LIS A 201 . . s

Just-in-Time Code Reuse

The more things change,
the more they stay the same

Kevin Z. Snow! Luca Davi?
&
A.Dmitrienko? C.Liebchen? F. Monrose! A.-R. Sadeghi?

I Department of Computer Science 2 CASED / Technische Universitat
University of North Carolina at Chapel Hill Darmstadt, Germany
—

—

Thursday, August 1, 13

The Big Picture

The Big Picture

y,
AS3 =’
ActionSeript 3.0 lava<ecrint

* Scripting facilitates
attacks

Thursday, August 1, 13

The Big Picture

The Big Picture

» FI
AsSs =
= lavaScrint
* Scripting facilitates ((

attacks

Large attack surface

Thursday, August 1, 13

/
AS3 =’

ActionSeript 3.0 .
lavaSrerrint

* Scripting facilitates
attacks

* Exploit packs
automate increasingly
complex attacks

* Adversary must apply
a code-reuse strategy

black hat

UsA 201

Thursday, August 1, 13

The Big Picture

Fl i

Large attack surface

blackc 3 Mo

UsA 2071=3

Thursday, August 1, 13 3

The Big Picture

Uhe New Yr

sahuday, Jooay 6, 2007

Daily Blog Tips awarded thi

Last week Damren Rowse,

from the famous
Problogge: blog,
announced the winners of
his latest Group Witing
Project called "Rewviews
and Predictions". Among

the Daily Blog Tips 1s
attracting a vast audience
of bloggers who are
looking to improve theu
blogs. When asked about
the success of his blog
Daniel commented that

Ren
follt
Hp

The
that
rela
tha

3

The Big Picture

Uhe New Yr

sahuday, Jooay 6, 2007

Daily Blog Tips awarded ths

Lafvr:er:-.l: Damren Hoyse, the Daily Blog Tips 1s Ren
i

from the famous at{racting| a vast audience follc
Problogge: blog, of Dbloggers| |who are mp
i

anndquijced the winners of looking to _amprove theu
s latest Group ’-""ntn{g blogs. Wh asl:ecl about The

ect called 'Rewews the success 115; blog that
and Predictions". Among Daniel n:mmthat rela

thha

blackc 3 Mo

USsA 201= 3

Thursday, August 1, 13 3

The Big Picture

Uhe New Yr

sahuday, Jooay 6, 2007

Lavr:er:-.lz Damren Hoyse, the Daily Blog Tips 1s Ren
from the fampus at{racting| a vast au e follt
_ Problogge: blag, of bloé\g:;f\g:; Jwho Hp
” am«:ed the winners of looking to improve their
s latest Group Wiitn . ’~?~.~’1};ﬁafi\l\v d The
ect called 'Rewnews)\ the ! that
a11ci\\\‘P1:¢\g1\@ctio11 8 \Daft . 1ela

=

blackc 3 Mo

USsA 201= 3

Thursday, August 1, 13 3

Basic ROP Attack Technique

Basic ROP Attack Technique

Basic ROP Attack Technique

- StaCk

Heap

Code

Basic ROP Attack Technique

- StaCk

Heap

blackhat

USsA 201=
Thursday, August 1, 13

Basic ROP Attack Technique

Stack
Stack Var |

Stack Var 2

Heap

UsA 201 =

Thursday, August 1, 13

Basic ROP Attack Technique

Stack
Stack Var |

Stack Var 2

Heap

UsA 201 =

Thursday, August 1, 13

Basic ROP Attack Technique

Stack
Stack Var |

Stack Var 2

Heap

Inject ROP Payload

blackhat

UsA 201=

Thursday, August 1, 13 4

Basic ROP Attack Technique

Stack
Stack Var |

Stack Var 2

Heap
Heap Vulnerability

Inject ROP Payload

blackhat

UsA 201=

Thursday, August 1, 13 4

Basic ROP Attack Technique

Stack
._ Stack Var |

Stack Var 2
Exploit Vulnerability
to Launch ROP Heap
Payload

> Heap Vulnerability

J
)
(7,
Cad

2|0 |
M IrmIrm
)>)>) >
ol ol ia)
00
(0 (O (O
N N
(7, X

N

blackhat

USsA 201=
Thursday, August 1, 13

Basic ROP Attack Technique

oy

Exploit Vulnerability
to Launch ROP

Stack
Stack Var |

Stack Var 2

Payload

Heap

blackhat

USsA 201=
Thursday, August 1, 13

> Heap Vulnerability

Basic ROP Attack Technique

Stack
._ Stack Var |

Stack Var 2
Exploit Vulnerability
to Launch ROP Heap
Payload
/ > Heap Vulnerability

