
TruWalletM: Secure Web Authentication on
Mobile Platforms

Sven Bugiel1, Alexandra Dmitrienko2?, Kari Kostiainen3,
Ahmad-Reza Sadeghi1, Marcel Winandy2

1 Fraunhofer-Institut SIT Darmstadt, Technische Universität Darmstadt, Germany
{sven.bugiel, ahmad.sadeghi}@cased.de

2 System Security Lab, Ruhr-University Bochum, Germany
{alexandra.dmitrienko, marcel.winandy}@trust.rub.de

3 Nokia Research Center, Helsinki, Finland
{kari.ti.kostiainen}@nokia.com

Abstract. Mobile phones are increasingly used as general purpose com-
puting devices with permanent Internet connection. This imposes sev-
eral threats as the phone operating system (OS) is typically derived
from desktop counterparts and, hence, inherits the same or similar secu-
rity shortcomings. In particular, the protection of login credentials when
accessing web services becomes crucial under phishing and malware at-
tacks. On the other hand many modern mobile phones provide hardware-
supported security mechanisms currently unused by most phone OSs.
In this paper, we show how to use these mechanisms, in particular
trusted execution environments, to protect the user’s login credentials.
We present the design and implementation proposal (based on Nokia
N900 mobile platform) of TruWalletM, a wallet-like password manager
and authentication agent towards the protection of login credentials on
a mobile phone without the need to trust the whole OS software. We
preserve compatibility to existing standard web authentication mecha-
nisms.

1 Introduction

Today’s smartphones offer compelling computing and storage capacity allowing
the realization of various applications such as web browsing, e-mailing, mul-
timedia entertainment, location tracking, and electronic purchase. The mobile
web browser on the phone enables users to access standard Internet web sites,
including those that require an authentication of the user (typically username/-
password). However, the popularity of mobile phones and the vast number of
supported applications makes these platforms also more attractive to attackers.

While smartphones are very flexible computing devices, they generally do not
provide sufficient security to protect user credentials. As their operating systems
are derived from desktop counterparts, they are vulnerable to malware, phishing

? Supported by the Erasmus Mundus External Co-operation Window Programme of
the European Union

and physical attacks. While wallet-like authentication agents [1,2,3,4,5] exist
that automatically manage mutual authentication between the user’s computing
device and a remote web server, they have been demonstrated for PCs only,
where resource constraints are not vital. Due to the resource constraints of mobile
devices, the development of such secure systems is more challenging than for PCs,
in particular to provide a secure (graphical) user interface – although promising
research prototypes have been demonstrated recently [6].

Currently, the only solutions available for mobile phones to secure user cre-
dentials are password managers, which are essentially simple password databases.
They encrypt all passwords with a master password but do not offer sophisti-
cated protection against malware or classical phishing attacks.

On the other hand, many modern mobile phones are already equipped with a
hardware-supported secure trusted execution environment (TrEE) which allows
the secure and isolated execution of certain code, and which can also protect
certain amount of data persistently. However, usually the size of the code and
data that can be processed in a TrEE is very small, thus wallet-like architectures
developed for PCs are not directly suitable. If the authentication protocols are
changed and public key-based credentials are used, the TrEE can be used to
provide a secure on-board credentials platform (ObC) [7]. However, an ObC-
based authentication is not compatible with existing web-based authentication
on most servers.

Thus, the challenge we have to face is to provide a reliable and secure protec-
tion of login credentials on a mobile phone that can take advantage of hardware-
supported security mechanisms while using the standard OS on the phone, and
while being compliant to standard web authentication schemes.

Contribution. In this paper, we present TruWalletM , a hardware-assisted wallet-
based web authentication as a mechanism to protect user credentials from mal-
ware, phishing and physical attacks on mobile platforms. We present the design
and implementation proposal of our solution, which also meets important usage
requirements: (i) compatibility with existing password-based web authentica-
tion, (ii) software reuse of legacy OS and legacy web-browser on smartphones,
and (iii) not noticeable performance overhead. To the best of our knowledge, no
other solution exists for mobile phones that meets these requirements. Our key
design solution, which allows us to meet these requirements, is to split a single
SSL/TLS connection between the user device and the server into two logically
separated channels, where one is protected by TrEE and is used to transmit
passwords, and another one is intended for conventional data. Our design re-
lies on the availability of a Trusted Execution Environment (TrEE) to protect
the execution of critical code from tampering. Such TrEEs can be provided by
commodity secure hardware for mobile devices such as M-Shield [8] and ARM
TrustZone [9].

