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Abstract. Smart mobile devices process and store a vast amount of
security- and privacy sensitive data. To protect this data from mali-
cious applications mobile operating systems, such as Android, adopt fine-
grained access control architectures. However, related work has shown
that these access control architectures are susceptible to application-
layer privilege escalation attacks. Both automated static and dynamic
program analysis promise to proactively detect such attacks. Though
while state-of-the-art static analysis frameworks cannot adequately ad-
dress native and highly obfuscated code, dynamic analysis is vulnerable
to malicious applications using logic bombs to avoid early detection.
In contrast, the long-term observation of application behavior could help
users and security analysts better understand malicious apps. In this pa-
per we present the design and implementation of DroidAuditor, which
observes application behavior on real Android devices and generates a
graph-based representation. It visualizes this behavior graph, which en-
ables users to develop an intuitive understanding of application inter-
nals. Our solution further allows security analysts to query the behavior
graph for malicious patterns. We present the design of the DroidAudi-
tor framework and instantiate it using the Android Security Modules
(ASM) access control architecture. We evaluate its capability to detect
application-layer privilege escalation attacks, such as confused deputy
and collusion attacks. In addition, we demonstrate how our architecture
can be used to analyze malicious spyware applications.

1 Introduction

Smart mobile devices, such as smartphones and tablets, host a vast number of
third-party applications of varying quality and trustworthiness. These applica-
tions access, store and process security- and privacy-sensitive data, ranging from
personal contacts, location information to high-profile enterprise assets, which
makes these devices valuable targets for attacks. Unsurprisingly, the number of
newly discovered malware families targeting these devices is rising [10].



To mitigate such attacks operating systems for smart mobile devices use
fine-grained access control architectures. For example, Android uses permissions
to restrict access to privacy- and security-sensitive data. However, related work
has shown that Android’s access control model is susceptible to application-
layer privilege escalation attacks, ranging from insufficiently protected system
settings [7] to accessing the Internet [9] or sending SMS [4] without holding
corresponding permissions.

The systematic detection, analysis and mitigation of such attacks is an ac-
tive area of research today: On one hand, system-centric access control architec-
tures [8,3] attempt to mitigate these attacks using carefully designed use-case
specific policies. On the other hand, both static and dynamic program analysis
promise to proactively detect such attacks, but either do not adequately address
native and highly obfuscated code, or are susceptible to malware using logic
bombs [11] to avoid early detection.

This inability to proactively and reliably detect application-layer privilege
escalation attacks mandates tools for long-term observation and analysis of ap-
plication behavior. In this paper, we present DroidAuditor, a forensic application
behavior analysis toolkit targeting application-layer privilege escalation attacks.
DroidAuditor adopts the Android Security Modules (ASM) [8] access control ar-
chitecture to observe application behavior at all layers of the Android operating
system. Our solution organizes these observations in a behavior graph and gen-
erates an interactive visualization. It further allows forensic analysts to query
this graph for suspicious patterns using a graph query language.

Our main contributions are as follows:

– We present the design and implementation of DroidAuditor, a solution for
application behavior analysis using interactive behavior graphs.

– We evaluate DroidAuditor’s capabilities by analyzing application-layer priv-
ilege escalation attacks as well as malicious spyware apps.

– We show that sophisticated access control frameworks, such as the ASM
framework, are a valid basis for application behavior analysis.

DroidAuditor differs from related work on application behavior analysis in
two major aspects: First, to the best of our knowledge, it is the first solution that
adopts a modular access control framework for application behavior analysis.
Second, the behavior graph generated by DroidAuditor serves as an important
building block for further research on application behavior analysis.

The remainder of this paper is structured as follows: We discuss necessary
background information on the Android operating system, application-layer priv-
ilege escalation attacks and the Android Security Modules architecture in Sec-
tion 2. We proceed to define our goal and describe our adversary model in Sec-
tion 3. In Section 4, we present the design of DroidAuditor. We evaluate our
DroidAuditor implementation using confused deputy and collusion attacks and
describe additional use-cases in Section 5. Section 6 discusses related work, and
we provide concluding remarks in Section 7.