blackhat

USsA 201=
Thursday, August 1, 13

Basic ROP Attack Technique

Stack
._ Stack Var |

Stack Var 2
Exploit Vulnerability
to Launch ROP Heap
Payload
/ > Heap Vulnerability

blackhat

USsA 201=
Thursday, August 1, 13

Basic ROP Attack Technique

Stack
._ Stack Var |

Stack Var 2
Exploit Vulnerability
to Launch ROP Heap
Payload
/ > Heap Vulnerability

SP

— LOAD Gadget

Code

blackhat

UsA 201=

Thursday, August 1, 13 4

Basic ROP Attack Technique

Stack
._ Stack Var |

Stack Var 2
Exploit Vulnerability
to Launch ROP Heap
Payload
/ > Heap Vulnerability

blackhat

UsA 201=

Thursday, August 1, 13 4

Code Reuse Attacks History

selected not exhaustive

black hat

UsA 2071=3

Thursday, August 1, 13 5

Code Reuse Attacks History

selected not exhaustive

ret2libc
1997 Solar Designer

black hat

UsA 2071=3

Thursday, August 1, 13 5

Code Reuse Attacks History

selected not exhaustive

ret2libc
1997 Solar Designer

Advanced ret2libc
200 Nergal

black -~

USsA 201=

Thursday, August 1, 13 5

Code Reuse Attacks History

selected not exhaustive

ret2libc

1997 Solar Designer
Advanced ret2libc
200 Nergal
Borrowed Code Chunks Exploitation

2005 Krahmer
2007
20086
2009
2010

USsA 201=

Thursday, August 1, 13 5

Code Reuse Attacks History

selected not exhaustive

ret2libc
1997 Solar Designer
Advanced ret2libc
200 Nergal
Borrowed Code Chunks Exploitation
2005 Krahmer
ROP
2007 Shacham (CCS)
2008
2009
2010

USsA 201=

Thursday, August 1, 13 5

Code Reuse Attacks History

selected not exhaustive

ret2libc

1997 Solar Designer
Advanced retlibc
2001 Nergal
Borrowed Code Chunks Exploitation
2005 Krahmer
ROP
2007 Shacham (CCS)
ROP on SPARC ROP on Atmel ROP
2008 Buchanan et al (CCS) Francillon et al (CCS) Shacham (BlackHat USA)
2009
2010
6
blackhat

UsA 201=

Thursday, August 1, 13 5

Code Reuse Attacks History

selected not exhaustive

ret2libc

1997 Solar Designer
Advanced retlibc
2001 Nergal
Borrowed Code Chunks Exploitation
2005 Krahmer
ROP
2007 Shacham (CCS)
ROP on SPARC ROP on Atmel ROP

2008 Buchanan et al (CCS) Francillon et al (CCS) Shacham (BlackHat USA)

ROP Rootkits ROP on PowerpPC ROP on ARM/10S5

Hund et al (USENIX) FX Linaner (BlackHat USA) Miller et al (BlackHat USA)

blackhat

UsA 201=

Thursday, August 1, 13 5

Code Reuse Attacks History

selected not exhaustive

ret2libc

1997 Solar Designer
Advanced retlibc
2001 Nergal
Borrowed Code Chunks Exploitation
2005 Krahmer
ROP
2007 Shacham (CCS)
ROP on SPARC ROP on Atmel ROP

2008 Buchanan et al (CCS) Francillon et al (CCS) Shacham (BlackHat USA)

ROF ROOCKICS

’\1.: INIAX

blgbck hat

UsA 201=

Thursday, August 1, 13

ASLR — Address Space Layout Randomization

Thursday, August 1, 13

Basics of ASLR

e ASLR randomizes the base address of code/data segments

Application Run |

Program Memory (abstract)

blhckhat

UsA 201=

Thursday, August 1, 13

Basics of ASLR

e ASLR randomizes the base address of code/data segments

Application Run | Application Run 2

Program Memory (abstract) Program Memory (abstract)

blhckhat

UsA 201=
Thursday, August 1, 13

Basics of ASLR

e ASLR randomizes the base address of code/data segments

Application Run | Application Run 2

3. Adjust instruction
sequence pointers

Disclosure Attack

e.g., [Sotirov et al.,
Blackhat 2008]

