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ABSTRACT
Solutions for pairing devices without prior security associa-
tions typically require users to actively take part in the pair-
ing process of the devices. Scenarios involving new types of
devices like Internet-of-Things (IoT) appliances and wear-
able devices make it, however, desirable to be able to pair
users’ personal devices without user involvement.

In this paper, we present a new approach for secure zero-
interaction pairing suitable for IoT and wearable devices.
We primarily require pairing to happen between “correct”
devices – the devices that the user intends to pair. Our pair-
ing scheme identifies the correct devices based on measuring
sustained co-presence over time. We do this by having the
devices compute a fingerprint of their ambient context us-
ing information gathered through commonly available sensor
modalities like ambient noise and luminosity. We introduce
a novel robust and inexpensive approach for fingerprinting
contexts over time. Co-present devices will observe roughly
similar context fingerprints that we use in a key evolution
protocol to gradually increase the confidence in the authen-
ticity of the correct devices. Our experiments show the ef-
fectiveness of this approach for zero-interaction pairing.

Categories and Subject Descriptors
K.6.5 [Management of computing and information
systems]: Security and Protection—Authentication
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1. INTRODUCTION
Traditional approaches for key agreement between per-

sonal devices without any prior security association (also
known as“pairing”) typically rely on some form of active user
involvement to authenticate the key agreement. For exam-
ple, the user may be asked to compare authentication strings
displayed on the devices or to bring the devices close enough
so that they can communicate via a Near Field Communi-
cation channel [17]. Such measures are required to thwart
man-in-the middle attacks targeting the initial key agree-
ment. Relying on user involvement to authenticate pairing
is cumbersome, error-prone and does not scale well. It is
therefore desirable to devise zero-interaction pairing mech-
anisms which do not require any user interaction.

In this paper, we consider the challenge of zero-interaction
pairing for two particularly important emerging classes of
personal devices: Internet-of-Things (IoT) appliances and
wearables. There has been an increasing interest in both
of these classes accompanied by a steady stream of prod-
uct announcements and media coverage. IoT devices are
intelligent network-enabled appliances utilizing connectiv-
ity and local computation to enable richer functionality and
improved user experience. Examples of IoT devices include
Nest smoke detectors and thermostats [12], the Oral-B con-
nected toothbrush [13], the Bee+ smart injection tracker
for diabetic patients [21], and the Spotter smart home sen-
sor [14]. According to a recent Gartner forecast, the total
installed base of IoT devices will grow to 26 billion units by
2020 [8]. Such devices will therefore play a significant role
in the future end-user computing infrastructures. Similarly,
new wearable devices include wristbands used for activity
monitoring (e.g., LG LifeBand Touch, POLAR Loop Ac-
tivity Tracker), augmented reality gadgets like the Google
Glass near-eye display device, smart watch devices (e.g.,
Samsung Galaxy Gear) and many more. It is estimated
that by 2017, 50% of all smartphone app interactions will
involve wearable devices [7], emphasizing the important role
that wearables are expected to play in future smartphone
usage scenarios.

Both IoT devices and wearables process sensitive informa-
tion and critical operations. Thus securing their communi-
cations is essential. On the other hand, in both cases ordi-



nary users may own and manage many devices. The devices
themselves may not have any user interfaces. Therefore,
zero-interaction pairing will greatly improve the usability of
configuring these devices.

The security goal of pairing personal devices is to en-
sure that the key agreement takes place between the de-
vices owned by the user. In traditional pairing schemes,
users are required to demonstratively identify the correct
devices [1]. The requirement of zero-interaction, however,
rules out demonstrative identification.

Existing pairing solutions that do not require direct user
involvement can be broadly divided into two classes: key
predistribution and context-based pairing approaches. Key
predistribution-based approaches (e.g., [6, 2, 10, 18]) are
mainly intended for digital sensor network (DSN) scenarios
and require key material to be distributed to all network
nodes before their deployment in the field. In IoT scenar-
ios, however, such predistribution is not feasible due to the
overwhelmingly large number of devices deployed and the
fact that there are hundreds if not thousands of different
device vendors that do not necessarily share any security
associations with each other. Furthermore, in our scenarios
multiple authentication domains may exist in overlapping
physical spaces, such as the IoT domains of two neighboring
apartments. Therefore the pairing solution must be capa-
ble of automatically distinguishing between such overlapping
domains.

Context-based pairing approaches (e.g., [20, 16]), on the
other hand, use co-presence of devices to identify the de-
vices to be paired. These schemes leverage the fact that
co-present devices will perceive roughly the same ambient
context via their on-board sensors – thus each device takes
a momentary snapshot of its ambient context using a given
sensor modality (e.g., acoustic or electromagnetic) and uses
the resulting “context fingerprint” to authenticate key agree-
ment. Relying on a one-shot fingerprint for zero-interaction
pairing has some drawbacks in the scenarios we consider.
First, to ensure security the context fingerprint must have
sufficient entropy (e.g., 128 bits). This imposes strict re-
quirements on the fingerprinting technique such as the need
for tight time synchronization between devices (as in [16]) or
access to low-level information like raw WiFi packets that is
typically not available to apps in commodity devices (as in
[20]). Second, momentary co-presence of two devices does
not always imply that the devices belong to the same user.

Our goal and contributions. In this paper, we present
a novel approach for zero-interaction pairing that is suit-
able for IoT and wearable device scenarios. Unlike previous
schemes, we identify correct devices based on the notion of
sustained co-presence: our scheme uses sensed context fin-
gerprints to evolve the pairing key periodically in a way that
is only possible for devices co-present over extended periods
of time. This is based on the intuition that in the long run, a
user’s personal devices are much more likely to be co-present
with one another as compared to other users’ devices. We
use readily available context sensor modalities like audio and
luminosity. An initial (potentially insecure) pairing is grad-
ually strengthened using a key evolution approach that step-
by-step establishes and increases the authenticity of correct
peers, while making it increasingly difficult for wrong de-
vices to maintain an authenticated pairing with the user’s
devices.

The context fingerprints we use are based on observable
changes in the average luminosity and noise levels of the
devices’ ambient context over a longer time period. Use of
longer time periods implies that our fingerprinting scheme
does not require tight time synchronization and is thus ro-
bust. Fingerprints are used to authenticate each key evolu-
tion step.

Our main contributions are the following:

• We describe a robust context-based shared en-
tropy extraction scheme for audio and luminosity
modalities and demonstrate its effectiveness using real
context data (Section 4).

• We incorporate the entropy extraction into a novel key
evolution approach for automatically pairing personal
devices of the user (Section 3) and reason about its se-
curity (Section 5). The key evolution ensures that pair-
ing succeeds between devices that exhibit sustained co-
presence, which is typical for personal devices in IoT
and wearable device scenarios.

The rest of this paper is structured as follows: In Sect. 2,
we describe the context-based pairing scenario and problem
setting. In Sect. 3 we describe the key evolution approach,
which utilizes a fingerprinting scheme presented and evalu-
ated in Sect. 4. An analysis of the security properties of our
approach is presented in Sect. 5. We conclude the paper with
a presentation of related work in Sect. 6 and a conclusion in
Sect. 7.