2 Background

Android is a Linux-based operating system for smart mobile devices. It hosts
system and third-party applications, which consist of the following main compo-
nents: Activities (GUI elements), Services (background tasks without any user
interface), ContentProviders (data stores with SQL semantics) and Broadcast-
Receivers (mailboxes for messages (Intents) from other components). Applica-
tions are executed in isolated least-privilege sandboxes, and they share data and
functionality via inter-process communication (IPC). Standard operating system
components located on the middleware and application layer provide access to
security- and privacy-sensitive resources, such as location information or contacts
data. To control access to these components Android uses permissions granted
by the user to applications.

However, this permission-based access control model is prone to applica-
tion-layer privilege escalation attacks, such as confused deputy and collusion
attacks [4]. In a confused deputy attack, an adversary abuses non-malicious but
vulnerable software components via IPC to perform privileged security- and
privacy sensitive operations: On Android, for example, only apps holding the
INTERNET permission are able to open network sockets. However, any app
can contact arbitrary web servers by deputizing the web browser via IPC [9]. In
contrast, in a collusion attack multiple seemingly benign applications operate in
concert to share their permissions towards a common goal. Colluding applica-
tions coordinate their attack via overt (e.g., Android’s Binder IPC mechanism)
or covert communication channels, such as shared system settings or files.

3 Adversary Model and Objectives

The main goals of DroidAuditor are the systematic monitoring of application be-
havior and the detection as well as forensic analysis of potential application-layer
privilege escalation attacks. The adversary is capable of deploying one or more
malicious applications on a target device, for example via social engineering or
by gaining temporary physical access to the device. We place no restrictions on
the type of code the adversary executes and thus allow managed bytecode as
well as native and self-modifying code. Since DroidAuditor is a system-centric
application behavior analysis framework, we have to assume that malicious appli-
cations do not gain administrative device management privileges, and that the
trusted computing base of the Android device (bootloader, operating system
kernel, middleware layer and system applications) remains intact. Otherwise, no
correct app behavior analysis can be guaranteed. Finally, we assume that all
DroidAuditor software components are trusted.

4 DroidAuditor

The high-level idea of DroidAuditor is to observe application behavior using the
system-centric Android Security Modules (ASM) access control framework [8].



DroidAuditor stores these observations in a behavior graph, where vertices rep-
resent applications and resources, and edges represent data- or control flows.

(2) READ 

(4) WRITE 

Launcher App 

Malicious App 

Web Browser App 

(1) EXECUTE 

(3) EXECUTE 

Contacts 

www.malicious.com 

Fig. 1. Example confused deputy attack, where a malicious app deputizes the web
browser to exfiltrate sensitive contacts information.

Consider the following confused deputy attack: A malicious Android appli-
cation holds the READ CONTACTS permission and abuses the web browser to
exfiltrate sensitive contacts information to a remote server without holding the
INTERNET permission. Figure 1 shows this attack as a behavior graph: Upon
start (Step 1) the malicious app reads sensitive data from the contacts database
(Step 2). It then starts the web browser via an Intent (Step 3) and instructs it to
exfiltrate contacts data on its behalf. The web browser opens a network socket
to a remote server and uploads the collected contacts information (Step 4).

DroidAuditor generates such behavior graphs using three main components
(see Fig. 2). On the mobile device, the ASM for DroidAuditor is notified by
the ASM framework whenever Android applications access security- or privacy-
critical resources (Steps 1 - 4). The DroidAuditor ASM forwards these events to
the DroidAuditor Database via an authenticated and encrypted channel (Step
B), where they are stored in the behavior graph. Finally, security analysts can
interact with the behavior graph using the DroidAuditor Client (Step C).
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Fig. 2. DroidAuditor High-Level Architecture.