2. Leak function
pointer

| Exploit disclosure
vulnerability

Program Memory (abstract) Program Memory (abstract)
blanékha't‘
UsA 201=
Thursday, August 1, 13

Example Memory Disclosure

Program Memory (abstract)

€ .
blackhat See [Serna, Blackhat USA 2012] for more memory disclosure tactics.

UsA 2013
Thursday, August 1, 13 8

Example Memory Disclosure

Program Memory (abstract)

€ .
blackhat See [Serna, Blackhat USA 2012] for more memory disclosure tactics.

UsA 2013
Thursday, August 1, 13 8

Example Memory Disclosure

Program Memory (abstract)

€ .
blackhat See [Serna, Blackhat USA 2012] for more memory disclosure tactics.

UsA 2013
Thursday, August 1, 13 8

Example Memory Disclosure

Program Memory (abstract)

€ .
blackhat See [Serna, Blackhat USA 2012] for more memory disclosure tactics.

UsA 2013
Thursday, August 1, 13 8

Tackling the Problems of ASLR via
Fine-Grained ASLR

Basics of Fine-grained ASLR

Application Run 1

black hat
1

LUSA 2013 10

Basics of Fine-grained ASLR

Application Run 1 Application Run 2

* Different fine-grained ASLR approaches have been proposed recently
* ORP [Pappas et al., IEEE Security & Privacy 2012]
* ILR [Hiser et al., IEEE Security & Privacy 2012]
* STIR [Wartell et al., ACM CCS 2012]
* XIFER [Davi et al., ASIACCS 2013]

* All mitigate single memory disclosure attacks
: Iﬂl -

LUSA 2013 10

Thursday, August 1, 13 10

Inner Basic Block Randomization
[Pappas et al., IEEE S&P 2012]

* Instruction Reordering

Original Randomized

MOV EBX, &ptr

MOV EANX, &string

vv

Thursday, August 1, 13

Inner Basic Block Randomization
[Pappas et al., IEEE S&P 2012]

* Instruction Reordering

Original Randomized

blackhat

UsA 201=

Thursday, August 1, 13

Inner Basic Block Randomization
[Pappas et al., IEEE S&P 2012]

* Instruction Reordering
Orig

) /A ‘{A"

inal Randomized

Original Randomized

blackhat

UsA 201=

Thursday, August 1, 13

Inner Basic Block Randomization
[Pappas et al., IEEE S&P 2012]

* Instruction Reordering

Original Randomized

A A B) 4 » B
o A o A Ad A e Va Py
A = - N S -\

* Instruction Substitution

Original Randomized

blackhat

UsA 201=

Thursday, August 1, 13

Inner Basic Block Randomization
[Pappas et al., IEEE S&P 2012]

* Instruction Reordering

Orig

=) /\ . €

|y

inal Randomized

* Instruction Substitution

Original Randomized

* Register Re-Allocation (in case another register is free to use)

Original Randomized

™\

blackhat

UsA 201=

Thursday, August 1, 13

Inner Basic Block Randomization
[Pappas et al., IEEE S&P 2012]

* Instruction Reordering

Original Randomized

* Instruction Substitution

Original Randomized

B —~ P\ B —~ N

4 “‘
SFoawrin L1

* Register Re-Allocation (in case another register is free to use)

Original Randomized

blackhat

UsA 201=

Thursday, August 1, 13

Basic Block Randomization
[Wartell et al., ACM CCS 2012; Davi et al. AsiaCCS 201 3]

Original

blzt:u}:k hat

S A

Thursday, August 1, 13

Basic Block Randomization
[Wartell et al., ACM CCS 2012; Davi et al. AsiaCCS 201 3]

Original

BBL |

UsA 201 =

Thursday, August 1, 13

Basic Block Randomization
[Wartell et al., ACM CCS 2012; Davi et al. AsiaCCS 201 3]