2. PROBLEM DESCRIPTION
We focus on the problem of pairing between two devices.

By ”pairing”, we mean the process of setting up a shared
security association (e.g., a shared symmetric key) between
the devices. Pairing must be established only between the
devices that the user intends to pair, i.e., devices belonging
to the same user. We refer to these as the correct peers.
Conversely devices owned by other users are wrong peers.
The security goal of pairing is to ensure that only a pairing
between correct peers is accepted as genuine. Our approach
is to develop a context-based pairing scheme to this end.
“Context” means here the ambient environment of a device.
A device can characterize its context by using context data
that can be sensed using on-board sensor modalities. In
this paper, we use ambient audio (sensed by microphones)
and luminosity (sensed by lux sensors) for characterizing a
context.

We consider the pairing problem in two particular sce-
narios: a static setting primarily concerning IoT devices in-
stalled at the user’s home, and, a mobile setting for wearable
personal devices.

IoT Scenario. The IoT scenario is shown in Fig. 1. A
user has installed some IoT devices d1 and d2. Her neigh-
bor also has an IoT device A in his apartment. IoT devices
are typically equipped with WiFi or Bluetooth connectivity
and hence may be placed within each other’s communication
range. We can assume that all devices are able to communi-
cate with one another and are equipped with context sensors
to sense contextual parameters. Over time, the devices d1

and d2 in the user’s home should establish a secure pairing
between each other without user interaction, while making
sure that a trusted pairing is not erroneously established
with device A.
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Figure 1: Scenario 1: Pairing of personal IoT devices
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Figure 2: Scenario 2: Pairing of personal wearable
devices

Wearable Scenario. The second scenario is concerned
with the secure pairing of personal wearable devices, as de-
picted in Fig. 2. The user has a smartphone d1 and buys a
smart watch d2, turns it on and starts using it. The newly
activated smart watch d2 actively searches for smartphones
nearby and establishes an initial pairing with all such de-
vices that it can find nearby. Similarly d1 will accept any
initial pairing from any wearable device that contacts it.

In order to establish the authenticity of such initial pair-
ings, the two devices then attempt to evolve their pairing
key using a key evolution protocol during a gestation period.
If at the end of the gestation period the two devices have
sufficient confidence in the authenticity of each other belong-
ing to the same domain, i.e., being owned by the same user,
they accept the pairing key as genuine. Otherwise, they dis-
card the pairing the key. If the wearable device d2 accepts
a key, it stops making new key pairing requests, since it is
already associated with the correct user’s smartphone. Also
in this scenario, we need to make sure that the pairing key
of a device A not belonging to the user is not erroneously
accepted as genuine.

2.1 Threat Model and Assumptions
The threat we are concerned with is that an adversary

device A succeeds in making a legitimate device d1 accept a
pairing with A as genuine.

IoT Scenario. In the IoT scenario, the adversary A is an
IoT device in the neighbor’s apartment. This device can be
benign, just trying to pair with other devices it can discover
in its proximity, or, malicious, if infected with malware, ag-
gressively trying to pair with and infiltrate any IoT networks
it can discover. The wrong peer A is permanently near de-
vice d1 and can communicate with it over a wireless link,
but it is not able to monitor d1’s ambient context, since it
is separated from it by a solid wall.

If the neighboring apartment where the wrong device A is
located has large windows facing the same direction as the

user’s apartment, A may have visibility to any changes in
the outside luminosity affecting the lighting conditions in the
user’s apartment, but it is not able to directly observe the
lighting conditions in the ambient context of d1. Specifically,
A is not capable of mounting targeted attacks, i.e., attacks
that are executed by directly monitoring the target apart-
ment where d1 is located, e.g., from another apartment over
the street. Since A is assumed to be a regular IoT device,
it neither has the directional high-fidelity sensors required
for monitoring a specific target over large distances nor the
functional logic for mounting such attacks.

Wearable Scenario. In the wearable device scenario, the
adversary A is either a malicious attacker trying to play a
man-in-the-middle attack on the user and his wearable de-
vice, in order to obtain sensitive information exchanged be-
tween them, or it could be just someone else’s device search-
ing for its own peer device. We assume that the wrong peer
A is from time to time present in the same context as d1,
e.g., while d1 is visiting a place where also A is located (cf.
Fig 2) and hence A can observe the same contextual pa-
rameters as d1. However, A is not able to follow the user
constantly. The amount of time A is able to monitor d1’s
context is therefore limited and significantly smaller than
the time that d1 and d2 spend co-located in the same con-
texts. We follow a standard Dolev-Yao adversary model [4]
and assume that A has full control over all communication
channels.

In both scenarios we assume that the user’s own devices
d1 and d2 consistently spend most of the time in the same
contexts. In the IoT scenario, the context is spatially static,
e.g., the user’s home, since typically IoT devices are house-
hold appliances (smart TVs, smart thermostats, etc.) that
are relatively static objects. Wearable devices like a smart
watch, on the other hand, are continuously carried by the
user and are therefore sharing the same, although changing
context during the day as the user moves around.

2.2 Objectives
Our main objectives are as follows.

Authenticated pairing. User devices (IoT devices and
wearables) securely establish authenticated pairings with the
correct peer devices, i.e., a user’s device d1 accepts a pairing
with d2 after a gestation period if, and only if, d1 and d2 are
owned by the same user and thus are co-present for longer
periods of time. Authenticated pairings are not established
with wrong peers A, including attacker devices playing man-
in-the middle and impersonation attacks against the correct
peers.
Zero-interaction. The pairing must happen without user
interaction, i.e., based solely on information that the in-
volved devices can communicate and sense from their ambi-
ent context without human involvement.

2.3 Solution Approach
Previous approaches for context-based pairing presented

in literature use context information to establish a one-shot
secure pairing [20, 16]. The security of these approaches de-
pends on the assumption that the adversary is not present
sufficiently close in the context of the user devices d1 and d2

when the pairing is performed and thus unable to observe the
same contextual parameters as d1 and d2. These approaches
rely, however, on the user to visually determine that no ad-
versary A is present in the proximity of the devices d1 and d2



before the pairing is initiated. In a zero-interaction setting,
this is not possible. For example, in a situation in which
wearable devices are taken into use at a moment when sev-
eral parties are present in the same room, an adversary A
might very well be present.

Therefore, we follow a more in-depth defense strategy by
utilizing a key evolution approach described in Sect. 3. In
our approach, the target device d1 is initially entitled to es-
tablish pairings with all other devices in proximity, including
correct and wrong peers. These pairings are, however, as-
signed an authenticity rating that is initially zero, meaning
that the authenticity of the counterpart has not been veri-
fied. Key evolution is then used to gradually increment the
authenticity rating of correct peers, so that over time only
pairings with correct peers will be accepted as genuine.

In earlier approaches, context fingerprints used for one-
shot pairing must have sufficient entropy (e.g. 128 bits).
Obtaining a sufficient amount of entropy from a short con-
text snapshot requires therefore tight time synchronization
between the devices d1 and d2 to be paired [16]. On com-
modity devices achieving sufficiently accurate synchroniza-
tion might not be technically feasible. To overcome this
limitation, we utilize a more robust fingerprinting approach
that operates on longitudinal context measurements and is
thus not as sensitive to time synchronization issues. The
fingerprinting scheme used is described in Sect. 4.

3. CONTEXT-BASED KEY EVOLUTION
Our key evolution approach is based on the assumption

that two devices that have established an initial pairing can
utilize the common information about their ambient context
observed over time to iteratively evolve their pairing key.
With each successful iteration, the belief in the authenticity
of the counterpart is increased, since the protocol is designed
in a way that makes it hard for devices not continuously
sharing the same context to execute it successfully.

