninstalled
getInstalledPackages
getInstalledPackagesWithUninstalled };

allow {app_system t app telephony t app contacts_ t
app_ launcher_t} {app_system_t app_ telephony t
app_ contacts_t app_launcher t}: app c
{checkPermission};

allow {app_system t app telephony t app contacts_t
app_ launcher t} {app telephony t app contacts t}:
activity_c {start};

allow {app_system_t app_telephony t app contacts_t
app_ launcher_t} {app_system__t app_ telephony_ t
app_ contacts_t app_ launcher t}: activity ¢ {moveTask
finish};

if(~phoneBooth_b)

allow {app system t app telephony t app contacts t
app_ launcher t} {app system_t app_ telephony t
app__contacts_t app_ launcher_t}: activity__c {start
moveTask finish};

allow app_ telephony_t allContactsData_ t:
contactsProvider__c {query};

ks

6.7 App Developer Policies (Saint)

Ongtang et al. present in an access control framework,
called Saint, that allows app developers to ship their apps
with policies that regulate access to their app’s components.

Problem description: The concrete example used to
illustrate this mechanism consists of a shopping app whose
developer wants to restrict the interaction with other 3"¢
party apps to only specific payment, password vault, or
service apps. For instance, the developer specifies that that




the password vault app must be at least version 1.2 or that
a personal ledger app must not hold the Internet permission.

Referring to our notation of access control in Section [£:2]
the runtime enforcement of Saint is defined as a whitelisting

access control ACS*nt(pfaint pSaint pleint ,Sainty with the
following parameters:

pr @™ = Source Source app and optional param-
eters for an Intent object (e.g.,
action string)

p3 @™ = Destination Destination app

p3*"* = Conditions Optional, conjunctional condi-
tions (e.g., permissions or signa-
ture key of the destination app)

pient = Statesystem System state (e.g., physical loca-

tion or bluetooth en-/disabled)

Solution: Instantiating Saint’s runtime access control
on FlaskDroid is achieved by mapping Saint’s parameters
to the ones supported by FlaskDroid: pi = subject_type,
p2 = object__type, ps = object_class, and ps = operation
(cf. Section. Thus, p7®™, ps*t and p5*"* can be
combined into security types for the subject (i.e., source
app) and object (i.e., destination app or Intent object). For
instance, a specific type is assigned to an application with
a particular signature and permission. If this app is source
in the Saint policy, it is used as subject_type in FlaskDroid
policy rules; and if it is used as destination, it is used as
object_type. The object class and operation are directly
derived from the destination app. The system state can be
directly represented by FlaskDroid policy.

Listing shows an instantiation of the developer pol-
icy in on our architecture. The depicted policy is
deployed by the shopping app and thus self_t refers to
the shopping app. We define types app_trustedPayApp_t,
app_trustedPayApp_t, app_nolnternetPerm_t (lines 1-3 and
lines 8-22) for the specific apps with which the shopping app
is allowed to interact and describe some of the allowed inter-
actions by means of Intent types intent_actionPay_t and
intent_recordExpense_t (lines 5-6 and lines 24-28). After-
wards, we declare access control rules that reflect the desired
policy described in the example in (lines 36-38). For
instance, the rule in line 36 defines that the shopping app is
allowed to send an Intent with action string ACTION_PAY only
to an app with type app_trustedPayApp_t (line 27), which
in turn is only assigned to apps with the developer signature
308201... (line 10). The rule in line 37, on the other hand,
defines that the shopping app is allowed to interact in any way
with an app with type app_trustedPWVault, which is only as-
signed to apps with package name com.secure.passwordvault
and minimum version 1.2 (lines 15-16). Naturally, the devel-
opers of the other apps (e.g., of com.secure.passwordvault
or with signature 308201...) have to ship corresponding
policies to concur to this interactions (e.g., receiving Intent
from the shopping app).

Listing 11:  Policy snippet showing instantiation of
Saint @/ ezample for runtime policy enforcement. Policy
snippet is from the policy deployed by the shoping app.

type app_ trustedPayApp_t;
type app_ trustedPWVault_ t;
type app_ nolnternetPerm_ t;

type intent_ actionPay_ t;
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type intent_ recordExpense_ t;

appType app_ trustedPayApp_t
Developer:signature=308201...;

&

appType app_ trustedPWVault_ t

Package:package name=com.secure.passwordvault;
Package:min_ version=1.2;
I8

appType app_ nolnternetPerm_ t

Package:permission=~android.permission.INTERNET;
&
intentType intent_ actionPay_t

Action:action_ string=ACTION__PAY;
Components:receiver _type=app_ trustedPayApp_ t;

I8
intentType intent_ recordExpense_ t

Action:action_ string=RECORD__ EXPENSE;
Components:receiver__type=app_ nolnternetPerm_ t;

b5

allow self t intent actionPay t: intent c { send };
allow self t app_ trustedPWVault_ t: any { any };
allow self t intent recordExpense t: intent c { send };

Although both the original Saint policy and its instanti-
ation on our solution achieve the same security objectives,
the policy language between the two systems differ. Most
noteworthy is, that in Saint’s policy language the subjects
and objects are defined within the access control rules. Thus,
if two rules use identical subjects and objects, the definition
of those is redundantly repeated. Moreover, in Saint it is
not possible to group several distinct subjects or objects into
sets and thus ease writing of rules which differ only in the
object class or operation. In FlaskDroid, the policy language
requires the policy author to first clearly define all possible
types (for subjects and objects) as well as object classes
and their respective operations. While this might seem at
first glance more tedious, it greatly eases authoring of pol-
icy rules afterwards since one can use these types without
redundantly repeating their definition and, moreover, can
group types, classes, or operations into sets and thus achieve
more compact and readable rules.

7. EVALUATION AND DISCUSSION

In this section we evaluate and discuss our architecture in
terms of policy complexity, effectiveness, and performance
overhead.

7.1 Policy

Policy Assessment.

Security policies, including access control policies, are gen-
erally evaluated to be good based on different properties.
Some of the most important properties are safety, complete-
ness, and effectiveness.




Safety: A policy is safe when it enforces that subjects can
only obtain the rights that were intended for them but

no other .