2

2 Model and Requirement Analysis

In this section we consider the model and the security and functional objectives
and requirements that are desired. We then discuss in Section 6 which of them
can be achieved by our TruWalletM design and implementation proposal on
top of currently available general purpose mobile platforms.

System model and use case. Our system model involves the following parties:
(i) a user, (ii) a device (mobile platform), (iii) a web server, and (iv) an adversary.
We consider application scenarios where a user deploys his mobile device to
access services provided by remote web servers (over the Internet). The access is
granted through an authentication protocol where the user authenticates using
username/password.

Adversary model. The main goal of the adversary is to obtain unauthorized
access to credentials and the services (provided by the web servers) that usually
the user has access to. The threats in this context are:

– Software attacks. The adversary may inject malicious software into a device,
or exploit the vulnerabilities of the existing application (e.g., web browser).
This allows the adversary to access user credentials in device memory, read
them out from the login form of the browser when they are inserted by the
user during login procedure, eavesdrop on the user input interface (e.g., key-
loggers) and communication channel with the web-server, invoke credentials
usage or launch phishing attacks4.

– Password-related attacks. The adversary may perform dictionary or brute-
force attack in order to recover passwords, or the adversary may apply the
credentials, he has learned from an attacked web-server, to other web-services
of the user, as many users tend to reuse credentials for different web-sites.

– Physical Attacks. The adversary may obtain physical access to the device
(e.g., by stealing the device or accessing it while it is left unattended), in-
voke the authentication procedure on behalf of the user, or tamper with the
underlying hardware.

Security objectives. Our security objectives to address these threats are:

– Protection of user credentials. User credentials must not be accessible or
forged by unauthorized entities (protection of integrity and confidentiality).
This requirement ensures that the adversary cannot impersonate the legiti-
mate user.

– Trusted path. A secure channel between the user and the web server must be
established. This requirement ensures that the user is communicating with
a correct web server and that operations are invoked by the legitimate user.

4 Here the adversary attempts to trick users to reveal their credentials to a server under
his control, for instance by luring the user to a faked web-site (classical phishing),
or by malware displaying forged login pages (malware phishing).

3

Functional objectives. In addition to the security aspects, our TruWalletM
design should consider important functional objectives that are essential for
practical deployment:

– Software Reuse. For many mobile platforms installing an alternative OS is
not an available option. Also, the browser should be used as is, as installing
a patch originating from a third party developer might not be possible5.

– Interoperability. As the majority of web servers rely on password authen-
tication, our solution supports this method. Other authentication methods,
such as OAuth, are complementary to our work and can be easily integrated
into our architecture.

– Low performance overhead. We require imposed performance overhead to
be feasible for mobile devices. We require that users should not notice any
delay while they are browsing Internet web pages, but we accept more sig-
nificant delays for short time periods for performing critical operations such
as authentication.

Assumptions. We rely on availability of a secure hardware which provides
a Trusted Execution Environment (TrEE) with following features: (i) isolated
secure code execution, (ii) secure storage, (iii) integrity protection of secure ex-
ecution environment. Such TrEEs can be provided by general purpose secure
hardware such as M-Shield [8] and ARM TrustZone [9]. We assume the TrEE
provided by secure hardware is tamper-protected6.

For secure communication between the device and the remote web server
we utilize SSL/TLS protocol. We assume that all cryptographic primitives of
SSL/TLS protocol are secure. Also, we rely on a trustworthy SSL/TLS Public
Key Infrastructure (SSL-PKI) used (implicitly) to authenticate the server during
SSL/TLS channel establishment.

We do not consider denial-of-service (DoS) attacks, since in the context of
our adversary model it is impossible to prevent them. In fact, an attacker who
has control over the user environment or even has physical access to the device
can always cause DoS, e.g., by switching off the device.