In the approach, both peers extract context fingerprints
from their surroundings by continuously monitoring their
context. If the peers spend prolonged periods of time in the
same context, observing the same contextual information,
the fingerprints they extract will be similar as well. We will
define the extraction of fingerprints in section 4.

The key evolution approach utilizes three conceptual com-
ponents: key evolution, key confirmation, and, key accep-
tance. Key evolution and key confirmation are executed it-
eratively between the peer devices in what we call a key
evolution step: evolving the pairing key and verifying the
success or failure of each key evolution. After a sufficient
number of key evolution steps have been performed, key ac-
ceptance is used to ultimately determine, whether a pairing
counterpart is a correct or wrong peer.

To perform a key evolution based on context fingerprints,
we require a fuzzy commitment scheme that is ideal w.r.t.
the hiding property. Such a scheme is able to transform a
secret value s into a commitment / opening value pair (δ, λ),
such that δ does not reveal any information about the secret
s, and all pairs (δ, λ̂) will reveal s if the Hamming distance

Ham(λ, λ̂) ≤ t, but it is not feasible to find an opening value
λ′, for which Ham(λ, λ′) > t, such that (δ, λ′) would reveal
the secret s. In this scheme, the value t is a parameter and
denotes the maximum Hamming distance that the scheme
allows for an opening value λ̂ to have from λ, so that the
secret s is revealed. In other words, if party d1 commits to

a secret s to obtain a commitment / opening pair (δ, λ) ←
Commit(s), and a subsequent opening of the commitment by

party d2 yields ŝ← Open(δ, λ̂), then s = ŝ iff Ham(λ, λ̂) ≤ t.
We could utilize any key agreement scheme that provides

such a fuzzy commitment (e.g., [3]), but for the purpose of
this paper, we adopt and adapt the approach of Schürmann
and Sigg in [16]. It is based on the fuzzy vault construc-
tion of Juels and Sudan [9]. It utilizes the error-correcting
properties of Reed-Solomon codes [15] to enable two peers to
agree on a common key, if the context fingerprints that peers
extracted from information in their ambient context differ
in at most t bits. The value of t depends on the parameter-
ization of the Reed-Solomon code and can thus be selected
freely based on the number of bit errors to be expected be-
tween the fingerprints of legitimate peers. The details of the
key evolution approach are shown in Fig. 3.

3.1 Key Evolution
Initially, two devices d1 and d2 look for other devices to

pair with. When they encounter each other for the first time,
they establish an initial pairing key K0

d1,d2
(e.g., by using a

Diffie-Hellman key exchange). This initial key agreement
is unauthenticated, i.e., neither device knows, whether the
pairing counterpart belongs to the same owner or not. Our
goal is to use subsequent key evolution to determine whether
the pairing counterpart belongs to the same user or not.

Device d1 initiates the protocol by sending a key evolu-
tion request EVO_REQ to device d2. The request contains
timestamps t1 and t2, specifying the starting and ending
times on which to synchronize the generation of the context
fingerprints. From the context observations Cd1(t1, t2) and
Cd2(t1, t2) falling between the specified timestamps, both
peers extract context fingerprints FCd1

= φ(Cd1(t1, t2)) and

FCd2
= φ(Cd2(t1, t2)), respectively, by applying a fingerprint

extraction function φ(·) on the collected context sequences.
The extraction function is defined in Def. 3 in Sect. 4.

After generating the fingerprints, device d1 selects a ran-
dom key evolution diversifier Kr ∈ Fm2k , and uses the fuzzy
commitment scheme to transform it into a commitment /
opening value pair (δ, λ)← Commit(Kr). The opening value
λ ∈ Fn2k is calculated as the codeword for Kr using Reed-

Solomon (RS) encoding: λ ← RS(2k,m, n,Kr). The com-
mitment value δ is then calculated as the difference of the
fingerprint FCd1

and the codeword λ: δ = FCd1
	 λ, where

	 denotes subtraction in the field Fn2k .
Device d1 then transmits the commitment value δ to de-

vice d2, which in turn obtains an opening value λ̂ and re-
trieves the key evolution diversifier by opening the commit-
ment of d1 : Kr

′ ← Open(δ, λ̂). It does so by decoding the
opening value using the Reed-Solomon decoding function.
Given that the fuzzy commitment scheme fulfils the hiding
property requirement, Kr = Kr

′ only if Ham(λ, λ̂) ≤ t. Since

λ̂ is calculated as λ̂ = FCd2
	 δ, and δ as δ = FCd1

	 λ, it
means that the fingerprints FCd1

and FCd2
can differ in at

most t bits, which in this case is the maximum number of
bits the RS coding can correct. Otherwise, d2 will not be
able to open the commitment correctly, and the retrieved
key derivation keys will not be identical, i.e., Kr 6= Kr

′.

3.2 Key Confirmation
To determine whether the key evolution was successful,

both devices calculate candidate pairing keys by using a key
derivation function KDF applied on the old pairing key Ki

d1,d2
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Figure 3: The Key Evolution Protocol

and the key evolution diversifier, i.e., Kr or Kr
′, respec-

tively. The peers then execute a symmetric-key authentica-
tion protocol with the candidate keys to determine, whether
they are identical. The used protocol needs to be toler-
ant to offline guessing attacks. For example, a password-
authenticated key-exchange scheme [22] can be used (al-
though they are intended for long-lived short shared secrets).
If the protocol succeeds, the key evolution step is consid-
ered successfully completed and the peers start using the
candidate keys as their new pairing keys, i.e., device d1 sets
Ki+1

d1,d2
= K+ and device d2 sets Ki+1

d1,d2
= K+′.

3.3 Key Acceptance
To ultimately determine whether a pairing counterpart is

a correct or a wrong peer, we apply the following strategy:
assuming that a wrong peer A is spatially or temporally lim-
ited in its ability to continuously monitor the context of a
target device d1, it is likely that A will fail in key evolution
much more often than a correct peer d2, who is predomi-
nantly co-present in d1’s context. By keeping track of the
number of successful key evolutions each pairing counterpart
is able to follow, it becomes therefore possible to distinguish
the correct peer d2 from wrong peer A.

We need to take into account that wrong peers may ap-
pear at any point in the pairing and key evolution process. A
wrong peer A may initiate the pairing first and impersonate
a correct peer d2 which will come into communication range
only later, or, A may appear after an initial pairing with the
correct peer d2 has already been established, and may claim
to be d2. Since we assume that there is no prior security asso-
ciation between any of the devices, we can’t distinguish with
certainty whether the former or the latter device requesting
the pairing is the correct personal device d2. Therefore, we
need to initially accept all pairing requests for a particular
device identity and use the key evolution protocol to verify,
which device actually is the authentic one.

To be able to distinguish different devices from each other,
we assign a key chain identifier IDX

d = Hash(K0
d) for each

device d . The chain identifier is a hash value of the key K0
d

derived during the initial unauthenticated pairing with d ,
and X is the identity that d claims to represent. We de-
note the set of all devices d claiming identity X with DX .
We evolve the pairing key Ki

d independently for each de-
vice’s key chain and keep track of the number of successful
key evolution steps associated with each key chain identifier
IDX

d as well as the total number of successful key evolution
steps for the claimed identity X . The ratio of successful key
evolution steps for each key chain identifier IDX

d to the to-
tal number of successful key evolution steps for the related
identity X becomes therefore a measure for the authenticity
of the device associated with that key chain identifier.

