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Code Reuse Attacks History

selected not exhaustive

ret2libc
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Basics of ASLR

e ASLR randomizes the base address of code/data segments

Application Run | Application Run 2

3. Adjust instruction
sequence pointers

Disclosure Attack

e.g., [Sotirov et al.,
Blackhat 2008]

2. Leak function
pointer

| Exploit disclosure
vulnerability

Program Memory (abstract) Program Memory (abstract)
blanékha't‘
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Tackling the Problems of ASLR via
Fine-Grained ASLR




Basics of Fine-grained ASLR

Application Run 1

black hat
1

LUSA 2013 10




Basics of Fine-grained ASLR

Application Run 1 Application Run 2

* Different fine-grained ASLR approaches have been proposed recently
* ORP [Pappas et al., IEEE Security & Privacy 2012]
* ILR [Hiser et al., IEEE Security & Privacy 2012]
* STIR [Wartell et al., ACM CCS 2012]
* XIFER [Davi et al., ASIACCS 2013]

* All mitigate single memory disclosure attacks
: Iﬂl -
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Inner Basic Block Randomization
[Pappas et al., IEEE S&P 2012]

* Instruction Reordering

Original Randomized

MOV EBX, &ptr

MOV EANX, &string
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Original Randomized
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[Pappas et al., IEEE S&P 2012]
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Basic Block Randomization
[Wartell et al., ACM CCS 2012; Davi et al. AsiaCCS 201 3]
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Basic Block Randomization
[Wartell et al., ACM CCS 2012; Davi et al. AsiaCCS 201 3]

Original Randomized

BBL |

MOV EBX, EAX
CALL UxI0FF

BBL 2

MOV (ESF), EAX
RET

v BBL 3
OxI10FF: BMADD EAX, ECX
RET

blackhat
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Basic Block Randomization
[Wartell et al., ACM CCS 2012; Davi et al. AsiaCCS 201 3]

Original Randomized

BBL |
MOV EBbX, EAX 0x1000:

BBL 2

BBL 3
Ox10AO0:

\ 4

0x 1 OFF: 0x 1 OFF:
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Basic Block Randomization
[Wartell et al., ACM CCS 2012; Davi et al. AsiaCCS 201 3]

Original Randomized

BBL |
MOV EBX, EAX 0x1000:

BBL 2

CALL OxI0FF

BBL 2

MOV (ESF), EAX OxI10AO0:

\ 4

Ox10FF:
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Basic Block Randomization
[Wartell et al., ACM CCS 2012; Davi et al. AsiaCCS 201 3]

Original Randomized

BBL_2

0x1000:

BBL_3
OxI10AO0:; yANDID, E AX.  ECX

L\ /\
‘ REIT

\ BBL_|
OxI10FF: OxI10FF: BIMOV EBX, EAX
CALL 0x|0AC
b.gsckh:ﬂ-
UsA 2013
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Basic Block Randomization
[Wartell et al., ACM CCS 2012; Davi et al. AsiaCCS 201 3]

Original Randomized

BBL |
MOV EBX, EAX 0x1000:
CALL OX \_ O{_: I ‘

BBL 2

BBL 2

BBL 3

MOV (ESP), EAX OxI10A0: BADD EAX, ECX

‘ RET

\ BBL_|
Ox10FF: OxI10FF: BIMOV EBX, EAX
CALL UxI0AU
JMP 0x1000
b.ggkh:ﬂ-
UsA 2013
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Basic Block Randomization
[Wartell et al., ACM CCS 2012; Davi et al. AsiaCCS 201 3]

Original Randomized
0x1000:
OxI0AO:
\4
0x | OFF: 0x | OFF:
C-A,‘_‘_ T X T AU
JMP 0x1000
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Instruction Location Randomization
[Hiser et al., IEEE S&P 2012}
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Instruction Location Randomization
[Hiser et al., IEEE S&P 2012}
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0x | F0O: RET
0x2000:

0x2500:

0x3000:




Instruction Location Randomization
[Hiser et al., IEEE S&P 2012}

Original Randomized
0x1000:
OxI12A0: REIT
0x1F00: RET
Ox10FF:
(1) @11]1]1 5

0x2500:

0x2500 -> 0x2000
0x2000 -> 0x1000
Ox1000 -> 0x12A0

0x3000:

0x3000 -> Ox|FOO0

Execution is driven by a fall-through map and a
O binary translation framework (Strata)
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Does Fine-Grained ASLR Provide a
Viable Defense in the Long Run?
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Contributions

A novel attack class that undermines fine-grained
ASLR, dubbed just-in-time code reuse
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A novel attack class that undermines fine-grained
ASLR, dubbed just-in-time code reuse

We show that memory disclosures are far more
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Contributions

A novel attack class that undermines fine-grained
ASLR, dubbed just-in-time code reuse

We show that memory disclosures are far more
damaging than previously believed

A prototype exploit framework that
demonstrates one instantiation of our idea, called

JITROP

iachart
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Non-Executable Stack and Heap

blg)ck hat

UsA 201= 16

Thursday, August 1, 13 16



Assumptions

Adversary

Fine-Grained ASLR
Defender

Non-Executable Stack and Heap

blackhat

USA 2013 16

Thursday, August 1, 13 16



Assumptions
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Memory Disclosure Vulnerability
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Assumptions

Control-Flow Vulnerability

Adversary

Memory Disclosure Vulnerability

Fine-Grained ASLR
Defender

Non-Executable Stack and Heap
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Our Approach