Completeness: However, since the verification of the safety
property was shown to be undecidable for general
access control models (like RBAC or Lampson’s ac-
cess matrix [47]), alternative approaches to achieve
the safety property were devised. For instance, con-
straints were introduced which define a safety policy.
Fach change in policy configuration is verified against
this safety policy to ensure that it preserves the safety
property. This concept is also used in SELinux, where
constraints statements define prohibited permission as-
signments |75] (e.g., a process could be prevented from
creating a file with a different user identity then this
process). However, constraints do not only noticeably
increase the policy complexity and thus easily introduce
conflicts in the access rights specification, but they also
subdivide the space of possible policy configurations in
different, meaningful subspaces. These subspaces are
denoted access control spaces . In particular,
there is a subspace of permission assignments that are
permissible by the policy configuration, a subspace of
assignments prohibited by the constraints, and a sub-
space of assignments which are neither permissible nor
prohibited, i.e., the assignment status is unknown. A
policy is called complete when all unknown assignments
are eliminated.

Effectiveness: Further, a policy is called effective when
it enforces least privilege, i.e., subjects hold only the
privileges they require for their tasks. Effectiveness,
for instance, can also depend on the granularity of the
enforcement points (i.e., in our policy the granularity
of the object classes and their operations).

Our derived example policy: The development of a
good security policy that fulfills these properties is a highly
complex process. For instance, on SELinux enabled systems
the policies were incrementally developed and improved after
the SELinux module had been introduced, even inducing
research on verification of these properties . A similar
development can be currently observed for the SE Android
policies which are written from scratch . For FlaskDroid
we are for now foremost interested in generating a basic policy
to estimate the access control complexity that is inherent to
our design, i.e., the number of new types, classes, and rules
required for the system Userspace Object Managers, and hence
lay the foundation for the development of a good policy.

Policy Generation.

Established approaches: Different approaches exist to
generate access control policies. For instance, manual au-
thoring of very special purpose and use-case specific policies
as we have shown in Section [} For more complex policies,
(semi-)automatic methods have been proposed. For example,
the polgen tool for SELinux |77] processes the traces of the
dynamic behavior of target process (e.g., information flow
patterns) and generates new types and policy rules. polgen
operates human-aided and semi-automated, since a human
has to determine the exact security policies and adjust the
generated policies via wizard-style interface. Similarly, the
benefits of using the system call traces for guided generation
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of a policy for fine-grained process confinement have been
shown . Also static analysis of target binaries seems a
feasible approach to help automating policy generation and
has been already employed to verify the information flow
properties of SELinux policies .

Policy generation for our evaluation: To evaluate our
FlaskDroid architecture, we derived an example policy that
covers the pre-installed system apps that we explained in
Section[I:4] To generate this example policy, we opted for an
approach that is similar to the one used in TOMOYO Linux’
learning phase'®. The underlying idea of this approach, as
illustrated in Figure[7] is to derive policy rules directly from
observed trusted application behavior. In our evaluation, we
consider the set of pre-installed system applications during
the time-frame of testing as being trustworthy.

Test system FlaskDroid
‘ applications (Audit Mode)
-
User
Log access
checks
: C p
Hams Derive policy rules
: — S 4
Q i 1T B
N
Access Control Access Control Log
Policy

Figure 7: Access control policy generation for system apps
based on audited application behavior.

To observe the application behavior, we deploy on our test
devices our FlaskDroid architecture in auditing mode, i.e.,
permission denials are only logged but not enforced, and
with a pre-installed policy. The deployed policy contained
a complete set of pre-configured types, attributes, classes,
and operations for the available system object managers, but
an empty allow rule set R (cf. Section . The types, at-
tributes, and classes have been derived from manual analysis
of the USOMs described in Section We simply refer
to this pre-configured policy as No-allow-rule policy in the
following. Since the policy did not contain policy rules, every
access control check based on this policy would result in
an access control violation. But, because the system is in
auditing (i.e., non-enforcing) mode, all violations are merely
logged. Thus, after this auditing phase one obtains a log
containing a clear trace of all accesses that occurred in the
system and that describes the applications’ behavior. Under
the assumption, that the system contained (in this learning
phase) only trusted apps, this trace can be used to generate
policy rules which limit the applications’ access rights to the
ones observed during the learning phase.

A crucial aspect of this approach is to avoid unexpected
access denials at runtime (after the learning phase) and hence
requires that one observes/logs all possible behavior of the
target apps during the learning phase. Otherwise, the policy
set is incomplete and legitimate actions of applications are
denied. For instance, if a trusted contacts management app
never inserted but only queried contacts information during
the learning phase, no policy rule is derived that allows

http://tomoyo.sourceforge.jp/2.2/learning.html.en



this app to insert contacts information (after the learning
phase). In order to achieve a high coverage of application
functionality and thus log all required access rights of the
pre-installed system apps, we opted for testing with human
user trials. We chose this approach because of the following
reasons: First, automated testing has been shown to exhibit
a potentially very low code coverage and, second,
Android’s extremely event-driven and concurrent execution
model complicates static analysis of the Android system
51).

To achieve the required high code coverage, the users’ task
was to thoroughly use the pre-installed system apps by per-
forming various every-day tasks (e.g., maintaining contacts,
writing SMS, browsing the Internet, or using location-based
services). While these tasks primarily trigger interaction
between apps and the system components (e.g., location
manager or sensors), we were also interested in the possi-
ble interaction between apps. Thus, a particular focus of
the user tasks was to leverage inter-app functionality like
sharing data (e.g., copying notes from a website into an
SMS or contacts entry), which defines the required access
control rules across app-boundaries. Since this testing tar-
geted only pre-installed system apps, no 3" party apps were
allowed during testing. For testing, the users were handed
out Samsung Galaxy Nexus devices running FlaskDroid in
auditing mode. The devices were also pre-configured with
test accounts (e.g., GMail) and test data (e.g., fake con-
tacts data). Using the logged access control checks from
the user trials, we derived access control rules of the form
(subject__type,object__type.object_class, operation) required
for the correct operation of the system components. These
rules (together with the above stated type and object defini-
tions) constitute our derived example policy.

Derived example policy: Tableprovides an overview
of the example policy derived from all user test results and the
additionally deployed SEAndroid policy (above the double
line in the Figure). In total our pre-installed middleware
policy contained 111 types and 18 classes for a fine-granular
access control to the major system Services and ContentProvi-
ders (e.g., ContactsProvider, LocationManager, PackageMana-
gerService, or SensorManager). For instance, 57 types define
the various sensor types and possible data rates of each sensor
(e.g., fastest data rate for the orientation sensor), additionally
grouped in 5 attributes to ease policy design. The derived
policy after evaluating the audited user tests contained 109
allow rules which grant each pre-installed system app only
the rights necessary for correct operation (as observed during
testing).