Definition 1 (Authenticity rating α). Let γ(IDX
d )

denote the number of successful key evolution steps that a de-
vice has performed with a peer device d with key chain iden-
tifier IDX

d under the claimed identity X . The authenticity
rating α(IDX

d ) is the ratio of successful key evolution steps
for the key chain IDX

d to the overall number of successful
key evolution steps for identity X :

α(IDX
d ) =

γ(IDX
d )∑

di∈DX
γ(IDX

di
)
. (1)

The key evolution is performed during predetermined key
evolution cycles. During each key evolution cycle, device d1

will try to perform key evolution for an identity X with each
device d ∈ DX claiming to represent that identity. If these
attempts succeed, the count of successful key evolution steps
for identity X is incremented. Our key evolution approach
is designed in a way that only devices d that are in the
same context as the target device d1 for the majority of the
time during a key evolution cycle will succeed in the key
evolution step. Thus, since correct peers are significantly
more often in the same context than wrong peers, the value
γ(IDX

d ) for any correct peers d will, over time, grow larger
than for any wrong peers that will inevitably ’miss’ such key
evolution steps during which the wrong peers are not in the
same context as d1, or are unable to observe d1’s context.

The context-based pairing approach can therefore be sum-
marized as follows:

1. Establish pairing key with device d claiming to be X .
Assign initial authenticity rating α(IDX

d ) = 0 to it.

2. Monitor the context and regularly evolve pairing keys
with other devices based on derived context informa-
tion.

3. After the number of successful key evolution steps for
identity X reaches a specified threshold value αthr ,
check if the acceptance criteria listed below hold. If
either criterion does not hold, the key evolution pro-
cess is continued, and acceptance criteria re-evaluated
after each successful key evolution step for identity X .

The first acceptance criterion requires that in order to be
accepted as genuine, a peer device d ’s pairing key under
an identity X needs to have a sufficient authenticity rating
α(IDX

d ), and this rating has to be higher than any other
peer’s rating for X by a specified margin αmarg in order to
make the determination of the correct peer unambiguous.



Criterion 1 (Authenticity dominance).
Let αmin , αmarg ∈ [0, 1] denote a minimal authenticity thresh-
old and an authenticity margin, respectively. If there is a
device d ∈ DX claiming to represent identity X , such that
α(IDX

d ) > αmin ∧ ∀di ∈ DX , di 6= d : α(IDX
d ) · αmarg >

α(IDX
di

), accept d as authentic, if also criterion 2 for d
holds. If |DX | = 1, i.e., there is only one device d claiming
the identity X , d is accepted as authentic, if α(IDX

d ) > αmin ,
and criterion 2 holds for it.

Threshold αmin determines the minimal authenticity rat-
ing required for a peer to be considered genuine. Margin
factor αmarg ∈ [0, 1] determines, how much the authenticity
rating of a correct peer has to dominate over the authentic-
ity ratings of all other peers in order for it to be considered
genuine.

The second criterion requires that the key evolution with
a device needs to be attempted at least ρmin times, before
the authenticity rating can be regarded as representative. In
addition, the number of key evolution cycles during which
the key evolution is attempted needs to cover at least a frac-
tion of ρcov of the total key evolution cycles after the initial
pairing. Otherwise, an adversary A in the wearable sce-
nario could just selectively attempt key evolution only when
d1 is in its context and thereby slowly accumulate a high
authenticity rating even though it only occasionally shares
the same context with d1.

Criterion 2 (Confidence). Let ρd denote the num-
ber of key evolution cycles during which device d has at-
tempted key evolution and ρ∗d the total amount of key evo-
lution cycles since establishing the initial pairing for d. Let
also ρmin ∈ N+ denote a key evolution attempt threshold and
ρcov ∈ [0, 1] a key evolution coverage threshold. The pairing
of a device d is accepted as genuine only if ρd > ρmin and
ρd
ρ∗d

> ρcov .

Once a device d ’s pairing is accepted as genuine, there are
two options: other key chains may be removed and pairing
stopped (e.g., when a smartwatch has found its host smart-
phone), or, the accepting device may continue to evolve pair-
ing keys for other devices (e.g., in the case of smart TV that
can accommodate multiple remote controls).

4. ROBUST CONTEXT FINGERPRINTS
We apply our context fingerprinting method on two differ-

ent contextual modalities: ambient noise and light. As men-
tioned before, the fingerprinting scheme is inspired by Schür-
mann and Sigg [16], but it is different in several ways: The
scheme in [16] requires tight time synchronization, whereas
our scheme does not. Their scheme is intended to extract
enough entropy within a very short time to be used as a
cryptographic key, whereas our fingerprints have a longitu-
dinal orientation. Finally, our scheme is equally applicable
to both audio and luminosity and the fingerprints represent
more sustained changes in the contextual characteristics of
the ambient context over several hours. Thereby, the fin-
gerprints will also capture phenomena originating from the
user’s actions (such as switching on the lights, chatter, si-
lence, etc.). These events are inherently random and there-
fore difficult to predict even for advanced attackers that may
try to utilize profiled information about the target context
in attempting to fabricate context fingerprints.

Using a longitudinal approach in fingerprint generation
and key evolution has also the advantage that the scheme
is more robust against attackers that are occasionally co-
located with the paired devices. This is different to earlier
approaches, where the security of the pairing is dependent
on the fact that the attacker is not sharing the context with
the paired devices at the time of pairing [20, 16]. Our longi-
tudinal approach, on the other hand, can gracefully handle
situations in which the attacker is occasionally in the same
context with the paired devices, as we will show in Sect. 5.

In our scheme, the devices are continuously monitoring
their context by scanning context snapshots cw(t). Every f
seconds, a snapshot of w seconds is recorded. Each snapshot
consists of a sequence of measurements mi in a particular
contextual modality like ambient luminosity or noise level,
such that cw(t) = (mi,mi+1, . . . ,mi+n), where the times-
tamp associated with an individual measurement mi is de-
noted with t(mi), and, t(mi+n) − t(mi) = w. Since the
used snapshot length w is fixed and usually clear from the
context, we omit it in the following and denote a context
snapshot just with c(t) for better readability.

We average the measurements within each context snap-
shot c(t) and denote the snapshot’s average value as

c̄(t) =

∑
mi∈c(t) mi

|{mi ∈ c(t)}|
, (2)

where | · | denotes set cardinality.
Based on a sequence of context snapshots C(t, t + nf) =

(c(t), c(t+f), c(t+2f), . . . , c(t+nf)), we calculate its context
fingerprint as a sequence of bits, in which each bit denotes
the change of the snapshot’s average value in comparison
with the previous snapshot’s average. The fingerprint bit
corresponding to a context snapshot is set to “1” if the rel-
ative change between the snapshot’s average value and the
previous snapshot’s average value is larger than a specified
relative threshold ∆rel and if the difference between the val-
ues exceeds an absolute threshold value ∆abs. Otherwise,
the bit is “0”.