We do not consider attacks where an already established server connection
is misused by malware (such as transaction generators), but rather concentrate
on protection of user credentials. However, our design can be extended with an
transaction confirmation agent similar to the solutions in [3,11].

5 For instance, the Android security architecture would require the patch to be signed
with the same developer signing key as the patching application.

6 It is tamper protected to some degree, e.g., resistant against standard side-channel
attacks. However, the severeness of hardware attacks depends on the effort: an ex-
ample is the recently reported hardware attack on the Trusted Platform Module
(TPM) [10].

4

3 Architecture and Design Decisions

3.1 Design Decisions

It is a challenging task to design an architecture which fulfills requirements
defined in Section 2. For instance the requirement to reuse software (particularly
OS) rules out virtualization-based approaches to provide runtime isolation of the
critical code operating on user credentials. Instead, our design relies on isolated
execution of trusted code within the TrEE. However, currently TrEEs provided
by commodity secure hardware are very resource constrained, e.g., M-Shield
has about 10-20 Kb memory available in the secure mode. On the other hand,
a standard user/password authentication protocol assumes transmission of the
password to the server through a SSL/TLS connection. In our design this implies
running the code handling SSL/TLS communication within the TrEE in order
to (i) protect user credentials and (ii) be compatible with legacy web-servers.
However, this is not possible due to size of this code. Thus, one of the main
challenges we face is to handle SSL/TLS channels with a web server in a secure
way as this cannot be done within the TrEE. We overcome these limitations by
letting the trusted and untrusted code cooperate in establishing a secure channel
between the user platform and the web server.

Handling SSL/TLS connection in collaboration with trusted code running
within the TrEE is expensive as it requires multiple switches between normal
and secure execution mode7. On the other hand, high performance overhead
contradicts the requirement to keep performance overhead acceptable. To ad-
dress this problem, we use two separated logical SSL/TLS subchannels over a
single SSL/TLS connection to the server: One is partially handled within TrEE
and is used for performing security sensitive operations such as login, registra-
tion or password change, while another one does not require invocations of the
secure side and is used for transmitting conventional data (i.e., the content of
web pages). To manage two logical SSL/TLS subchannels, we utilize the stan-
dard SSL/TLS resume mechanism, which is intended to reinstate a previously
negotiated SSL/TLS session between a client and a server. SSL/TLS resume
mechanism is widely supported, according to statistics provided by [12], 91% of
web servers support SSL/TLS resume protocol.

3.2 Architecture

Components. The execution environment of a mobile platform is divided into
two isolated parts: “open world” and the TrEE. TruWalletM consists of two
main components, WalletHelper (in open world) and WalletCore (in TrEE). The
main work is done by WalletHelper (e.g., parsing pages), while WalletCore is
only intermittently invoked to perform security-critical operations. “Open world”
also contains an operating system (OS), a commodity mobile web browser Web-
Browser, a secure storage SecureStorage and a trusted user interface TrustedUI.

7 A single invocation of secure side requires about 1.9 ms for M-Shield TrEE.

5

Data

UserID B

Wallet

Helper

Web Server

Operating System

Web

Browser

Secure Storage

Data
Data

P
a

ss
w

o
rd

s

SSL Channel
SSL Channel

Login,

password
Trusted UI

Wallet Core

Web Server

Trusted Execution Environment (TrEE)

PK

Secure Storage

P
a

ss
w

o
rd

s

Mobile Platform

password
Trusted UI

User

Fig. 1. TruWalletM Architecture

WebBrowser is typically used by the user as a tool to login to remote web servers.
SecureStorage is a database where passwords and other security sensitive data
are stored persistently and securely. TrustedUI provides trusted user interface
between TrEE and the user. The user customizes TrustedUI by adding a unique
phrase or a background picture such that he can distinguish TrustedUI from in-
terfaces forged by malware [13,14]. User-specific interface elements are stored
within the secure storage and are accessible only by the TrustedUI component.