Comparison to established SELinux policies: Ta-
ble 2] provides statistics on the policy complexities of differ-
ent SELinux deployments such CentOS, Fedora, and Debian,
as well as the SELinux reference policy. Obviously, these
policies cannot be directly compared to FlaskDroid since
they target desktop operating systems and include policies
for various pre-installed 3¢ party applications. However, the
difference in policy complexity (which is in the order of sev-
eral magnitudes) clearly underlines our second observation
(cf. Section [T)) and the experiences from [54], that
the design of mobile operating systems facilitates a clearer
mandatory access control architecture (e.g., separation of
duties). This clearer architecture profits an easier security
policy design.
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Lesson learned: A particular lesson learned from deriv-
ing the example policy in FlaskDroid is that several per-
missions operationally depend on each other. For instance,
the permission check for starting an Activity followed almost
always a permission check for querylIntentActivity to resolve
the target Activity. Thus, a launcher app which starts other
apps would by default require the permission to perform
queryIntentActivity for any other app in order to function
properly. Similarly, the application Context class inquires
information about its corresponding app from the system
PackageManagerService upon initialization. Thus all 3"¢
party apps require in general the permission to perform the
getPackagelnfo operation. These insights can be used to
further optimize the system policy (e.g., establishing sets of
fundamental privileges for different application categories like
Launcher App) and we intent to investigate these relations
further in future work.

3™ Party Policies.

The derived example policy can act as the basis policy on
top of which additional user, 3" party, and use-case spe-
cific policies can be deployed (cf. Section @ In particular,
we are currently extending the example policy with types,
classes and allow rules for popular apps, such as WhatsApp
or Facebook, which we further evaluated w.r.t. user’s pri-
vacy protection (cf. Section. A particular challenge to
tackle, is to derive policies which on the one hand protect the
user’s privacy but on the other hand preserve the intended
functionality of the apps. Since the user privacy protection
strongly depends on the subjective security objectives of the
user, this approach requires further investigations on how
the user can be involved in the policy configuration [13].

However, as discussed in Sections [3] and multiple
policies by different stakeholders with potentially conflicting
security objectives requires a reconciliation strategy. Devising
a general strategy applicable to all use-cases and satisfying all
stakeholders is very difficult, but use-case specific strategies
are feasible. For instance, [66] presented policy conflict
resolving in the particular case of the NTFS file-system and
address conflict detection and resolution in firewall
policies. We explained further possible strategies in Section 3]

In our current approach, we opted for a consensus approach
with deny precedence (i.e., the access is denied if one policy
denies it) and a mandatory system policy (cf. Section [5.2) to
resolve conflicts between 3"¢ party policies and the system
policy. Thus, 3"¢ party policies are generally independent of
the system policy and they can only refine the access rights
of their host app as granted by the system policy. Resolving
conflicts between two 3¢ party policies is out of scope of our
conflict resolution, since we cannot interpret the high-level
security objectives that the respective 3" parties had in
mind when developing their policies. In this case we apply
again a consensus strategy, i.e., both 3" party policies must
allow an operation, otherwise access is denied.

7.2 Effectiveness

Authorization of security relevant operations: It is
important that all operations that may access security or pri-
vacy critical data are correctly mediated and authorized by
an access control policy. For instance, in SELinux this means
that the hooks of the underlying Linux Security Module
framework are correctly placed and thus enforce access con-
trol checks on security relevant operations. Related work



| Policy

| # Types | # Attributes | # Classes | # Permissions | # Rules |

SEAndroid (Master branch, checkout | 232 19 84 249 1359
12/04/2012)

FlaskDroid middleware MAC (example pol- | 111 9 18 63 109
icy from 12/04/2012)

SELinux reference policy (v2.20120725, no | 661 132 81 239 278
distribution option)

SELinux Fedora 17 (targeted, policy.27 | 3900 313 83 248 103235
from 12/04/2012)

SELinux CentOS 6.3 (targeted, policy.24 | 3508 277 81 235 275791
from 12/05/2012)

SELinux Debian 6.0.6 (default, policy.24 | 1285 190 7 229 49159
from 12/05/2012)

Table 2: Overview of policy complexity: Different SELinux policies vs. SEAndroid and FlaskDroid

has developed tools to verify the correct placement of the
LSM hooks with a combination of runtime and static analysis
and discovered inconsistencies in the hook placement. The
work from has been extended towards a static analysis
based tool to automatically place authorization hooks in
the LSM framework . Specifically for mobile platforms,
related work has investigated the placement of au-
thorization hooks in the operating system and user-space
services on the OpenMoko platform and the LiMo (Linux
Mobile) platform [86], both running SELinux, and our ap-
proach follows along the ideas of but for the Android
middleware.

Empirical testing for FlaskDroid: We decided to eval-
uate the effectiveness of FlaskDroid based on empirical test-
ing using the security models presented in Section [6] as well
as a testbed of known malware retrieved from and
synthetic attacks (cf. Table. Alternative approaches like
static analysis would benefit our evaluation but are out
of scope of this paper and will be addressed separately in
future work.

In Section @, we presented use-cases and instantiations
for how architecture can realize different security models to
mitigate specific attacks and to enhance the system security.

To verify the effectiveness of FlaskDroid against known
attacks on Android in practice, we used a testbed comprised
of various widespread attacks in the wild as well as synthetic
attacks (cf. Table. The malware samples were collected
from the Android Genome Project'® and the Contagio Mobile
Malware Mini Dump Website®.

7.2.1 Empirical testing at Kernel layer

Root Exploits.

Description. Root exploits on Android target privileged
system Services/Daemons executed by the root user. The
root user on stock Android is the highest-privileged user from
the kernel perspective and inherits all privileges. Thus, he
is able to read all files regardless of kernel-level permissions,
perform privileged operations and has direct read and write
access to all memory areas on the device.