Definition 2. Let C(t, t + nf) be a sequence of context
snapshots, i.e., c(ti) ∈ C(t, t + nf), t < ti ≤ t + nf, n ∈
N+. We define the fingerprint bit b(ti) corresponding to
each snapshot c(ti) as

b(ti) =

{
1, | c̄(ti)

c̄(ti−f)
− 1|>∆rel ∧ |c̄(ti)− c̄(ti−f)|>∆abs

0, otherwise.

(3)

Definition 3. We define the fingerprint φ(C(t, t+nf))
of a sequence of context snapshots C(t, t+nf), n∈N+ as

φ(C(t, t+ nf)) = (b(t), b(t+ f), . . . , b(t+ nf)). (4)

The rationale for our notion of fingerprints is that two de-
vices that share the same context for an extended period of
time will also experience changes in context parameters in a
similar way. For example, if the user switches on the lights in
a room, the increase in luminosity in the room will be sensed
by all devices located inside the room, whereas other devices
not in the same room will not be able to sense it. There-
fore, bits generated this way will be shared only with the
co-located devices. The same applies to fingerprints based
on audio. The alternating patterns between chatter, silence
and possible other persistent ambient sounds will generate



fingerprint bits in a way that is similar between devices in
the same audio context (e.g., the same room). Devices out-
side the audio context will, however, not be able to sense
these changes.

The same logic applies also to mobile personal devices like
wearables, which are usually always carried together. Even
though the context in which the devices are located may
change as the user moves, the changes will be sensed in a
similar way by both devices.

We will evaluate our fingerprint extraction scheme in both
static and mobile scenarios in Sect. 4.1.

4.1 Implementation and Evaluation
To analyze the feasibility of our approach, we performed

several experiments in different contexts investigating, how
similar fingerprints extracted from ambient luminosity and
noise levels are in real contextual settings.

4.1.1 System Set-Up
To simulate the capability of IoT and wearable devices to

sense their ambient context and to use the context infor-
mation for key evolution, we used Android OS smartphones
(Samsung Galaxy Nexus, Nexus S and Galaxy S III devices)
running dedicated context data collection software. The col-
lection software on each device continuously measured the
luminosity and noise levels in the device’s context and rou-
tinely sent the collected data to a server for off-line data
analysis. In these experiments we used a static placement
of the test devices to simulate IoT device pairing scenarios,
whereas for personal wearable pairing scenarios test persons
carried the data collection devices with them.

In both settings, the orientation of the luminosity sensors
of the devices impacts the magnitude of observed luminosity
readings. However, since our method for deriving fingerprint
bits from luminosity readings is not based on absolute lumi-
nosity values, but on relative changes in the ambient illumi-
nation, the exact placement and orientation of the devices
plays only a minor role.

4.1.2 IoT Scenario
In this scenario, we investigated whether IoT devices lo-

cated in the same room can successfully establish similar
enough fingerprints to be used for context-based key evo-
lution. We tested the scenario in different set-ups and lo-
cations over several months, varying the placement of the
devices with regard to each other and within the room. Ta-
ble 1 shows one example of the placement of devices in two
settings at two different locations: office and home.

In the office setting, two devices simulating correct peers
were placed on the wall of an office room, three meters apart
from each other. Other smartphones simulating wrong peers
were placed in nearby rooms, but without direct visibility
to the room with the correct peers. In the home setting,
the correct peers were placed in the living room of the test
participant’s house. A smartphone simulating a wrong peer
in a neighboring apartment was placed in another room of
the house, but on a different floor.

To eliminate effects that possible differences in the orien-
tation of windows of the rooms could have on lighting con-
ditions, we selected rooms that had relatively large windows
facing the same direction, allowing outdoor light to illumi-
nate all rooms used in the experiment in a similar way during
daytime. In addition, to obtain a baseline measurement of

Table 1: Placement of test devices in an IoT scenario

Device Placement
Office setting

Device d1 User’s office
Device d2 User’s office
A1 Outdoor light
A2 Adjacent office
A3 Coffee room, one room apart

Home setting
Device d1 Living room, ground floor
Device d2 Living room, ground floor
A1 Outdoor light
A2 Studio, 2nd floor

Table 2: Average fingerprint similarity between the
co-located and adversary devices in the IoT scenario

Average fingerprint similarity with co-located devices
Luminosity Audio

Office setting, 8 a.m. to 6 p.m.
d1 and d2 95.0 % 91.8 %
A1 70.0 % -
A2 88.7 % 71.7 %
A3 68.3 % 62.6 %
Home setting, 6 a.m. to 10 p.m.

d1 and d2 82.9 % 87.5 %
A1 70.8 % -
A2 70.6 % 77.0 %

the outdoor lighting conditions that affect the illumination
of the room with the correct peers, we dedicated in each
scenario one device for measuring the direct outdoor light
falling into the room.
Results. We collected luminosity and audio measurements
during the course of several weeks. We extracted context-
based fingerprints based on a time window of w = 120 sec-
onds for each device and compared the average bit differ-
ences of the fingerprints of correct and wrong peers. In
both settings, hardly any bits were generated during night-
time. We will show in Sect. 5 that fingerprints generated
from nighttime data contain only very little entropy and
can therefore not be used for fingerprint generation. There-
fore, we concentrate our analysis in the office setting during
business hours between 8 a.m. and 6 p.m. and in the home
setting during active hours of a household between 6 a.m.
and 10 p.m. The results are shown in Tab. 2.

In the office setting, the co-located devices clearly show
the largest bit similarity in their respective fingerprints. For
the luminosity data, the difference between the co-located
devices d1 and d2 and the adversary device A2 in the ad-
jacent office is relatively small, i.e., only 6.3%. This is so
because the lighting conditions affecting the rooms are al-
most identical and the effect of sunlight dominates the over-
all lighting conditions during business hours1.

For audio, the differences are clearer. Adversary A2 in the
adjacent office has only 71.7 % similarity compared to 91.8 %

1The measurements were done less than two months from
the summer solstice in the northern hemisphere, i.e., the
brightest time in the year. The influence of sunlight is likely
to be be smaller during other times of the year.



for the co-located devices d1 and d2. This is so, even though
the doors of the rooms in question to a common hallway
were mostly kept open, so that some parts of the acoustic
environment could be shared by the devices in these rooms.
However, adversary device A3 located in the coffee room
was farther away, so that it was acoustically more clearly
decoupled from the co-located devices. Therefore the simi-
larity percentage of its fingerprints to the fingerprints of the
co-located devices is significantly lower, i.e., 62.6 %.

In the home setting, the results were similar. Here, the
similarity between co-located devices was on the average
82.9 % for luminosity and 87.5 % for audio. There was
also a clear difference to the adversary devices, which could
only achieve bit similarity values of 70.8 % for luminosity
and 77.0 % for audio fingerprints.

4.1.3 Wearable Device Scenario
In this scenario, we simulated the contextual environment

that typical wearable devices are confronted with. We did
this by equipping test users with smartphones, each playing
the role of a wearable device. We considered two alternative
settings: a ’smart watch’ scenario, in which one device plays
the role of a smart watch, and the other device is used like a
regular smartphone. The other, ’cycling’ scenario, simulates
the use of wearable devices as fitness gadgets.

In the smart watch scenario, users were equipped with
two smartphones which they carried with them continuously.
One of the devices simulated a smart watch that is worn on
the user’s wrist. It was therefore placed in a translucent
carrying pouch so that its light sensor was constantly ex-
posed to the ambient light. The other device was used like
a regular smartphone.