WalletHelper and WebBrowser are untrusted to handle user credentials, also
the OS may run arbitrary software including malware. In contrast, TrustedUI
is (partly) trusted, although it is an OS-side component. Ideally, TrustedUI
should reside within the TrEE. However, the constraint resources of contem-
porary trusted execution environments, e.g., 20 kB of secure RAM for M-Shield,
prohibit such an implementation at the present time. Thus, in our current archi-
tecture TrustedUI is realized as an OS component8. However, future generations
of the TrEE may provide the required capabilities to implement a fully trusted
path between the user and the TrEE, because hardware vendors continue to ex-
tend their TrEE’s capabilities9. For now, trust into the OS components can be
provided by ensuring the component’s integrity by means of secure boot. 10 – a
mechanism currently supported by TrEEs. However, secure boot does not pro-
tect against runtime attacks, thus trust to this component is limited. In Section 6
we will discuss security implications of runtime compromise.

WalletHelper acts as an SSL/TLS proxy and maintains two SSL/TLS connec-
tions, one to a web server WebServer and another one to WebBrowser. SSL/TLS
connection to WebBrowser is a regular one and is not protected by additional

8 Although the availability of such an interface would greatly enhance the security of
our architecture, the problem of implementing a TrEE-based (G)UI is orthogonal to
the work in this paper.

9 For example, the next-generation M-Shield increases the size of secure RAM to 40-60
kB.

10 The boot process is terminated in case the integrity of a component to be loaded
could not be verified (e.g., it does not match to a securely stored reference value) [15]

6

measures. In contrast, SSL/TLS connection with WebServer is established in
cooperation with WalletCore and consist of two logical subchannels. WalletCore
protects the shared secret with WebServer and controls switching of subchan-
nels. When login, registration or password change protocols are initiated, the
logical channel is switched to WalletCore. Before passwords are used, WalletCore
ensures they belong to the appropriate web server. When the protocols have
been accomplished, the logical channel is switched back to WalletHelper. In this
way regular communication does not require invocation of WalletCore and, thus,
does not impose additional overhead.

To prevent unauthorized credential usage by other users, the wallet requires
user authentication (e.g., a user password) to login into the wallet. The authen-
tication is done through TrustedUI. In this way, passwords stored by the wallet
are bound to the corresponding user.

4 Use Cases and Protocols

In this section we describe the following use case scenarios: establishing SSL/TLS
connection and managing two logical SSL/TLS subchannels, initialization, reg-
istration, login and password change. We also provide corresponding protocols.

4.1 Establishing SSL/TLS connection and managing two logical
SSL/TLS subchannels

Figure 2 illustrates the SSL handshake protocol. The client and server exchange
ClientHello and ServerHello messages and negotiate the required system pa-
rameters. In the following steps the server’s certificate CertS is sent and ver-
ified, the SSL/TLS session key Sc is generated (which is never disclosed to
WalletHelper) and sealed11 (together with pre-master secret PMS and the hash
value hash(CertS)). The resulting session-token STc is stored in a secure storage
and can be loaded and unsealed later using the session identifier SID.

ChangeCipher messages exchanged by WalletHelper and WebServer indicate
they are ready to switch to the newly-negotiated parameters and the secret key.
All following messages should be encrypted using Sc.

All messages which are exchanged between WalletHelper and WebServer are
standard messages of SSL/TLS handshake and can be found in the corresponding
specification [16].

Managing two logical SSL/TLS subchannels. To split a single SSL/TLS chan-
nel into two logical parts, we utilize the SSL/TLS resume protocol, which al-
lows the re-negotiation of an SSL/TLS session key from the previously negoti-
ated SSL/TLS parameters. For switching the channel to WalletHelper, the SS-
L/TLS channel is resumed and WalletCore discloses the renegotiated SSL/TLS

11 Sealing means protecting an object so that only a certain set of entities can access
or use it.

7

SSL Handshake

Legend
SID = SSL session IDWallet

H l
Web
S

Wallet
C

Mobile
Pl tf

1. Client/Server HelloVerify CertS
PMS←GenRndNm()

Sc←DeriveSessionKey(PMS)

Sc = SSL session key (not
known by mWalletHelper)
CertS = SSL server certificate
(SKS, PKS) = server key pair
PMS = Pre master secret