Cases. Only few root exploits are known for Android
4.0. To test kernel-layer mitigation we used the well-known

“http://www.malgenomeproject.org/
http://contagiominidump.blogspot .de/

25

Attack |

Root exploit

App executed by root
Over-privileged apps and
Information-stealing trojans

Test |

mempodroid Exploit
Synthetic Test App
Known malware
Synthetic Test App
WhatsApp v2.8.4313
Facebook v1.9.1
Synthetic Test App
emulating [85] [14} 68]
Synthetic Test App
Synthetic Test Apps
emulating [68]

Sensory malware

Confused deputy attack
Collusion attack

Table 3: List of attacks considered in our testbed

mempodroid exploit*®, which is a privilege escalation attack
based on an insufficient permission check when writing to a
processes memory via /proc/pid/mem from a setuid binary,
in this case run-as tool.

Mitigation. SE Android successfully mitigates the effect
of the mempodroid attack. While the exploit still succeeds in
writing to /proc/pid/mem and hence elevating its process to
root privileges, the process is constrained by the underlying
SE Android policy to the limited privileges granted to the
root user . More details on the effectiveness of
SE Android against other root exploits have been shown in
and we focus in the remainder of this section on
our extension to the middleware layer, which complement
SE Android.

7.2.2  Empirical testing at Middleware layer

Over-privileged and nosy apps.

Description. Android’s Permission framework is too
coarse grained and inflexible to allow end-users to fine-grained
configure to which private information an application has
access. For example, the READ_CONTACTS permissions grants
an app access to the entire contacts database, and there is
no possibility to further restrict access to specific data, such
as names, email addresses or phone numbers.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2012-0056


http://www.malgenomeproject.org/
http://contagiominidump.blogspot.de/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0056
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0056
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Cases. Designated information-stealing malware, such
as Android.LoozPhone'” and Android.Enesoluty'®, use the
permissions granted to them by the user during installation
to access and exfiltrate sensitive information, in this case
contacts and device information (phone numbers, IMEI/IMSI
number etc.)

Over-privileged apps, in contrast, are not malicious by
design, but overstep the permissions required for their cor-
rect functionality. Older versions of the Facebook app, for
example, requested the READ_SMS permission from the user
without strictly requiring it. Another example is the What-
sApp messenger, which is granted access to the entire con-
tacts database by requesting the READ_CONTACTS permission,
although it only needs access to the contacts’ phone numbers
and names.

Mitigation. We verified the effectiveness of FlaskDroid
against over-privileged apps using a) a synthetic test app
which uses its permissions to access the ContactsProvider, the
LocationManager and the SensorManager as 3" party apps
would do; b) malware such as Android.LoozPhone'? and
Android.Enesoluty?® which steal user’s private information;
and ¢) unmodified apps from Google Play, including the
popular WhatsApp messenger and Facebook apps.

In all cases, a corresponding policy on FlaskDroid suc-
cessfully and gracefully prevented the apps and malware
from accessing privacy critical information from sources
such as the ContactsProvider or LocationManager. Listing
shows an example policy which prevents untrusted apps (type
app_untrusted_t) from accessing the fine-grained location
information, but allows all apps of type app_trusted_t to
access this information.

Listing 12: Policy snippet showing access control for the
system LocationManager.

]
attribute allLocationData_ t;

type fineLocation_t, allLocationData_ t;
type coarseLocation_ t, allLocationData_ t;

allow {app__trusted__t} allLocationData_ t:
locationManager t {requestLocationUpdates};

allow {app_untrusted_t} coarselocation_ t:
locationManager__t {requestLocationUpdates};

[.]

However, while blocking access to these system services did
not cause application crashes, the applications often exhibited
impeded functionality. For instance, prohibiting that the
WhatsApp app can access the ContactsProvider and thus
upload our contacts’ phone numbers to its server, resulted in
an empty WhatsApp contacts list and thus prevented us from
messaging with our contacts. This effect concurs with the
observations made in and motivates a more fine-grained
enforcement within ContentProviders to enable the user to

"http://www.symantec.com/security_response/writeup.
jsp?docid=2012-082005-5451-99
®http://www.symantec.com/security_response/writeup.
jsp?docid=2012-090607-0807-99
Yhttp://www.symantec.com/security_response/writeup.
Jjsp?docid=2012-082005-5451-99
“http://www.symantec.com/security_response/writeup.
Jjsp?docid=2012-090607-0807-99
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configure policies to share data (e.g., contacts phone numbers
and names) and simultaneously protect her sensitive data
(e.g., all other contacts data like email addresses). Listing
presents an example on how such fine-grained access control
in the system ContactsProvider can be implemented in our
policy language.

Listing 13: Policy snippet showing access control for the
system ContactsProvider.

]
attribute allContactsData_ t;

type contacts_email t, allContactsData_ t;
type contacts__postal_t, allContactsData__t;
type contacts__name_ t, allContactsData_ t;
type contacts_number_t, allContactsData_ t;

allow {app_trusted t} allContactsData t:
contactsProvider ¢ {query insert delete update};

allow {app_ whatsapp_t} {contacts_name_t,
contacts__number t}: contactsProvider ¢ {query};

[]

Sensory malware.

Description. This class of malware uses the device’s
current usage context in combination with data obtained
from onboard sensors, such as the acceleration sensor data
or call state, to derive and exfiltrate sensitive information.

Cases. The TouchLogger and TapLogger attacks
use information from the acceleration sensor to derive which
keys the user has pressed on the on-screen keyboard. This
information can be used to indirectly retrieve passwords the
user has entered using the touchscreen.

Another example is the SoundComber Trojan , which
extracts credit card information from recorded calls. By ana-
lyzing the current phone state using a PhoneStatelListener,
SoundComber gets notified about incoming and outgoing
calls to the users bank. It records and analyzes the call to
extract credit card information.

Mitigation. We emulate the behaviour of such malware
using a custom synthesized test app. To mitigate the attack,
we deployed a context-aware FlaskDroid policy (cf. which
causes the SensorManager USOM to filter acceleration sensor
information delivered to registered SensorListeners while the
on-screen keyboard is active, indicated when the keyboard_b
boolean is set to true by a Context Provider dedicated to
monitoring which application is shown in foreground on
the screen.? While keyboard_b is true, access to sensor
data exposed by the SensorManager USOM is denied to all
apps. Similarly, a second policy prevents the SoundComber
attack by denying any access to the audio record functionality
implemented in the MediaRecorderClient USOM while a call is
in progress, which is indicated by the boolean telephony_b
that is set by a Context Provider monitoring the call state in
the TelephonyManager Service.

Listing 14: Policy snippet for context-aware access control
on the SensorManager and MediaRecorder.