Original

OxI10FF:

blackhat

USsA 201=
Thursday, August 1, 13

Basic Block Randomization
[Wartell et al., ACM CCS 2012; Davi et al. AsiaCCS 201 3]

Original

OxI10FF:

blackhat

USsA 201=
Thursday, August 1, 13

Basic Block Randomization
[Wartell et al., ACM CCS 2012; Davi et al. AsiaCCS 201 3]

Original Randomized

BBL |

MOV EBX, EAX
CALL UxI0FF

BBL 2

MOV (ESF), EAX
RET

v BBL 3
OxI10FF: BMADD EAX, ECX
RET

blackhat

USA 2013

Thursday, August 1, 13

Basic Block Randomization
[Wartell et al., ACM CCS 2012; Davi et al. AsiaCCS 201 3]

Original Randomized

BBL |
MOV EBbX, EAX 0x1000:

BBL 2

BBL 3
Ox10AO0:

\ 4

0x 1 OFF: 0x 1 OFF:

UsA 201=
Thursday, August 1, 13

Basic Block Randomization
[Wartell et al., ACM CCS 2012; Davi et al. AsiaCCS 201 3]

Original Randomized

BBL |
MOV EBX, EAX 0x1000:

BBL 2

CALL OxI0FF

BBL 2

MOV (ESF), EAX OxI10AO0:

\ 4

Ox10FF:

UsA 201=
Thursday, August 1, 13

Basic Block Randomization
[Wartell et al., ACM CCS 2012; Davi et al. AsiaCCS 201 3]

Original Randomized

BBL_2

0x1000:

BBL_3
OxI10AO0:; yANDID, E AX. ECX

L\ /\
‘ REIT

\ BBL_|
OxI10FF: OxI10FF: BIMOV EBX, EAX
CALL 0x|0AC
b.gsckh:ﬂ-
UsA 2013

Thursday, August 1, 13

Basic Block Randomization
[Wartell et al., ACM CCS 2012; Davi et al. AsiaCCS 201 3]

Original Randomized

BBL |
MOV EBX, EAX 0x1000:
CALL OX _ O{_: I ‘

BBL 2

BBL 2

BBL 3

MOV (ESP), EAX OxI10A0: BADD EAX, ECX

‘ RET

\ BBL_|
Ox10FF: OxI10FF: BIMOV EBX, EAX
CALL UxI0AU
JMP 0x1000
b.ggkh:ﬂ-
UsA 2013

Thursday, August 1, 13

Basic Block Randomization
[Wartell et al., ACM CCS 2012; Davi et al. AsiaCCS 201 3]

Original Randomized
0x1000:
OxI0AO:
\4
0x | OFF: 0x | OFF:
C-A,‘_‘_ T X T AU
JMP 0x1000
blackhat

USsA 201=
Thursday, August 1, 13

Instruction Location Randomization
[Hiser et al., IEEE S&P 2012}

Original

OxI10FF:

tﬂggﬁdhaf

UsA 201=

Thursday, August 1, 13

Instruction Location Randomization
[Hiser et al., IEEE S&P 2012}

OxI10FF:

Original

tﬂéag(hﬂ#'

UsA 201=

Thursday, August 1, 13

Randomized
0x1000:
OxI12A0: RET
0x | F0O: RET
0x2000:

0x2500:

0x3000:

Instruction Location Randomization
[Hiser et al., IEEE S&P 2012}

Original Randomized
0x1000:
OxI12A0: REIT
0x1F00: RET
Ox10FF:
(1) @11]1]1 5

0x2500:

0x2500 -> 0x2000
0x2000 -> 0x1000
Ox1000 -> 0x12A0

0x3000:

0x3000 -> Ox|FOO0

Execution is driven by a fall-through map and a
O binary translation framework (Strata)

blackhat

UsA 201=

Thursday, August 1, 13

Does Fine-Grained ASLR Provide a
Viable Defense in the Long Run?