In the ’cycling’ scenario, we used two smartphones to sim-
ulate wearable fitness gadgets, currently one of the most
popular classes of wearable devices. In our scenario, we
considered a cyclist, who is using a heart rate monitor to
record his physical performance and a near-eye display de-
vice to visually follow the key characteristics of his workout,
including the heart rate. The smartphone playing the role
of a near-eye display device was attached on the side of the
bicycle helmet of the cyclist, with the light sensor showing
outwards. The other device played the role of the smart
heart rate sensor. It was placed in a translucent carrying
pouch on the chest of the cyclist, facing forward, which is
also a typical placement for heart rate sensors. In the cy-
cling scenario, ambient light and noise data were collected
during the workouts of the cyclist.

Results. We collected traces from co-located devices car-
ried by test persons in a number of mobile and static con-
texts: walking, in public transport, as well as stays in the
home and office contexts. Since the mobility of the user
introduces a significant amount of changes into the devices’
contexts, the bit similarity of fingerprints from the co-located
devices was relatively high, 92.6 % on average (minimum
87.3 %, maximum 96.7 %). This provides a good basis for
successful key evolution between the co-located devices. In
the wearable device scenario, however, also the presence of
wrong peer devices in the context plays a role. We analyze
the effect of such devices on the key evolution scheme in
more detail in Section 5.1.

For the cycling scenario we collected 10 traces of con-
text measurements captured along a back-and-forth journey
on a fixed route of approximately 10 miles. The exercises

were spread out over several weeks, encompassing varying
road and weather conditions ranging from rainy, overcast
to sunny days. Since the contextual environment changes
in this scenario much faster than in the static scenario, we
chose a shorter time window w = 5 sec and higher sampling
rate f = 5 sec for luminosity-based fingerprint generation.
Using this fingerprinting scheme, the fingerprints for the ex-
ercises contained 665 to 784 bits. For audio data, a slightly
longer time window of w = 6 sec was used, giving us fin-
gerprints of 501 to 550 bits. The bit similarity between the
fingerprints of the co-located devices d1 and d2 was on the
average 68.6 % for luminosity-based fingerprints (minimum
62.8 %, maximum 74.5 %) and 65.9 % for audio-based fin-
gerprints (minimum 63.6 %, maximum 67.1 %).

4.1.4 Context Replay Attacks
In addition to testing the bit similarities of co-located de-

vices we also examined the effect of context replay attacks
by analyzing whether an attacker, who knows the route that
a user is going to use could record the context parameters
along this route and use this recording to produce a context
fingerprint that could fool a target device into believing that
the attacker has been sharing the same context. We there-
fore used the set of fingerprints from the cycling scenario
generated on different days on the same route and measured
their bit similarity. We did this in order to find out what an
attacker in the optimal (worst) case could achieve. We iter-
ated over all exercise fingerprints, using one fingerprint at a
time as the target device d1’s fingerprint and the remaining
fingerprints as fingerprints of the adversary A. Since the fin-
gerprints were recorded at different times, it was not clear
how to optimally align them. We therefore calculated the
bit difference for each target-attacker fingerprint pair for all
possible overlapping alignments of the fingerprints and used
the minimal bit difference to choose the optimal alignment.
We then averaged the bit similarity values over the adver-
sarial fingerprints with optimal alignments.

The fingerprint similarity of simulated replay attacks with
the target devices was 59.5 % (minimum 55.9 %, maximum
62.3 %) for luminosity-based fingerprints and 56.4 % (mini-
mum 55.0 %, maximum 56.8 %) for audio-based fingerprints.
The margin between the actually co-located device pair d1

and d2 to the replayed adversarial fingerprints was on the
average 52.5 bits (minimum 4 bits, maximum 104 bits) for
luminosity and 42.8 bits (minimum 27 bits, maximum 51
bits) for audio in favor of the co-located pair.

The clear margins between the bit similarities of co-located
and attacker fingerprints suggest that it’s in most cases pos-
sible to define a parameter value t for the fuzzy commitment
scheme so that co-located peers will be able to successfully
perform key evolution steps, while blocking most attackers
from doing so. The analysis here also involves two rather
optimistic assumptions in favor of the attacker, namely that
the attacker is able to record the trace in exactly the same
way as the targeted user and that the attacker is able to
guess the optimal alignment of his fingerprint with the tar-
get user’s fingerprint. In practice, it is unlikely that an at-
tacker would be able to always guess the optimal alignment,
or record context traces with the same rhythm and speed
as the targeted users. Hence in practice the margins in fa-
vor of the correct peers will be much larger than the ones
presented above.



5. SECURITY ANALYSIS
In our analysis we assume that the legitimate personal

devices of the user have not been compromised and execute
context sensing, key agreement, key evolution and authen-
tication protocols as specified.

Let us consider an adversary A impersonating X , having
a key chain identity IDX

A . The only way for A to get its
pairing with a target device d1 accepted as genuine is to
achieve a high enough authenticity rating α(IDX

A). To do
this, it needs to successfully participate in the key evolution
process. A can do so in two cases:

1. A is in the same context as d1 and can generate context
fingerprints FCA sufficiently similar to the fingerprint
FCd1

of d1, i.e., Ham(FCd1
, FCA) ≤ t, or,

2. A is not in the same context as d1 but is able to fabri-
cate context fingerprints F ′CA sufficiently similar with
the fingerprint of d1, i.e., Ham(FCd1

, F ′CA) ≤ t.

We will first analyze the effect of A being in the same
context with d1 on his authenticity rating, and then analyze
the success probability of the attacker fabricating context
fingerprints.

5.1 Attacker in Same Context as Target
Let us denote with θ the probability that A is able to

extract a fingerprint FCA having Ham(FCd1
, FCA) ≤ t and

with β the probability that a co-located device d2 extracts
a fingerprint FCd2

having Ham(FCd1
, FCd2

) ≤ t.
If A is present in the same context as d1, A can extract

fingerprints FCA that have the same probability to have a
bit difference of t or lower than the co-located device d2.
Therefore, θ = β. However, to simplify the analysis, let
us assume a perfect attacker that always succeeds in key
evolution when it is in the context, i.e., θ = 1.

We denote with n the number of key evolution steps that
a correct peer d2 will attempt during a specific time period
and withm the number of key evolution steps that the wrong
peer A will attempt during the same time. To maximally
increase its authenticity rating, A will attempt to do key
evolution steps every time it is co-located with the target
device in the same context. When A is not in the same
context, the probability to successfully evolve the key is less
than β. Therefore A will not participate in key evolution.
Since d2 is a benign peer, it will regularly attempt to evolve
its pairing key with d1 each time it is co-located with it.

According to Def. 1 the authenticity rating α(IDX
d2

) of
the correct peer d2 will be higher, if it has performed more
successful key evolution steps than the attacker A, i.e., if
γ(IDX

d2
) > γ(IDX

A). Since γ(IDX
d2

) = β · n and γ(IDX
A) =

θ ·m = m, and, if β ·n > m holds, then attacker A will never
be able to obtain an authenticity rating that is higher than
the rating of the correct peer. However, since we assume
that n >> m, and, in particular β · n > m, it is clear that
the attacker will not succeed in getting his pairing accepted
as genuine in our scheme.