2! Technically this required an extension to the ActivityStack
of the ActivityManagerService to provide this information to
the Context Provider, since by default Android’s application
framework does not divulge this information.



http://www.symantec.com/security_response/writeup.jsp?docid=2012-082005-5451-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-082005-5451-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-090607-0807-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-090607-0807-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-082005-5451-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-082005-5451-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-090607-0807-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-090607-0807-99
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14 }

[

bool keyboard_ b = false;
bool telephony b = false;

if(~keyboard b)

allow app_ allApp_t allSensorData_ t: sensorManager c
{update};
b

if(~telephony_ b)

allow app_allApp_t audio_ t: mediaRecorderClient_ ¢
{record};

3

[.]

Malicious apps with root privileges..

Description. A particular use-case showing the effec-
tiveness of our middleware extensions as a complement to
SE Android are malicious apps executed with root privileges.
By default, the permission check of vanilla Android would
at runtime always grant a requested permission if the app
runs with the root UID, regardless of whether or not this
permission was granted by the user at installation time.

Cases. The user installs a malicious Android app which
requests no permissions but launches a root exploit. If the
attack is successful, the app acquires root privileges on the
device. As described in Section [T.2.1] the root user will
still be restricted by SE Android when accessing low level
resources, such as the file system. However, even though the
app did not request any permissions at installation time, it
can use its omnipotent middleware privileges to steal sensitive
information, such as contacts data or user location.

Mitigation. While SE Android inherently deprives root
of its privileges at kernel level, we achieve the same security
at middleware level. In FlaskDroid, the privileges of apps
running with the root UID are restricted to the ones granted
by the system policy to the root type (cf. AID_ROOT and
aid_root_t in Section . During our tests, we had to de-
fine only one rule for the aid_root_t type on the middleware
layer, which is not surprising, since usually Android system
or third—party apps are not executed by the AID__ROOT user
(cf. Listing . Thus, a malicious app gaining root privileges
despite SE Andr01d e.g., by employing the RageA nst-
TheCage** or mempodroid (cf. Sectlonﬁ 7.2.1)) exploit |74
, is in FlaskDroid restricted at both kernel and mlddleware
level.

Listing 15: Policy snippet for restricting the root user on
the middleware layer.

]
type aid_root_t, systemApps_ a;
appType app_ launcher_t

Package:package name=com.android.launcher;

)

22 Also known as adb setuid ezhaustion attack; Technical
information at http://thesnkchrmr.wordpress.com/2011/
03/24/rageagainstthecage/
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appType app_ provision_ t

Package:package name=com.android.provision;

appType android_t

/* All of packages under this UID */

Package:package name=android;

Package:package name=com.android.keychain;
Package:package name=com.android.settings;
Package:package name=com.android.seandroid__manager;
Package:package name=com.android.providers.settings;
Package:package name=com.android.systemui;
Package:package name=com.android.vpndialogs;

};

allow aid_root_t { app_ launcher_t android_t
app_ provision t }: activity c¢ {start};

[.]

Confused Deputy and Collusion Attacks..

Description. A confused deputy on Android is an app
which holds the necessary permissions to access sensitive
data or Services, and exposes them to other apps using an
unprotected interface without malicious intent. Collusion
attacks are based on two (or more) inconspicuous apps which
for themselves are not security-critical but display malicious
behavior when working together.

Cases. Confused deputies have been shown to be a wide-
spread problem among Android apps. For example, the
Settings Widget of previous Android versions contained a
confused deputy in a Broadcast Receiver component of the
SettingsAppWidgetProvider class . By sending a Broadcast
Intent with a specific action string, a non-privileged app can
enable or disable the GPS receiver and Wifi connections.

While Collusion attacks are currently mainly an academic
topic, Android’s system design has been shown to be be
vulnerable to these attacks [68 [20] [51]. The previously
mentioned SoundComber trojan [68] uses two apps which ex-
change data over a covert channel, for instance, the system au-
dio volume settings. The first app has the READ_PHONE_STATE
and RECORD_AUDIO permission. It records and analyzes phone
calls and encodes sensitive information into volume settings.
The second app possesses the INTERNET permission. It moni-
tors volume setting changes, decodes the sensitive data, and
sends it to a remote server.

Mitigation. The previously described confused deputy
attack in the SettingsAppWidgetProvider class is addressed
by our fine-grained access control rules on ICC. Listing [T0]
shows a policy that restricts the app types that may send
(broadcast) Intents reserved for system apps to the type
android_t. By limiting the allowed set of broadcast Intent
senders and receivers, unprivileged apps are prevented from
controlling the GPS and Wifi state.

Listing 16: Policy snippet for restricting the root user on
the middleware layer.

]
appType android_t
/* All of packages under this UID */

Package:package name=android;
Package:package name=com.android.keychain;
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Package:package name=com.android.settings;
Package:package name=com.android.seandroid__manager;
Package:package name=com.android.providers.settings;
Package:package name=com.android.systemui;
Package:package name=com.android.vpndialogs;

b
intentType systemAppWidgetIntent t

Action:hasAction=
"android.appwidget.action. APPWIDGET UPDATE" |
"android.appwidget.action. APPWIDGET DISABLED" |
"android.appwidget.action. APPWIDGET ENABLED";

Categories:hasCategory=
"android.intent.category. ALTERNATIVE'";

b

allow android__t systemAppWidgetIntent_ t: broadcast_c
{send sendSticky receiveSticky registerReceiver
unregisterReceiver};

[]

Collusion attacks are in general more challenging to handle,
especially when covert channels are used for communication.
Similar to the mitigation of confused deputies, a FlaskDroid
policy can be used that does not allow ICC between the
colluding apps based on specifically assigned app types. How-
ever, to address collusion attacks efficiently, more flexible
policies are required. We already discussed in Section @
a possible approach to instantiate the XManDroid frame-
work based on our Context Providers and we elaborate
in the subsequent Section [7:2.3] on particular challenges for
improving the mitigation of collusion attacks.