Contributions

Thursday, August 1, 13

Contributions

A novel attack class that undermines fine-grained
ASLR, dubbed just-in-time code reuse

blaC c) l(| T—1

USA 201=)

Thursday, August 1, 13 15

Contributions

A novel attack class that undermines fine-grained
ASLR, dubbed just-in-time code reuse

We show that memory disclosures are far more
damaging than previously believed

blackhat

USA 201=)

Thursday, August 1, 13

Contributions

A novel attack class that undermines fine-grained
ASLR, dubbed just-in-time code reuse

We show that memory disclosures are far more
damaging than previously believed

A prototype exploit framework that
demonstrates one instantiation of our idea, called

JITROP

iachart

USA 201=)

Thursday, August 1, 13

Assumptions

Adversary

Defender

Assumptions

Adversary

Defender

Non-Executable Stack and Heap

blg)ck hat

UsA 201= 16

Thursday, August 1, 13 16

Assumptions

Adversary

Fine-Grained ASLR
Defender

Non-Executable Stack and Heap

blackhat

USA 2013 16

Thursday, August 1, 13 16

Assumptions

Adversary

Memory Disclosure Vulnerability

Fine-Grained ASLR
Defender

Non-Executable Stack and Heap

blackhat

USA 2013 |6

Thursday, August 1, 13 16

Assumptions

Control-Flow Vulnerability

Adversary

Memory Disclosure Vulnerability

Fine-Grained ASLR
Defender

Non-Executable Stack and Heap

black hat

USA 2013 |6

Thursday, August 1, 13 16

Workflow of Just-In-Time Code Reuse

ey

blackhat

USA 2013 |7

Workflow of Just-In-Time Code Reuse

vy

|

Leak Code Pointer

blackhat

USA 2013 |7

Workflow of Just-In-Time Code Reuse

b

Leak Code Pointer

Workflow of Just-In-Time Code Reuse

USA 2013 |7
Thursday, August 1, 13

Workflow of Just-In-Time Code Reuse

Workflow of Just-In-Time Code Reuse

Workflow of Just-In-Time Code Reuse

Workflow of Just-In-Time Code Reuse

Workflow of Just-In-Time Code Reuse

Challenges

Thursday, August 1, 13

Challenges

blhckhat

LUSA 2013 |18

Thursday, August 1, 13 18

Challenges

blhckhat

LUSA 2013 |18

Thursday, August 1, 13 18

Challenges

blhckhat

LUSA 2013 |18

Thursday, August 1, 13 18

Challenges

blhckhat

UsA 201=
Thursday, August 1, 13 18

Our Approach

Map Memory

observation:
single leaked function pointer —) an entire code page is present

blackhat

USA 2013 |19

Thursday, August 1, 13 19

Our Approach

Map Memory

observation:
single leaked function pointer —) an entire code page is present

f295afcad42bds
0638b2bbf6381ff
12efc88bdadccl
0732bbalb75cch

eb/7c025e6b8ad3
0c283baa9f03e4
7464fc814176¢cd
S54ocbcee’28ed232

initial code page

bla(' ck) Ip—

USA 201= |19

Thursday, August 1, 13 19

Our Approach

observation:
single leaked function pointer —) an entire code page is present

push Ox1
call [-OxFEED]
mov ebx, eax

jmp +O0xBEEF
dec ecx
X0r ebx, ebx

initial code page

USA 201= |19

Thursday, August 1, 13 19

Our Approach

observation:
single leaked function pointer —) an entire code page is present

push Ox1
call [-OxFEED]
mov ebx, eax

jmp +O0xBEEF
dec ecx
X0r ebx, ebx

initial code page

black hat

USA 201= |19

Thursday, August 1, 13 19

Our Approach

observation:
single leaked function pointer —) an entire code page is present

push Ox1
call [-OxFEED]
mov ebx, eax

jmp +O0xBEEF
dec ecx
X0r ebx, ebx

initial code page

black hat

USA 2013 19

Thursday, August 1, 13 19

Our Approach

Find APl Calls

=01= 20

UsA 201 —

Thursday, August 1, 13

Our Approach

Map Memory - Find Gadgets JIT Compile

Desired Payload

blhckhat

UsA 201=
Thursday, August 1, 13

Our Approach

Map Memory - Find Gadgets JIT Compile

UsA 2013
Thursday, August 1, 13

Our Approach

Map Memory - Find Gadgets JIT Compile

* needed APIs often not referenced by program

blhckhat

UsA 201=
Thursday, August 1, 13

Our Approach

Map Memory - Find Gadgets JIT Compile

Desired Payload

* needed APIs often not referenced by program
* dynamic library and function loading is common