Map Memory

observation:
single leaked function pointer —) an entire code page is present

blackhat

USA 2013 |19

Thursday, August 1, 13 19



Our Approach

Map Memory

observation:
single leaked function pointer —) an entire code page is present

f295afcad42bds
0638b2bbf6381ff
12efc88bdadccl
0732bbalb75cch

eb/7c025e6b8ad3
0c283baa9f03e4
7464fc814176¢cd
S54ocbcee’28ed232

initial code page
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Our Approach

observation:
single leaked function pointer —) an entire code page is present

push Ox1
call [-OxFEED]
mov ebx, eax

jmp +O0xBEEF
dec ecx
X0r ebx, ebx

initial code page
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Our Approach

Map Memory - Find Gadgets JIT Compile

Desired Payload

* needed APIs often not referenced by program
* dynamic library and function loading is common

* solution: scan for LoadLibrary and
GetProcAddress references instead

blhckhat
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Our Approach

Map Memory - Find Gadgets JIT Compile
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Desired Payload WVith Dynamic Loading

* needed APIs often not referenced by progra
* dynamic library and function loading is com

* solution: scan for LoadLibrary and
GetProcAddress references instead
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Our Approach

code pages

_ gadgets found
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Our Approach

code pages code sequences

Galileo Algorithm
[Schacham,ACM CCS 2007]

gadgets found
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Compiling the ROP program

our high-level language gadgets available

LoadLibrary(*‘kernel32");
GetProcAddress((@, ‘WinExec”);
@(*calc”, sw_SHOWNORMAL);
LoadLibrary( ‘kernel32");
GetProcAddress((@, ‘ExitProcess”);

@(l);

generate possible
gadget arrangements
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blagts hat 22

Thursday, August 1, 13 22



Compiling the ROP program

our high-level language gadgets available

LoadLibrary(*‘kernel32");
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fullfill with available gadgets
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Reimplementation of Q gadget compiler algorithms [Schwartz et al., USENIX 201 1]

I extended for multiple program statements and function parameters
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Compiling the ROP program

our high-level language gadgets available

LoadLibrary(*‘kernel32");
GetProcAddress((@, ‘WinExec”);
@(*calc”, sw_SHOWNORMAL);
LoadLibrary(*‘kernel32");
GetProcAddress((@, ‘ExitProcess”);

@(l);

fullfill with available gadgets

Serialize
generate possible

gadget arrangements

Reimplementation of Q gadget compiler algorithms [Schwartz et al., USENIX 201 1]

~ extended for multiple program statements and function parameters
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Take it to the Next Level

JIT-ROP is only our initial prototype of just-in-time code reuse.

Potential Improvements:

M ap Memo ry Improve ability to discern code from embedded data.
Explore direct use of system calls.

Lower conservativeness at expense of complexity.

Define more composite gadgets implementing an operation.

Run [ 1me Optimize code throughout.

Bigger changes: apply JIT code reuse to jump-oriented programming,
return-less ROP, or ret-to-libc styles of code reuse.

leckhaf
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Page Mapping Considerations

All other steps depend on the ability to map code pages well.

Are there enough
function pointers on the
heap!

a(' c) l( " 3
b| UsA 201= 24
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Page Mapping Considerations

All other steps depend on the ability to map code pages well.

Assume only one code pointer

Are there enough initially accessible.
function pointers on the
heap!? (e.g. from a virtual table entry,

callback, or event handler)
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b|al|c:5 = 01= 24

Thursday, August 1, 13



Page Mapping Considerations

All other steps depend on the ability to map code pages well.

Assume only one code pointer

Are there enough initially accessible.
function pointers on the
heap!? (e.g. from a virtual table entry,

callback, or event handler)

Are code pages
interconnected enough!?

Thursday, August 1, 13



Page Mapping Considerations

All other steps depend on the ability to map code pages well.

Assume only one code pointer

Are there enough initially accessible.
function pointers on the
heap! (e.g. from a virtual table entry,

callback, or event handler)

Tested on 7 Applications:

Are code pages /- “
interconnected enough!? .
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Experiment Design

For each application: m . e l?j @ }g

Open Application —
with Save Snapshots

Blank Document of
Program Memory

Use only one initial code pointer
to kick-off memory mapping,
repeat for all possible initializations

Map Memory

Build Native Find API Calls
x86

Version of || T-ROP Find Gadgets
black -t

USA 2013 25
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Experimental Results

Map Memory On average, 300 pages of code harvested.

>00r Pages harvested from a

- single initial code pointer l

upper
quartile

median
100 W | )~ | |
lower
0 | | ~ quartile
blackhat
USA 2013 26
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Experimental Results

Using the LoadLibrary() and GetProcAddress()
APlIs, the generated ROP payload can lookup
any other APIs needed.

Find API Calls Find 9 to 12 on average, but only one needed.

|5 - upper quartile

median
10 - —
5 -

GetPrOCAddress() ASCII ” UNICODE similar results for
LoadLibrary() all applications

black hat
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Thursday, August 1, 13



Experimental Results

upper
150 We only consider ‘xchg eax,esp’ - quartile
for a stack pivot, this could be edian
improved.
|00~
]
L Iowgr
quartile

jump pivot mvreg arith load store arithld arithsto

Usually find one or more of each gadget type.

e )

Also tested against ‘gadget elimination’, e.g. ORP
[Pappas et al., I[EEE S&P 2012], which had little

benefit. Some gadgets vanished, while new
gadgets appeared.

.

again, similar results
for all applications
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