7.2.3  Challenges and Trusted Computing Base

Information flows within applications: Like any other
access control system, e.g., SELinux, exceptions for which en-
forcement falls short concern attacks which are licit within the
policy rules. Such shortcomings may lead to unknown con-
fused deputy or collusion attacks 168], which require
more policy engineering to implement the rules presented
in . A particular challenge for addressing this problem
and controlling access and separation (non-interference) of
security relevant information are information flows within
(untrusted) 3" party applications. Unless the application
is a trusted USOM (like our system application USOMs, see
Section , access control frameworks usually operate
at the granularity of application inputs/outputs but do not
cover the information flow within applications. For Android
security, this control can be crucial when considering at-
tacks such collusion attacks and confused deputy attacks
(cf. Section . For SELinux based systems, related work
has investigated approaches based on security typed pro-
gramming languages to tackle this problem . Specifically
for Android, language based approaches have also been ex-
plored , but also taint tracking based approaches
and extensions to Android’s IPC mechanism [21]. To which
extend these approaches could augment the coverage and
hence effectiveness of FlaskDroid has to be explored in future
work.

Trusted Computing Base: Moreover, while SE An-
droid as part of the kernel is susceptible to kernel-exploits,
our middleware extensions might be compromised by attacks
against the process in which they execute. Currently our
SecurityServer executes within the scope of the rather large
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Android system server process. Separating the SecurityServer
as a distinct system process with a smaller attack surface
(smaller TCB) can be efficiently accomplished, since there is
no strong functional inter-dependency between the system
server and SecurityServer.

7.3 Performance Overhead

Middleware layer.

We evaluated the performance overhead of our architecture
based on the no-allow-rule policy and the example policy
presented in Section[7-1] Table[]presents the mean execution
time p and standard deviation o for performing a policy
check at the middleware layer in both policy configurations
(measured in ps) as well as the mean memory consumption
(measured in MB) of the process in which our Policyserver
executes (i.e., the system server). Average execution time
and standard deviation are the amortized values for both
cached and non-cached policy decisions.

In comparison to permission checks on a vanilla Android
4.0.4 both the imposed runtime and memory overhead are
acceptable. The high standard deviation is explained by
varying system loads, however, Figure [8| presents the cumu-
lative frequency distribution for our policy checks and shows
that 99.33% of the policy checks with our example policy
are performed in less than 2ms. Thus, even if several policy
checks have to be performed consecutively for executing an
operation at the middleware (e.g., starting an Activity that
lists the content of the contacts database), the accumulated
overhead is magnitudes smaller than the human perceivable
response delay of approximately 100 — 200ms and also than
the default watchdog timers on Android (by default in the
range of seconds).

u (in ps) | o (in pws) | memory
(in MB)
FlaskDroid
No allow rule 329.505 780.563 15.673
Example policy 452.916 4887.24 16.184

Vanilla Android 4.0.4
Permission check | 330.800

| 8291.805 | 15.985

Table 4: Runtime and memory overhead of FlaskDroid vs.
vanilla Android

| 1 (in ms) | o (in ms)

FlaskDroid (Example policy) | 0.452 4.887
XManDroid llﬂ (Amortized) | 0.532 2.150
TrustDroid [12 0.170 1.910

Table 5: Total performance comparison to closest related
works

In comparison to closest related work (cf. Sec-
tion |8), FlaskDroid achieves a very similar performance.
Tabl provides an overview of the total performance over-
head of the different solutions. TrustDroid profits from
the very static policies it enforces, while FlaskDroid slightly
outperforms XManDroid . However, it is hard to pro-
vide a completely fair comparison, since both TrustDroid
and XManDroid are based on Android 2.2 and thus have a
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Figure 8: Cumulative frequency distribution of the perfor-
mance overhead with an example policy (solid line) and no
policy rules (dashed lined). The grey shaded area represents
the 99.33% confidence interval for the example policy.

different baseline measurement. Both report on an
baseline of approximately 0.18ms for the default permission
check, which differs from the 0.33ms we observed in Android
4.0.4 (cf. Table ).

Kernel layer.

The impact of SE Android on Android system performance
has been evaluated previously by its developers . Since
we only minimally add/modify the default SE Android policy
to cater for our use-cases (e.g., new booleans), the negligible
performance overhead presented in still applies to
our current implementation.

8. RELATED WORK

In this section we provide an overview of related work.

8.1 Mandatory Access Control

Flux Advanced Security Kernel (Flask) 78] is an archi-
tectural framework for Mandatory Access Control (MAC).
It proposes a security architecture that decouples policy
enforcement from the security policy itself thus providing
for a generic architecture where multiple, dynamic security
policies can be supported.

The most prominent instantiation of the Flask architec-
ture is SELinux . However, its biggest disadvantage as
a kernel-level MAC is that its dynamic policies are limited
to the context of the kernel-level. Thus, it requires a user
space (i.e., middleware) agent to react to higher level context
changes by triggering dynamic policy changes at kernel-level
(cf. Section . Our middleware extensions perfectly im-
plement such a user space agent on top of SE Android and
simultaneously integrate the kernel-level MAC into a dy-
namic, consolidated two-layer MAC framework on Android.

Although SE Android is the most sophisticated port
of SELinux for the Android platform and even has been
partially merged into the official Android sources—a pro-
cess that is expected to be continued—the applicability of
SELinux and other MAC mechanisms for mobile devices
has been discussed before . For instance, the
authors of elaborate on the benefits and challenges of
porting SELinux to Android and evaluate a prototypical port.
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Similarly, the authors of show its applicability for Maemo
OS based mobile platforms. SELinux has been used to pro-
tect the Linux Mobile (LiMo) platform’s integrity against
malicious third party software using a size-optimized
policy, and presents an SELinux-based OpenMoko plat-
form in which the operating system and user-space services
are instrumented as references monitor to MAC policy.

Also TOMOYO Linux , a path-based MAC framework,
has been ported to Android and leveraged in Android security
extensions (see Section . Although TOMOYO
supports more easily policy updates at runtime and does
not require extended file system attributes, SELinux is more
sophisticated and supports richer policies.?®> For instance,
SELinux provides a much higher coverage of objects (e.g.,
files, capabilities, local IPC, or memory protection) and
supports MLS and RBAC policies.

However, as we state in Section [3} low-level MAC alone
is insufficient for isolating domains on multiple layers of the
Android software stack. In this paper we show how SE An-
droid can be leveraged for low-level MAC policy enforcement
and preserving security invariants, while we extend the se-
curity architecture into the middleware layer for high-level
MAC policy enforcement and consolidate the enforced poli-
cies in this two layers (cf. Section E[) We provided a more
detailed comparison between the middleware enforcement in
FlaskDroid and SE Android in the subsequent Section [8:2]

8.2 SE Android MMAC

As explained in Section [2:4] the SE Android project was
recently extended by different mechanisms that add manda-
tory access control to certain subsystems of the Android
middleware. Altogether these extensions are generally de-
noted as MMAC. In particular, MMAC currently consists of
an install-time MAC, dynamic permission revocation, and
Intent MAC. Thus, it is interesting how and in which aspects
MMAC differs from our FlaskDroid middleware MAC.