* solution: scan for LoadLibrary and
GetProcAddress references instead

blhckhat

UsA 201=
Thursday, August 1, 13

Our Approach

Map Memory - Find Gadgets JIT Compile

. 1D 1 AVATN ynami ading
Desired Payload WVith Dynamic Loading

* needed APIs often not referenced by progra
* dynamic library and function loading is com

* solution: scan for LoadLibrary and
GetProcAddress references instead

blackhat
UsA 2013
Thursday, August 1, 13

Our Approach

Find Gadgets

blackhat

UsA 2071= N

Thursday, August 1, 13

Our Approach

code pages

_ gadgets found
black hat

UsA 201= 21
Thursday, August 1, 13

Our Approach

code pages code sequences

Galileo Algorithm
[Schacham,ACM CCS 2007]

gadgets found

blg)ckhaf

UsA 2013 21
Thursday, August 1, 13

Our Approach

code pages code sequences gadget types

Galileo Algorithm
[Schacham,ACM CCS 2007]

gadgets found

bIQGk hat

USA 2013 21
Thursday, August 1, 13

Our Approach

code pages code sequences gadget types

Galileo Algorithm
[Schacham,ACM CCS 2007]

gadgets found

bIQGk hat

USA 2013 21
Thursday, August 1, 13

Our Approach

code pages code sequences gadget types

Galileo Algorithm
[Schacham,ACM CCS 2007]

gadgets found

blg)ck hot

USA 2013 21
Thursday, August 1, 13

Our Approach

code pages code sequences gadget types

Galileo Algorithm
[Schacham,ACM CCS 2007]

gadgets found

blgbck hot

UsA 2013 21
Thursday, August 1, 13

Our Approach

code pages code sequences

Galileo Algorithm
[Schacham,ACM CCS 2007]

gadgets found

leckhaf

USA 2013 2|
Thursday, August 1, 13

Our Approach

code pages code sequences

Galileo Algorithm
[Schacham,ACM CCS 2007]

gadgets found

leckhaf

USA 2013 2|
Thursday, August 1, 13

Compiling the ROP program

Compiling the ROP program

Compiling the ROP program

our high-level language gadgets available

LoadLibrary(*‘kernel32");
GetProcAddress((@, ‘WinExec”);
@(*calc”, sw_SHOWNORMAL);
LoadLibrary(‘kernel32");
GetProcAddress((@, ‘ExitProcess”);

@(l);

generate possible
gadget arrangements

6a_
blagts hat 22

Thursday, August 1, 13 22

Compiling the ROP program

our high-level language gadgets available

LoadLibrary(*‘kernel32");
GetProcAddress((@, ‘WinExec”);
@(*calc”, sw_SHOWNORMAL);
LoadLibrary(‘kernel32");
GetProcAddress((@, ‘ExitProcess”);

@(l);

fullfill with available gadgets

generate possible
gadget arrangements

Reimplementation of Q gadget compiler algorithms [Schwartz et al., USENIX 201 1]

I extended for multiple program statements and function parameters

blackhat 2

Thursday, August 1, 13

Compiling the ROP program

our high-level language gadgets available

LoadLibrary(*‘kernel32");
GetProcAddress((@, ‘WinExec”);
@(*calc”, sw_SHOWNORMAL);
LoadLibrary(‘kernel32");
GetProcAddress((@, ‘ExitProcess”);

@(l);

fullfill with available gadgets

generate possible
gadget arrangements

Reimplementation of Q gadget compiler algorithms [Schwartz et al., USENIX 201 1]

I extended for multiple program statements and function parameters

blackhat 2

Thursday, August 1, 13

Compiling the ROP program

our high-level language gadgets available

LoadLibrary(*‘kernel32");
GetProcAddress((@, ‘WinExec”);
@(*calc”, sw_SHOWNORMAL);
LoadLibrary(*‘kernel32");
GetProcAddress((@, ‘ExitProcess”);

@(l);

fullfill with available gadgets

Serialize
generate possible

gadget arrangements

Reimplementation of Q gadget compiler algorithms [Schwartz et al., USENIX 201 1]

~ extended for multiple program statements and function parameters

a(' c l(n 3
b' USsA 201= 22

Thursday, August 1, 13

Take it to the Next Level

JIT-ROP is only our initial prototype of just-in-time code reuse.

Potential Improvements:

M ap Memo ry Improve ability to discern code from embedded data.
Explore direct use of system calls.