Helper Server

2. CertS/Server Done3. SID, CertS

CorePlatform

c y()
STc = Seal(hash(CertS)||Sc||PMS)

StoreToken(STc, SID)
PMSenc←Enc(PKS, PMS)

PMS = Pre‐master secret
STc = SSL session token

4. PMSenc
5. PMSenc

PMS←Dec(SKS, PMSenc)
Sc←DeriveSessionKey(PMS)

6. Change Cipher
7. SID, getFinished

ST←LoadToken(SID)
8. ClientFinished

9. Client/Server Finished

STc←LoadToken(SID)
hash(CertS)||Sc||PMS←Unseal(STc)

ClientFinished←getFinished(Sc)

Fig. 2. SSL/TLS handshake
Resume SSL connection (switch logical channel to mWalletHelper)

Legend
SID = SSL session ID
Sc = SSL session key (not
k b W ll H l)

Wallet
Helper

Web
Server

Wallet
Core

Mobile
Platform

known by mWalletHelper)
Sh = SSL session key (known
by mWalletHelper)
STc = old SSL session token
STh = new SSL session token

STc←LoadToken(SID)
hash(Cert)||S ||PMS←Unseal(ST)

1. ClientHello

2. ServerHello
3. SID, getResumed

h
PMS = Pre‐Master Secret

hash(CertS)||Sc||PMS←Unseal(STc)
Sh←DeriveSessionKey(PMS)

STh = Seal(hash(CertS)||PMS)
StoreToken(STh, SID) Sh←DeriveSessionKey(PMS)

5. ChangeCipher

6. Client/Server Finished

4. Sh

Fig. 3. Resume SSL/TLS connection and switch logical channel to WalletHelper

session key to WalletHelper. Disclosing a new session key preserves backward se-
crecy, as untrusted WalletHelper cannot decrypt data transmitted previously by
WalletCore. The logical channel between WalletHelper and WebServer is switched
back to WalletCore by resuming the current SSL/TLS connection and deriving
a new session key unknown by WalletHelper.

We depict the protocol of switching logical channel to WalletHelper in Fig-
ure 3, and illustrate the complementary protocol for switching the logical channel
back to WalletCore in Figure 4. In both diagrams, all protocol messages between
WalletHelper and WebServer follow the flow of the SSL resume protocol, as spec-
ified in [16]. In the secure side, in both cases WalletCore obtains pre-master
secret PMS from an SSL session token and derives a new session key. Note,
that the session key Sc is included in the token STc, as it is used by WalletCore.
In contrast, the session key Sh is not included to session token STh, because it
is disclosed to WalletHelper and should never be used by WalletCore.

Login/registration/password page forms can be delivered either via http (e.g.,
Facebook), or via already established SSL/TLS connection (e.g., Google). In the
former case, SSL/TLS connection is established when the user presses, e.g., the

8

Resume SSL connection 2 (switch logical channel to mWalletCore)

Legend
PMS = Pre‐Master Secret
SID = SSL session ID
S SSL i k (

Wallet
Helper

Web
Server

Wallet
Core

Mobile
Platform

Sc = SSL session key (not
known by mWalletHelper)
STh = old SSL session token
STc = new SSL session token

STh←LoadToken(SID)
hash(CertS)||PMS←Unseal(STh)

Sc←DeriveSessionKey(PMS)
STc = Seal(hash(CertS)||Sc||PMS)

1. ClientHello

2. ServerHello
3. SID, getResumed

c S c
StoreToken(STc, SID) Sc←DeriveSessionKey(PMS)4. ChangeCipher

6. Client/Server Finished

STc←Load Token(SID)
hash(CertS)||Sc||PMS←Unseal(STc)

ClientFinished←getFinished(S)

5. SID, getFinished

6. ClientFinished
/ClientFinished←getFinished(Sc)

Fig. 4. Resume SSL/TLS connection and switch logical channel to WalletCore

login or register button. To handle this case, TruWalletM establishes the SS-
L/TLS connection and uses the first negotiated session key for authentication,
i.e., the logical SSL/TLS channel is directly established between the WalletCore
and WebServer. In the latter case, TruWalletM discloses the session key immedi-
ately after SSL/TLS session is established such that the user can surf web-pages
delivered via SSL/TLS connection, i.e., the logical channel is established between
the WalletHelper and WebServer. However, when a user’s credentials have to be
sent to WebServer, e.g., after the login button is pressed, the current SSL/TLS
session is resumed in order to switch to the logical SSL/TLS channel between
WalletCore and WebServer for a secure transmission of the credentials.