Permission revocation.

MMAC provides a simple permission revocation mecha-
nism. This is very similar to implementations found in old
versions of popular after-market roms such as Cyanogen-
Mod?*. Permissions are dynamically revoked by augmenting
the default Android permission check with a policy driven
check. This additional check overrules and negates the result
of the permission check if the policy prohibits an application
the usage of a particular permission.

However, this permission revocation is in almost all cases
unexpected for application developers, which rely on the fact
that if their app had been installed, it had been granted
all requested permissions. Thus, developers very often omit
error handling code for permission denials and hence un-
expectedly revoking permissions easily leads to application
crashes. In fact, this situation has prompted the developers
of popular after-market roms like CyanogenMod to remove
this mechanism from their feature set.

In FlaskDroid, policy enforcement also effectively revokes
permissions. However, we use USOMs which integrate the
policy enforcement into the components which manage the
security and privacy sensitive data. Thus, our USOMs ap-

E.g., http://tomoyo.sourceforge.jp/wiki-e/?WhatIs#
comparison
“*http://www.cyanogenmod. com
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ply enforcement mechanisms that are graceful, i.e., they do
not cause unexpected behavior that can cause application
crashes. Prior work and related work on Android security
mechanisms (cf. Section [8.3) introduced some of these grace-
ful enforcement mechanisms, e.g., filtering responses from

ContentProviders [12).

Intent MAC.

Intent MAC protects with a white-listing enforcement the
delivery of Intents to Activities, Broadcast Receivers, and Ser-
vices. Technically, this approach is similar to prior work like
. The white-listing is based on attributes of the
Intent objects, for instance the value of the action string of
the Intent or the category of the payload, and the security
type assigned to the Intent sender and receiver app. Thus, if
a particular Intent object matches a white-listing rule, MMAC
allows the Intent to be delivered, otherwise the Intent delivery
is canceled.

In FlaskDroid, we apply a very similar mechanism by as-
signing Intent objects a security type based on the Intent
information and the security type of sender and receiver app.
Based on the assigned type, policy rules are enforced which
regulate the sending and receiving of Intents by applications.
While we acknowledge, that access control on Intents is im-
portant for the overall coverage of the access control, Intent
MAC alone is insufficient for policy enforcement on inter-app
communications. A complete system has to consider also
lower-level middleware communications channels, such as
Remote Procedure Calls (RPC) to Service components and
to ContentProviders. By instrumenting these components as
USOMs and by extending the Android Interface Definition
Language compiler (cf. Section to insert policy enforce-
ment points, we address these channels in FlaskDroid and
provide a non-trivial complementary access control to Intent
MAC.

Install-time MAC.

Similar to Kirin , MMAC performs a policy-driven
install-time check of new applications and denies installation
when the app requests a defined combination of permis-
sions. The adverse permission combinations are defined in
the SE Android policy.

While FlaskDroid does not provide an install-time MAC,
we consider this mechanism orthogonal to the access control
that FlaskDroid already provides and further argue that
it could be easily integrated into existing mechanisms of
FlaskDroid (e.g., by extending the install-time labeling of
new applications with a security type with the install-time
MAC logic, cf. Section . However, to provide a more
generic enforcement as it is targeted by our design, the install-
time MAC should also consider more meta-information of
applications than merely their permissions. For instance, in
FlaskDroid app Types (cf. Section could be blacklisted.
Thus, instead of being installed and labeled, apps which
match blacklisted appTypes are denied installation in the
first place.

8.3 Android Security Extensions

In the recent years, a number of security extensions to the
Android OS have been proposed.

Different approaches add mandatory ac-
cess control mechanisms to Android, which are tailored
for specific problem sets such as providing a DRM mecha-
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nism (Porscha), providing the user with the means to
selectively choose the permissions and runtime constraints
each app has (APEX and CRePE ), or fine-grained,
context-aware access control to enable developers to in-
stall policies to protect the interfaces of their applications
(Saint ) Essentially all these solutions perform an access
control at middleware layer of the form presented in Sec-
tion [4.2] and the explicit design goal of our architecture was
to provide an ecosystem that is flexible enough to instantiate
those related work based on policies (as demonstrated in
Section@at the example of Saint) and additionally providing
the benefit of a consolidated kernel-level MAC.

The pioneering framework TaintDroid introduced the
tracking of the propagation of tainted data from sensible
sources (in program variables, files, and IPC) and successfully
detected unauthorized leakage of this data. The subsequent
AppFence architecture extended TaintDroid with checks
that not only detect but also prevent such unauthorized
leakage. However, both TaintDroid and AppFence do not
provide a generic access control framework. Nevertheless,
future work could investigate their applicability in our archi-
tecture, e.g., propagating the security context of data objects
(cf. Section . The general feasibility of such “context
propagation” has been shown in the MOSES architecture.
In MOSES, applications and data are compartmentalized
into different security profiles (e.g., work and private) and
MOSES enforces isolation of these profiles. To this end, it
applies labeling of data objects with their assigned profile
and introduced policy enforcement points in Android mid-
dleware services and libraries (e.g., LibBinder, Socket class,
or 0SFileSystem) for fine-grained access control based on
the labels. MOSES relies on the TaintDroid framework to
propagate the labels of data object across process boundaries
and thus addresses the problems discussed in Section [7.2.3]

To achieve policy enforcement for 3"¢ party apps without
the need to modify the Android operating system, some
recent works leverage so-called Inlined Reference Monitors
(IRM) 144]. TRM places the policy enforcement code
directly in the 3" party app instead of relying on a system
centric solution. An unsolved problem of inlined monitoring
in contrast to a system-centric solution is that the reference
monitor and the potentially malicious code share the same
sandbox and that the monitor is not more privileged than
the malicious code. This means that native code, which is
by design supported in Android, can be maliciously used to
access the IRM memory region and disable it at runtime.