4.1 DroidAuditor ASM

The Android Security Modules framework places hooks in all security- and
privacy-sensitive kernel- and middleware-layer operating-system components.
These hooks generate aforementioned protection events, which the ASM frame-
work forwards to all installed security modules. Each module can then decide
whether to allow or deny the corresponding operations. Our DroidAuditor An-
droid Security Module however does not enforce any access control rules, but
collects protection events to obtain a global view of all privacy- and security-
critical operations performed by all applications. Accordingly, it allows every
access control query and periodically uploads protection events to the DroidAu-
ditor Database, where they are stored for analysis.

4.2 DroidAuditor Database

The DroidAuditor Database stores security- and privacy-sensitive protection
events for offline analysis. It parses events uploaded by the DroidAuditor ASM
and generates the behavior graph G = 〈V,E〉: The vertex set V = A∪R is com-
posed of two subsets A and R, which represent applications A and resources R.
For each application vertex a ∈ A the DroidAuditor Database stores an identi-
fier as well as additional metadata, for instance the permissions the application
holds. Each resource vertex r ∈ R models a security- or privacy-sensitive op-
erating system resource. Important examples are Android’s ContactsProvider,
LocationManagerService or CameraService, as well as files and network sockets.

Every edge e ∈ E is directional and describes a data- or control flow between
two vertices vi, vj ∈ V . Each edge contains descriptive metadata, such as the time
and date a flow was observed. Edges are grouped into categories, which model
Android component interaction as well as file system and network operations
(CREATE, READ, WRITE, UPDATE, DELETE, EXECUTE).

4.3 DroidAuditor Client

The DroidAuditor Client is a desktop application that interacts in real-time with
the DroidAuditor Database. Its purpose is twofold:

First, the DroidAuditor Client generates an interactive visual representation
of the behavior graph, which allows forensic analysts to intuitively understand
an application’s runtime behavior. Analysts can inspect the type and metadata
for each vertex and edge as well as observe changes in the graph over time.

Second, the DroidAuditor Client allows analysts to query the behavior graph
for specific patterns using the Cypher query language.3 Listing 1 demonstrates
how to query the behavior graph for signs of the previously described confused
deputy attack, where a malicious app deputizes the web browser to exfiltrate
sensitive contacts information. The depicted query identifies subgraphs starting
with apps reading the Contacts resource (Lines 1-2). We only consider applica-
tions which then execute the Android web browser (Line 3) and do not hold the

3 http://neo4j.com/developer/cypher-query-language/

http://neo4j.com/developer/cypher-query-language/


INTERNET permission (Line 5). Finally, this query expects the web browser
to write data to a network socket (Line 4). Matching subgraphs are highlighted
using the visualization plugin.

1 MATCH confuseddeputy = (contacts:Resource {type:’contacts ’})
2 - [event1:READ] -> (app1:App {systemApp:false})
3 - [event2:EXECUTE] -> (app2:App {package:’com.android.browser ’})
4 - [event3:WRITE] -> (socket:Resource {type:’socket ’})
5 WHERE NOT ’internet ’ IN app1.permissions

Listing 1. Cypher query to detect the confused deputy attack.

5 Evaluation

DroidAuditor inherits the performance and energy consumption overhead of the
underlying Android Security Modules framework, which has been scrutinized
in [8]. In this work we primarily focused on DroidAuditor’s effectiveness to ana-
lyze malicious application behavior. To this end, we implemented the DroidAudi-
tor architecture using the Java programing language. We place the DroidAuditor
ASM on a Nexus 4 smartphone running the ASM architecture version 4.4.4 r2.
The Neo4J-based DroidAuditor graph database4 and the DroidAuditor client
communicate opportunistically when Wifi connectivity is available using the
Kryonet5 network communication stack. Real-world DroidAuditor deployments
however should consider more firewall-friendly communication channels, such as
HTTPS. The behavior graph is visualized using the GraphStream6 library. We
then deployed applications which implement confused deputy and collusion at-
tacks as well as malicious spyware applications on the device and analyzed their
behavior.