4.2 TruWalletM Initialization

When TruWalletM is installed on a mobile platform, a few initialization steps
are required: (1) the web browser is configured to work with TruWalletM as
SSL/TLS proxy, (2) the user should customize the trusted user interface by
adding user-specific interface elements such as a background picture, and (3)
the user may want to install passwords for web servers he has already signed up
with.

Passwords for existing web accounts are added to TruWalletM by visit-
ing the login page of a web server and pressing the login button. This trig-
gers TruWalletM to search for a password in its database and subsequently
to prompt the user with a dialog requesting to specify the missing login and
password. We require the user to first visit the login page, instead of directly
entering login/password into TruWalletM , in order to bind the user password
to the server certificate. However, we want to avoid a man-in-the-middle attack
during the initialization, e.g., a malicious program that replaces the server cer-
tificate by a valid certificate of a different site. Therefore, we follow the approach
of [17] and display a list of few destinations (among them the user-requested one)
and ask the user to explicitly choose the destination again. As shown in [17] this
prevents the user from associating the right credentials to the wrong site.

9

Registration in Web‐server (new, with TrustedUI)

Legend
SID = SSL session ID
Sc = SSL session key (not
known by mWalletHelper)

Wallet
Helper

Web
Server

Wallet
Core

Mobile
Platform

Trusted
UI

y p)
CertS = SSL server certificate
regPg = registration page
reqPg = reg.request page
parsPg = parsed reg.req.page
lgn = login; pwd = password

parsPg← parse(reqPg)1. SID, parsPg

Prompt user for lgn

2. lgnRequest

3. lgn

lgn = login; pwd = password
STc = SSL session token
PT = password token
PMS = pre‐master secret

4. regPgenc

STc←LoadToken(SID)
hash(CertS)||Sc||PMS←Unseal(STc)

pwd←GenRnd()
PT←Seal(pwd||hash(CertS))

StorePwd(lgn hash(CertS) PT)
5. reqPgenc

regPg← Dec(Sc, regPgenc)
Store lgn, pwd
ackenc ← Enc(Sc, ack)

6. ackenc
7. SID, ackenc

StorePwd(lgn, hash(CertS), PT)
regPg←Insert(parsPg, lgn, pwd)

regPgenc←Enc(Sc, regPg)

STc←LoadToken(SID)
h h(C t)||S ||PMS←U l(ST)

8. ack
hash(CertS)||Sc||PMS←Unseal(STc)

ack←Dec(Sc, ackenc)

Fig. 5. Registration of a new account

Alternatively, existing accounts can be installed via out-of-band (OOB) chan-
nel, e.g., by means of secure provisioning [7]. This protocol can securely deploy
credentials, so that they are only known to the provisioning entity and pro-
grams executing in the TrEE of the target device. This protocol makes use of
a device-specific key-pair (typically available on mobile platforms with TrEE)
whose private part resides only in and never leaves the TrEE. Also, OOB chan-
nel can be used not only at initialization phase, but later on as well at any time
the user wishes to install new passwords.

4.3 Registration

To sign up for a new account, the user visits a registration page of the corre-
sponding web server and presses the “sign up” button. This action launches the
registration protocol (Figure 5).