Lower conservativeness at expense of complexity.

Define more composite gadgets implementing an operation.

Run [1me Optimize code throughout.

Bigger changes: apply JIT code reuse to jump-oriented programming,
return-less ROP, or ret-to-libc styles of code reuse.

leckhaf

USA 2013 23
Thursday, August 1, 13

Page Mapping Considerations

All other steps depend on the ability to map code pages well.

Are there enough
function pointers on the
heap!

a(' c) l(" 3
b| UsA 201= 24

Thursday, August 1, 13

Page Mapping Considerations

All other steps depend on the ability to map code pages well.

Assume only one code pointer

Are there enough initially accessible.
function pointers on the
heap!? (e.g. from a virtual table entry,

callback, or event handler)

3 .
b|al|c:5 = 01= 24

Thursday, August 1, 13

Page Mapping Considerations

All other steps depend on the ability to map code pages well.

Assume only one code pointer

Are there enough initially accessible.
function pointers on the
heap!? (e.g. from a virtual table entry,

callback, or event handler)

Are code pages
interconnected enough!?

Thursday, August 1, 13

Page Mapping Considerations

All other steps depend on the ability to map code pages well.

Assume only one code pointer

Are there enough initially accessible.
function pointers on the
heap! (e.g. from a virtual table entry,

callback, or event handler)

Tested on 7 Applications:

Are code pages /- “
interconnected enough!? .

Thursday, August 1, 13

Experiment Design

For each application: m . e l?j @ }g

Open Application —
with Save Snapshots

Blank Document of
Program Memory

Use only one initial code pointer
to kick-off memory mapping,
repeat for all possible initializations

Map Memory

Build Native Find API Calls
x86

Version of || T-ROP Find Gadgets
black -t

USA 2013 25

Thursday, August 1, 13

Experimental Results

Map Memory On average, 300 pages of code harvested.

>00r Pages harvested from a

- single initial code pointer l

upper
quartile

median
100 W |)~ | |
lower
0 | | ~ quartile
blackhat
USA 2013 26

Thursday, August 1, 13

Experimental Results

Using the LoadLibrary() and GetProcAddress()
APlIs, the generated ROP payload can lookup
any other APIs needed.

Find API Calls Find 9 to 12 on average, but only one needed.

|5 - upper quartile

median
10 - —
5 -

GetPrOCAddress() ASCII ” UNICODE similar results for
LoadLibrary() all applications

black hat

USA 2013 27

Thursday, August 1, 13

Experimental Results

upper
150 We only consider ‘xchg eax,esp’ - quartile
for a stack pivot, this could be edian
improved.
|00~
]
L Iowgr
quartile

jump pivot mvreg arith load store arithld arithsto

Usually find one or more of each gadget type.

e)

Also tested against ‘gadget elimination’, e.g. ORP
[Pappas et al., I[EEE S&P 2012], which had little

benefit. Some gadgets vanished, while new
gadgets appeared.

.

again, similar results
for all applications

black hat

USA 2013 28

Thursday, August 1, 13

Experimental Results

End-to-end live exploitation
experiments with different

22.5-

')
environments and vulnerabilities. %_
X
|5 - L
o)
s
- 2
rin
7 5 3 St. g -
. size @)
. O
overwrite ()]
v

287 £¥7 238 &28
28 8 £10 £l

Varies, but viable for real-world exploitation.

blhckhat

LUSA 2013 29

Thursday, August 1, 13

black hat s\ .

USA 2013

Live Demo

CVE-2013-2551 on #&8 £10

. Credits

" Vulnerability Discovery: Nicolas Joly
Metasploit Module for Win7/IE8: |Juan Vazquez

Thursday, August 1, 13

Conclusion

USA 2013 31

Thursday, August 1, 13

Conclusion

blackhat

LUSA 2013 31

Thursday, August 1, 13

Conclusion

blhckhat

LUSA 2013 31

Thursday, August 1, 13

Conclusion

Fine-grained ASLR

Towards More
Comprehensive
Mitigations

blhckhat

LUSA 2013 31

Thursday, August 1, 13 31

Conclusion

Fine-grained ASLR

Towards More
Comprehensive
Mitigations

Need for Practical
Solutions

blhckhat

LUSA 2013 31

Thursday, August 1, 13 31