5.1 Application-Layer Privilege Escalation Attacks

Confused Deputy Attacks. We implemented the confused deputy attack de-
scribed in Section 4, where a malicious app not holding the INTERNET permis-
sion deputizes the web browser to exfiltrate sensitive contacts data to a remote
server. We then verified that the query described previously in Listing 1 indeed
correctly identifies this confused deputy attack.

Collusion Attacks. We further implemented two variants of a collusion attack,
where two malicious apps coordinate their actions towards a common goal, which
in our example is to exfiltrate the SMS database over the Internet. The first
malicious application only possesses the READ SMS permission, and the second
application only the INTERNET permission.

4 http://www.neo4j.com
5 https://github.com/EsotericSoftware/kryonet
6 http://graphstream-project.org/

http://www.neo4j.com
https://github.com/EsotericSoftware/kryonet
http://graphstream-project.org/


Collusion via Binder IPC. In a simple collusion attack two malicious apps com-
municate using overt channels, such as Android’s Binder IPC mechanism. List-
ing 2 shows a Cypher query which targets this behavior. We query the behavior
graph for non-system apps (Line 3), which do not hold the INTERNET permis-
sion (Line 5) and read from the SMS database (Line 1 and 2). We search for
paths leading to another non-system app, which writes data to a remote server
(Line 3 and 4). The corresponding subgraph is highlighted in in Fig. 3(a).

1 MATCH collusion1 = (sms:Resource {type:’sms’})
2 - [event1:READ] -> (app1:App {systemApp:false})
3 - [event2:EXECUTE] -> (app2:App {systemApp:false })
4 - [event3:WRITE] -> (socket:Resource {type:’socket ’})
5 WHERE NOT ’internet ’ IN app1.permissions

Listing 2. Cypher Query to detect the collusion attack depicted in Fig. 3(a).

WRITE 

READ 

Launcher App 

EXECUTE 

EXECUTE 

Malicious App 1 

Malicious App 2 

SMS 

www.malicious.com 

(a) Collusion using Binder IPC

READ 

WRITE 

Launcher App 

EXECUTE 

WRITE 

READ 

Malicious App 2 

Malicious App 1 

File 

SMS 

www.malicious.com 

(b) Collusion using the file system

Fig. 3. Example collusion attacks where two malicious apps coordinate their behavior
to exfiltrate the SMS database.

Collusion via File-based Communication. In this obfuscated collusion attack two
applications share a file on the file system to exchange sensitive data. Note that
no direct inter-process communication between both apps occurs in this scenario.
Starting from the previous query in Listing 2, we add a file resource node to the
query which matches files written to and read from the two colluding applica-
tions. Listing 3 shows the resulting query, and Fig. 3(b) depicts a visualization
of the discovered subgraph.

1 MATCH collusion2 = (sms:Resource {type:’sms’})
2 - [event1:READ] -> (app1:App {systemApp:false})
3 - [event2:WRITE] -> (file:Resource {type:’file’})
4 - [event3:READ] -> (app2:App {systemApp:false})
5 - [event4:WRITE] -> (socket:Resource {type:’socket ’})
6 WHERE NOT ’internet ’ IN app1.permissions

Listing 3. Cypher Query to detect the collusion attack depicted in Fig. 3(b).

DroidAuditor can similarly be used to detect signs of collusion attacks via
other operating-system resources, such as domain or network sockets, Content-
Providers or Services. However, it should be noted that DroidAuditor is limited



by the granularity of the underlying ASM framework, which is unable to observe
app collusion via hardware side channels, such as the CPU cache.

5.2 Identifying spyware applications

To demonstrate that DroidAuditor is a valid basis for generic application behav-
ior analysis beyond application-layer privilege escalation attacks we installed two
popular spyware applications, namely “TheTruthSpy”7 and “LetMeSpy”8, on a
DroidAuditor device. By analyzing the behavior graph we found that these apps
silently access privacy-sensitive resources, such as the CallLog and SMS/MMS
ContentProviders as well as location data, and upload this data to a remote
server. We further noticed that these apps only have very limited user interfaces
(Activities), which are exclusively used for initial configuration.