5.2 Attacker not in Same Context as Target
The fuzzy commitment scheme used in the key evolu-

tion protocol provides the hiding property as mentioned in
Sect. 3. A will not be able to reveal the correct key deriva-
tion key Kr and thus participate successfully in the key evo-
lution protocol if it can’t find a context fingerprint F ′CA that

has a Hamming distance of at most t bits to the fingerprint
FCd1

of the targeted device d1. We focus our analysis there-
fore on examining whether an attacker is able to fabricate
fingerprints F ′CA satisfying this criterion.

When the attacker A has no access to actual context mea-
surements based on which FCd1

is extracted, A has the fol-

lowing options for fabricating the fingerprint F ′Cd1
: a ran-

dom guess, a profiling-based guess, or, the use of partial
information.

Random Guess.
In a random guess, the probability to guess one bit cor-

rectly is 0.5. Consequently, for a fingerprint of length k, the
likelihood for a successful guess is therefore 2−k. The suc-
cess probability is negligibly small for typical fingerprints of
tens or hundreds of bits. For example, using a fingerprint-
ing window of w = 120 sec and fingerprinting periods of two
hours, one already gets fingerprints of 60 bits, which would
be excessively difficult to guess with random guesses.

Profiling-Based Guesses.
An obvious improvement to this attack would be to use

profiled information about the distribution of bits to improve
A’s chances to fabricate valid fingerprints F ′CA . Depending
on the used fingerprinting parameters, the type of context
in question as well as the time of the day, the distribution of
fingerprint bits in the fingerprint changes. For example, dur-
ing nighttime, when it typically is silent and dark, and thus
no significant changes in the context parameters take place,
an overwhelming majority of bits in d1’s fingerprint FCd1

will be “0” bits, with only a few “1” bits (if any) in-between.
Fig. 4 shows for the office context and the audio modality
examined in our evaluation experiments the distribution of
“1” vs. “0” bits changing according to the time of day. If A
can obtain such profile information about a context where
d1 is going to be, A can utilize the profiled information in
fabricating fingerprints F ′CA that are more likely to have a
lower Hamming distance Ham(FCd1

, FCA) to the fingerprint
FCd1

of device d1 extracted in that context.
The strength of a fingerprint against profiling-based guess-

ing attacks can be analyzed by looking at the surprisal as-
sociated with individual bits b ∈ FCd1

using a frequentist
interpretation of probability. We do this by calculating the
occurrence probability of a particular bit b in the fingerprint
during a specific time of the day. Thus, the probability of a
particular bit (i.e., “1” or “0”) is equal to the fraction of that
bit’s occurrences in the context fingerprints during that time
of the day. Given the occurrence probability of a particular
bit, we define the surprisal associated with individual bits
as follows.

Definition 4 (Surprisal σ of a fingerprint bit).
Let B be a random variable modelling the occurrence of a bit
as a fingerprint bit in fingerprint F . The surprisal σ asso-
ciated with the occurrence of a fingerprint bit b ∈ {0, 1} is
the self-information of this bit σ(b) = I(b) = log( 1

P (B=b)
) =

−log(P (B = b)), and is measured in bits.

Definition 5 (Surprisal of a fingerprint).
The surprisal σ(F ) of a fingerprint F is the sum of the sur-
prisal values of its individual bits, i.e.,

σ(F ) =
∑
b∈F

σ(b).



For example, we can see based on Fig. 4 that context
measurements made during the night are not suitable for
generating hard-to-guess context fingerprints. This is be-
cause, e.g., during the time window of 2 a.m. to 4 a.m. on
the average only 1 % of the extracted fingerprint bits are “1”
bits. Each of these bits has a surprisal value of 6.3 bits per
fingerprint bit, but the remaining “0” bits only have a sur-
prisal of 0.02 bits per fingerprint bit. This means that, e.g.,
a 60-bit fingerprint extracted during this time frame would
have only 5.8 bits of total surprisal on the average. In other
words, the attacker would have a 2−5.8 ≈ 1.8% chance of
guessing the exactly correct context fingerprint by utilizing
profiling information.

However, since we are using a fuzzy commitment scheme,
the attacker A does not even have to guess the exact finger-
print. Any fingerprint F ′CA that is within Hamming distance
t of the fingerprint FCd1

of target device d1, will enable the
attacker A to open the commitment and retrieve the correct
key derivation key Kr.

From the evaluation results (cf. Tab. 2) we can see that
in the office environment, and for the audio modality, the
context fingerprints of co-located devices will deviate on the
average in ca. 10 % of the bits. In order to let correct
peers perform key evolution successfully, we need to tune
the parameter t of the fuzzy commitment scheme so that
it allows fingerprints deviating in 10 % of the bits to still
open the fuzzy commitments. Coming back to our exam-
ple of Fig. 4, this would mean that for fingerprints of 60
bits we would need to set t = 6 bits. A could use this to
his advantage and fabricate during nighttime context fin-
gerprints F ′CA = {0}60 containing nothing but “0” bits. The
fuzzy commitment scheme would correct the errors this fin-
gerprint has with regard to d1’s fingerprint FCd1

, since it
on the average contains less than t = 6 “1” bits during the
night. The attacker A could thus successfully evolve the key
nearly every time just by targeting fingerprints generated
from nighttime context data.

To thwart such attacks against fingerprints with very low
surprisal values, we need to add an additional requirement:
only fingerprints FCd having sufficient total surprisal may
be taken into account when evaluating authenticity ratings.

Requirement 1 (Surprisal threshold σthr). When
d1 calculates the number of successful key evolution steps
with another device d, only such evolution steps may be
taken into account that have been based on fingerprints FCd1

having a surprisal value σ(FCd1
) > t+ σmarg .

Here σmarg denotes a surprisal margin required in addition
to the bits that the fuzzy commitment scheme will correct.
In effect, σmarg defines, how hard it is for an attacker to
guess a fingerprint F ′CA that is required for successful key
evolution.

Use of Partial Information.
In addition to profiling-based guesses, the attacker A may

be in the position to utilize partial information about the
context fingerprint FCd1

of the target device d1. Such partial
information may be available to the attacker based on the
fact that the contextual separation between the attacker’s
context and the target context, where d1 is located, is not
complete. In the case of the luminosity, this may be caused
by the fact that outdoor light is influencing the lighting con-
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Figure 4: Distribution of bits and surprisal of fin-
gerprints in office context depending on time of day
(audio)

ditions in both the target device d1’s context, as well as the
context of the attacker A. In the case of audio, partial in-
formation may be because of acoustic events that are heard
in both contexts.

The existence of such partial information has the effect
that the fingerprints FCd1

and FCA share common bits at-
tributable to this partial information. The effect of the par-
tial information is significant. If one looks at the bit simi-
larities of adversarial devices to the co-located ones, we can
see that the attacker devices share ca. 65 - 85 % of common
bits, depending on the placement of the attacker devices.

The partial information plays therefore in the attacker’s
favor. If A can assume that his fingerprint FCA contains
partial information about the target device d1’s fingerprint
FCd1

, A can use its own fingerprint FCA as a basis for fabri-

cating a fake fingerprint F ′CA . If we denote the bit difference
of A’s fingerprint FCA and the target fingerprint FCd1

with

t′, then A needs to guess only ∆t = t′ − t bit modifications
to FCA correctly to fabricate a fake fingerprint F ′CA hav-
ing Ham(FCd1

, F ′CA) ≤ t, and thus allowing A to participate
successfully in the key evolution.