The closest related literature to our work with respect to a
two layer access control are the XManDroid and Trust-
Droid architectures. Both leverage TOMOYO Linux
(cf. Section as kernel-level MAC on an Android 2.2 to
establish a separate security domain for business applica-
tions , or to mitigate collusion attacks via kernel-level
resources . Although they cover MAC enforcement at
both the middleware and the kernel, both systems support
only a very static policy tailored to their specific purposes.
They do not support the instantiation of different use-cases,
which requires a more flexible framework that supports a
more generic policy language as we aimed for in FlaskDroid.
In contrast, FlaskDroid can instantiate the XManDroid and
TrustDroid security models by adjusting the policies. For
instance, different security types for business and private ap-
plications could be assigned at installation time, or Boolean
flags can be used to dynamically prevent two applications



from communicating if the current system context/state
would evaluate this communication as a collusion attack.

9. CONCLUSION

In this paper, we present the design and implementation
of FlaskDroid, a policy-driven generic two-layer MAC frame-
work on Android-based platforms. We introduce our efficient
policy language that is tailored for Android’s middleware
semantics. We show the flexibility of our architecture by
policy-driven instantiations of selected security models, in-
cluding related work (Saint) and privacy-enhanced system
components. We demonstrate the applicability of our design
by prototyping it on Android 4.0.4. Our evaluation shows
that the clear API-oriented design of Android benefits the
effective and efficient implementation of a generic mandatory
access control framework like FlaskDroid.
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A. POLICY EXAMPLE FOR DEFINING MID-.

DLEWARE TYPES

Listing 17: Ezample policy snippet showing the definition
of attributes and types.

J*

Ezxzample attributes for apps
*

attribute allApps_ a;
attribute systemApps_ a;

J*
Ezample attributes for data (e.g., contacts data)
*/

attribute contactsData_ a;

*
Attribute for all sensor data types
*

attribute allSensorData_ t;

/%
Attribute for all location data types

*/
attribute allLocationData_ t;

/%

Type
*/

type
type
type
type
type
type
type
type
type
]

/*
Some types for UIDs with no package as defined in
system/core/include/private/android_filesystem__config.h
which popup in middleware policy checks as subject or object
*

74
type aid_radio_ t, systemApps_ a;
type aid_root_t, systemApps_ a;
type aid__media_ t, systemApps_ a;

J*

Our own types

*/

type app_ cased_t, allApps_ a;
type untrustedApp_t, allApps_ a;

J*

Type definitions for some contacts data used for fine—grained
access control to the contactsProvider c

*/

type contacts__email t, contactsData_ a;

type contacts__name_t, contactsData__ a;

type contacts__phone_ t, contactsData_ a;

type contacts_ postal_t, contactsData_ a;

type allContactsData_ t;

definitions for apps

android__t, systemApps_ a, allApps_ a;

app_ system__t, systemApps_ a, allApps_ a;

app_ contacts_ t, systemApps_ a, allApps_ a;

app_ telephony_t, systemApps_ a, allApps_ a;
app_ launcher_t, systemApps_ a, allApps_ a;

app_ tag t, systemApps_a, allApps_ a;

app_ backupconfirm_ t, systemApps_ a, allApps_ a;
app_ bluetooth_ t, systemApps_ a, allApps_ a;
app_ browser_t, systemApps_ a, allApps_ a;

J*
Type definitions for sensor data, unrolled based on the
hardcoded data rates (fastest, game, ui, normal) for each
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sensor type

*/

type sensor__accelerometer_ t_ fastest, allSensorData,_ t;
type sensor__accelerometer_t_game, allSensorData__ t;
type sensor__accelerometer_t_ ui, allSensorData_ t;
type sensor__accelerometer_t normal, allSensorData_ t;

type sensor__ambient_temperature_t_ fastest,
allSensorData_ t;

type sensor__ambient_ temperature_t_game, allSensorData_ t;

type sensor__ambient_ temperature_t_ ui, allSensorData_ t;

type sensor__ambient_temperature t_ normal,
allSensorData_ t;

[

/%

Type definitions for location data, unrolled based on the
hardcoded data resolution (fine, coarse)

*/

type fineLocation_ t, allLocationData_ t;

type coarseLocation_ t, allLocationData_ t;

/%
Some example intent types

*/

type untrustedIntent_ t;
type intentLaunchHome_ t;

B. POLICY EXAMPLE FOR DEFINING MID-

DLEWARE CLASSES

Listing 18: Ezample policy snippet illustrating the definition
of object classes including inheritance between classes.

18] {

class activity_c

start stop grantURIPermission finish moveTask

b
class service_c

start stop bind callFunction find

I
class intentService_ ¢ inherits service_c

onHandlelntent

};

class clipBoardService ¢

{
b5

class broadcast_c¢

{

getPrimaryClip

send receive sendSticky receiveSticky registerReceiver
unregisterReceiver

B3

class intent_ ¢

{
b5

class contentProvider_ ¢

{

send receive

query insert update delete read Access writeAccess
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77

78

class contactsProvider_ ¢ inherits contentProvider_ c;
class calendarProvider_ ¢ inherits contentProvider_ c;
class downloadProvider_ ¢ inherits contentProvider_ c;
class mediaProvider_c inherits contentProvider c;
class mmssmsProvider_ ¢ inherits contentProvider_ c;
class smsProvider_ ¢ inherits contentProvider_ c;
class telephonyProvider_ ¢ inherits contentProvider_ c;
class settingsProvider_ ¢ inherits contentProvider_c;

class app_ ¢

clearAppUserData checkPermission switch

};

class package c
{
getPackagelnfo getPackagelnfoWithUninstalled
getPackageUID getPackageGIDs getPackagesForUid

getNameForUid getUidForSharedUser
findPreferred Activity queryIntentActivities
getInstalled Applications

getInstalled ApplicationsWithUninstalled
getInstalledPackages
getInstalledPackagesWithUninstalled

};

class locationService_ ¢

{
getAllProviders getProviders requestLocationUpdates
removeUpdates addGpsStatusListener sendExtraCommand
addProximityAlert removeProximityAlert getProviderInfo
reportLocation isProviderEnabled getLastKnownLocation
addTestProvider removeTestProvider
setTestProviderLocation clearTestProviderLocation
set TestProviderEnabled clearTestProviderEnabled
setTestProviderStatus clearTestProviderStatus

I
class sensorService_ ¢

getSensorList getDefaultSensor unregisterListener
registerListener
&

35
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