To detect such behavior, we first labeled all privacy-sensitive resources in the
behavior graph. In Listing 4, we query the graph for non-system apps accessing
these resources (Lines 1 and 2) and writing data to a remote server (Line 3).
The WHERE clause (Line 4) limits our query to apps which silently access
privacy-sensitive resources. Figure 4 shows a screenshot of the DroidAuditor
client analyzing the corresponding behavior graph.

1 MATCH spyware1 = (res:Resource {privacySensitive:true})
2 - [event1:READ] -> (app:App {systemApp:false })
3 - [event2:WRITE] -> (socket:Resource {type:’socket ’)
4 WHERE NOT event1.foregroundApp = app.package

Listing 4. Cypher query to detect the behavior of the “TheTruthSpy” and “LetMeSpy”
spyware apps.

5.3 Detecting Operating System Level Privilege Escalation

Related work has identified malicious applications which attempt to compromise
the security architecture of the operating system by exploiting highly-privileged
system services or the kernel [11]. Signs of successful attacks are, for example, the
execution of unknown processes with root privileges or applications executing
operations they are not authorized for by the permission system. For example,
an application connecting to a network server without holding the INTERNET
permission is an indication of possible operating-system level compromise.

The reliable detection of such attacks is challenging, since in general, all
security solutions which observe application behavior on the operating-system
level can be defeated by malicious applications operating with the same level
of privileges. For example, a strong adversary using kernel or root exploits can
adopt rootkit techniques to avoid raising suspicion. Nonetheless, DroidAuditor
can be used to identify malicious apps compromising the operating system given
a weaker adversary who is not actively trying to hide his traces.

7 http://thetruthspy.com/
8 http://www.letmespy.com/

http://thetruthspy.com/
http://www.letmespy.com/


Fig. 4. Screenshots of the DroidAuditor client while analyzing malicious spyware ap-
plications. Subgraphs matching the displayed query are highlighted in red.

6 Related work

Our DroidAuditor architecture shares functionality with dynamic program anal-
ysis solutions [2,6,14,15,12,13], which observe app behavior in instrumented An-
droid environments. Common techniques adopted by these frameworks are sys-
tem call tracing, dynamic taint analysis and virtual machine introspection. While
taint analysis can provide fine-grained tracing of privacy sensitive data while
it is processed on a device, current designs do not adequately handle native
code. Further, all approaches adopting dynamic program analysis are prone to
logic bombs, where apps delay their malicious behavior to avoid detection [11].
DroidAuditor avoids these limitations by observing application behavior on real
Android devices without imposing restrictions on the analyzed applications.

Some work has proposed the use of IPC call chain verification [7,5,1] to
mitigate application-layer privilege escalation attacks. Other work more related
to DroidAuditor [3] records app interaction in a graph structure and enforces
access control policies targeting confused deputy and collusion attacks. Since
DroidAuditor is based on the system-centric ASM access control framework, it
is conceivable to implement this functionality by generating the behavior graph
on the mobile device itself and applying a corresponding access control policy.

7 Conclusion

In this paper, we presented DroidAuditor, a toolkit for forensic long-term ap-
plication behavior analysis. DroidAuditor uses the system-centric ASM manda-
tory access control framework to generate a graph-based model of application



behavior. The preliminary evaluation of our proof-of-concept implementation
demonstrates that modular access control frameworks are a valid building block
for application behavior analysis and motivate us to extend our work in multi-
ple directions: First, we plan to conduct a usability study to better understand
how users interact with DroidAuditor. Second, we are implementing a policy en-
forcement architecture based on DroidAuditor’s behavior graph by storing and
evaluating the behavior graph on the mobile device. Finally, we aim to integrate
dynamic taint analysis into DroidAuditor, which would allow us to support more
precise data flow analysis for applications which do not contain native code.
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