Since the A does not know which of the bits in FCA dif-
fer from d1’s fingerprint FCd1

, A needs to guess a set of at
least ∆t bit positions to correct in FCA in order to obtain
a fingerprint F ′CA having Ham(FCd1

, F ′CA) ≤ t. This means

he needs to select ∆t bits from the total set of t′ bits dif-
fering with FCd1

and flip them. A can select these with a
probability of

P (∆t successful corrections) =

(
t′

∆t

)(|FC |
∆t

) , (5)

where |FC | denotes the bit length of the used fingerprints.
Consider as an example 360-bit fingerprints corresponding

to, e.g., 6 hours of 1-minute observations. Assume that A
has a fingerprint FCA that has a bit difference of 15 %,
i.e., t′ = 54 bits. Assume also that the fuzzy commitment
scheme corrects up to 10 % of bit differences, i.e., t = 36
bits. How difficult is it for A to guess a fingerprint F ′Cd1

with Ham(FCd1
, F ′CA) ≤ t = 36? To do this, the attacker

would need to correct ∆t = 18 bits. We can calculate the

success probability for A as
(5418)
(36018 )

≈ 9.27 × 10−17. This is

equivalent to ca. 53 bits of entropy and demonstrates that
guessing correct fingerprints will be excessively difficult for



the attacker, if the used fingerprints are long enough. Note
that the length of the used fingerprints can be freely chosen
depending on the security requirements of a specific use case.
The only limiting factor is the time required to acquire the
context measurements for generating the fingerprints.

Some of the changes in d1’s ambient context, especially in
the ambient luminosity, can originate from environmental
changes that can also be observable by the attacker A in a
close-by room (e.g., if direct sunlight is suddenly obscured
by a cloud). A could utilize this information to give more
confidence to bits b in its fingerprint FCA that A knows to
originate from such environmental events. Thus, he could
limit the search space of bit positions to be flipped to fab-
ricate F ′CA , thus decreasing the effective length |FC | of the
fingerprint in Eq. 5 and thereby improving his chances for
success. However, in our attacker model, A is an off-the-shelf
IoT device, and does in general not have the technology to
interpret the causes behind changes in sensor readings in an
automated way. Therefore it wouldn’t be straightforward
for A to distinguish which changes in the sensor readings
are caused by such changes in the environment that are ob-
servable also in d1’s context and which are not. On the other
hand, should such technology become available in the future,
it could not only be used by A to improve its guesses, but
also by d1 to defend against guessing. While generating its
fingerprint, d1 could keep track of the number of fingerprint
bits b ∈ FCd1

that were influenced by changes in the envi-
ronment outside of its proximate context. The target device
d1 could then disregard such key evolution steps, for which
the number of influenced fingerprint bits is too high.

6. RELATED WORK
There are various approaches proposed to establish a se-

cure pairing between devices. These approaches can be
broadly divided into two main categories: utilizing key pre-
distribution mainly addressing nodes in digital sensor net-
works (DSN), and utilizing context information for key es-
tablishment or co-presence verification.

Key predistribution-based approaches. A scheme for
key distribution in DSNs based on predistributing keys to
nodes was presented by Eschenauer and Gligor [6]. Their
scheme ensured that when deployed, each sensor node shares
a key with a neighboring node. Chan et al. [2] extend this
basic scheme and design three enhanced key pre-distribution
schemes: the q-composite scheme, multipath reinforcement
scheme, and, random pairwise key predistribution scheme.
Liu et al. [10] propose key predistribution schemes based on
preassignment of polynomial shares to sensor network nodes:
a random subset assignment scheme and a hypercube-based
key predistribution scheme.

Traynor et al. [18] extend the key predistribution schemes
by removing the assumption of homogeneous sensor nodes
and key predistribution by introducing unbalanced proba-
bilistic key distribution. They also extend their approach
to hybrid settings in which key distribution centers (KDC)
may be available.

However, all of the above schemes are mainly targeted at
DSNs deployed in a geographically limited area. Hence they
are as such not applicable nor scalable in practice to our
setting, which involves arbitrary subsets of devices coming
from a pool of potentially millions of IoT and wearable de-
vices deployed anywhere on the planet. Also, in contrast to

DSNs that typically are deployed by a single or a few organi-
zations sharing trust associations, IoT and wearable devices
are expected to come from hundreds if not thousands of dif-
ferent manufacturers. It is highly unlikely that all potential
IoT and wearable device vendors would share mutual secu-
rity associations necessary for pre-keying of devices. These
factors make any solutions based on predistributing keys be-
tween devices infeasible to deploy in practice.

Therefore, our approach presented in this paper does not
utilize key predistribution to devices, but builds on utilizing
ambient context information for evolving a pairing key be-
tween devices consistently sharing the same context.

Context information-based approaches. Varshavsky et
al. [20] proposed to use the fluctuations in the received signal
strength of WiFi broadcast packets for verifying the immedi-
ate proximity of the to-be-paired parties. This approach is,
however not suitable for IoT scenarios: it is unlikely to work
in situations in which peers are located farther away from
each other than one meter, due to the local nature of the
fluctuations in WiFi signals. The authors also acknowledge
that it does not protect against man-in-the middle attacks
that are mounted by an attacker immediately behind a wall
to the user’s location, since WiFi signals are unaffected by
some wall materials.

Narayanan et al. [11] propose a similar approach, in which
WiFi broadcast packets are monitored to determine location
tags that peers can compare to determine whether they are
co-located or not. Their solution addresses, however, the
problem of privacy-preserving determination of co-location
and does not address the problem of pairing previously un-
known peers with each other, whereas we explicitly address
the problem of pairing personal devices.

Schürmann and Sigg [16] propose to use audio for generat-
ing a shared secret between co-located peers to be used as a
pairing key. They record audio samples and calculate audio
fingerprints based on them. Using Reed-Solomon encoding
for fuzzy extraction of a common key they show that in
various audio environments, cryptographic keys can be de-
rived from the surrounding audio context. Their approach
attempts to extract a large amount of entropy from a short
audio snapshot and requires therefore very exact temporal
alignment of the sound samples, which is difficult to achieve
with off-the shelf devices. Our approach is different, since
our method does not require exact temporal alignment, and
it operates on longitudinal data, extracting entropy from the
user’s context over a longer period of time. Contrary to the
approaches in [20, 11, 16], our approach can also handle sit-
uations in which an adversary is present in the correct peers’
context without breaking the authenticity of the pairing.

The problem of zero-interaction authentication utilizing
contextual proofs of presence has been discussed by Truong
et al. [19]. While their work also addresses a zero-interaction
scenario, their problem is different: they consider the prob-
lem of co-location verification using context information in
a setting, in which both endpoints are trusted and already
have an established security association, whereas our ap-
proach addresses the problem of pairing devices that do not
have any prior security associations with each other.

7. CONCLUSION
We have presented a novel key evolution approach for pair-

ing personal IoT and wearable devices. The approach builds



on a robust scheme for extracting shared entropy from the
ambient context of such devices. We have also evaluated the
approach based on experiments with luminosity and ambient
noise in a number of different environments. These results
should be understood as indicative, primarily establishing
the overall feasibility of our proposed approach. Currently
we are working on more large-scale testing in different sce-
narios and different contexts, which we think is of impor-
tance for further research in this area.
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