Before the protocol starts we assume a registration request page reqPg is
delivered to TruWalletM either through SSL connection or http. At protocol
start, WalletHelper parses reqPg and sends a parsed registration request page
parsPg to WalletCore (step 1). WalletCore invokes TrustedUI to obtain user login
lgn from the user (steps 2-3), loads the SSL/TLS session token STc from the
secure storage and unseals it. Next, it generates a new high entropy password
pwd, seals it together with a hash of SSL/TLS certificate CertS (extracted from
STc) and stores the resulting password token PT in a secure storage. After that,
it fills in pwd into parsPg and sends it over the established SSL/TLS channel
to WebServer (steps 4-5). WebServer validates lgn and pwd and responds with
acknowledgment (steps 6-7). Finally, WalletCore passes the decrypted acknowl-
edgment to WalletHelper (step 8).

10

Password Authentication with Web‐server

Legend
SID = SSL session ID
Sc = SSL session key (not
known by mWalletHelper)

Wallet
Helper

Web
Server

Wallet
Core

Mobile
Platform

Trusted
UI

y p)
CertS = SSL server certificate
lgnPg = login page
parsPg = parsed login page
authPg = authentication page
lgn = login pwd = password

parsPg←parse(lgnPg)
1. SID,parsPg

Prompt user for lgn

2. loginRequest

3. lgn

lgn = login, pwd = password
PT = password token
STc = SSL session token
PMS = pre‐master secret

STc←Load Token(SID)
hash(CertS)||Sc||PMS←Unseal(STc)

PT←LoadPwd(lgn, hash(CertS))
pwd||hash(CertS)’←Unseal(PT) 4. authPgenc

5 authPgCompare(hash(CertS), hash(CertS)’)
authPg←Insert(parsPg, lgn, pwd)

authPgenc←Enc(Sc, authPg)

5. authPgenc authPg←Dec(Sc, authPgenc)
Verify lgn, pwd
Ackenc←Enc(Sc, ack)

6. ackenc

7. SID, ackencST←Load Token(SID)STc←Load Token(SID)
hash(CertS)||Sc||PMS←Unseal(STc)

ack←Dec(Sc, ackenc)
8. ack

Fig. 6. Password authentication to the web server

4.4 Login

The most typical usage scenario for TruWalletM is to login to a service provided
by a web server. To trigger the login procedure, the user visits a login page.
The login page is delivered to WalletHelper either via http connection or via
SSL/TLS channel established between WalletHelper and WebServer. Next, the
protocol proceeds as depicted in Figure 6.

WalletHelper parses a login page lgnPg and sends it parsed, i.e., in a spe-
cially prepared format, to WalletCore together with the identifier of the SSL/TLS
session, SID (step 1). WalletCore invokes TrustedUI to obtain a login name lgn
from the user (steps 2-3). Next, WalletCore loads and unseals session token STc,
loads password token associated with lgn and the particular web server. Also,
WalletCore compares the hashes of the certificates obtained from STc and PT
to verify the binding of the password to WebServer. If positive, lgn and pwd are
inserted into the parsed login page parsPg, and the resulting authPg is sent to
WebServer encrypted under the SSL/TLS session key ((steps 4-5). WebServer ver-
ifies whether the submitted lgn and pwd belong to an authorized user, and replies
with acknowledgment on successful verification (steps 6-7). Finally, WalletCore
relays the decrypted acknowledgment to WalletHelper (step 8).

Note, if the user is not yet registered at this site, TruWalletM will proceed
as explained in Section 4.2.

4.5 Password Change

The last usage scenario we consider is a password change. To change the pass-
word, the user visits the password change web-page of the corresponding web
server. The page is delivered to TruWalletM either via http connection or via
the SSL/TLS channel established between WalletHelper and WebServer.

11

Password Change (new)

LegendLegend
SID = SSL session ID
Sc = SSL session key (not
known by mWalletHelper)
CertS = SSL server certificate

Wallet
Helper

Web
Server

parsPg←parse(chgPg)1 SID parsPg

Wallet
Core

Mobile
Platform

Trusted
UI

chgPg = pwd change page
parsPg = parsed chgPg
pwdPg = password page
PT = password token
ST = SSL session token

1. SID,parsPg

STc←LoadToken(SID)

Prompt user for login

2. loginRequest

3. lgn

STc = SSL session token
lgn = login
pwd1 = old password
pwd2 = new password
PMS = pre‐master secret

hash(CertS)||Sc||PMS ← Unseal(STc)
PT←LoadPwd(lgn, hash(CertS))

pwd1||hash(CertS)’←Unseal(PT)
Compare(hash(CertS), hash(CertS)’)

pwd2 ← GenRnd()pwd2 ← GenRnd()
pwdPg←Insert(parsPg,lgn,pwd1,pwd2)

pwdPgenc ← Enc(Sc, pwdPg)
PT←Seal(pwd2||hash(CertS))
StorePwd(lgn, hash(CertS), PT)

4. pwdPgenc
5. pwdPgenc pwdPg← Dec(Sc, pwdPgenc)

Verify lgn, pwd1
Store pwd2

6. ackenc p 2
ackenc ← Enc(Sc, ack)7. SID, ackenc

STc←LoadToken(SID)
hash(CertS)||Sc||PMS←Unseal(STc)

ack ← Dec(Sc, ackenc)
8. ack

Fig. 7. Password change

Password change protocol is shown in Figure 7. WalletCore gets the parsed
password change page parsPg and the identifier of the SSL/TLS session, SID,
from WalletHelper and a user login lgn from TrustedUI (steps 1-3). Next, it loads
and unseals an SSL session token STc and a password token PT . When a pass-
word pwd1 is extracted from PT , its binding to WebServer is verified by com-
paring the hashes of the certificates obtained from PT and STc. If positive,
WalletCore generates a new password pwd2 and fills in lgn, pwd1 and pwd2 into
the parsed password change page parsPg. Next, this page is sent to WebServer
via the established SSL/TLS channel (steps 4-5). WebServer verifies whether
pwd1 corresponds to the authorized user, replaces the old password with a new
one, and acknowledges upon success (steps 6-7). Finally, the decrypted acknowl-
edgment is passed to WalletHelper (step 8).

5 Implementation

The implementation of TruWalletM is a work in progress. Currently, it is imple-
mented as a user space component, but it is being ported to run in the TrEE of a
Nokia N900 smartphone, running Maemo OS [18]. The Nokia N900 is equipped
with the M-Shield secure hardware, which provides a suitable TrEE for our ar-
chitecture.

By default, M-Shield is not available to third party developers. However, the
On-board Credentials platform (ObC) [7] provides the means to leverage the
TrEE. Thus, in our implementation, we build the WalletCore on top of ObC.

A detailed description of the ObC architecture can be found in [7]. In a nut-
shell, it provides a bytecode interpreter residing in the TrEE, which can execute
lightweight bytecode, compiled from scripts written in assembly code. Moreover,
the interpreter provides an interface for commonly used cryptographic primitives.

12

Furthermore, the provisioning subsystem of ObC enables in our implementation
the out-of-band provisioning of users’ passwords. The sealing functionality pro-
vided by the interpreter is used to implement SecureStorage. When sealed, data
is encrypted under a key that is never available outside the TrEE. Further, this
key is cryptographically bound to scripts, thus isolating the SecureStorage from
other, unauthorized (and potentially malicious) scripts.

WalletHelper is implemented as two subcomponents. The first is written
in the C programming language and implements the communication with the
WalletCore, the interaction with the user, and the parsing of the received login
pages. The second component implements the SSL/TLS proxy functionality and
is based on the open-source SSL/TLS Java proxy Paros [19].

The WalletCore functionality is currently implemented as part of the first
subcomponent of WalletHelper, but will be ported to a set of ObC assembly
scripts, which will be invoked by WalletHelper when needed.

The TrustedUI component is currently implemented as part of the OS, because
the constraint resources of contemporary TrEEs prohibit a full user interface
implementation in the secure execution environment.

We have tested our current TruWalletM prototype with several public web-
sites, such as web e-mail services, eBay, or Amazon. Registration, login, and
password change work transparently and without noticeable performance over-
head for the user, despite the running SSL/TLS proxy. The performance tests
have been implemented based on the open-source wget12 tool, which was used
to login via SSL/TLS to the websites mail.rub.de and checkyourbets.com utiliz-
ing TruWalletM . The test was performed 10 times. The induced performance
penalty for the first website averaged 0.4s and increased the required login time
from 1.3s to 1.7s. The performance penalty for the second website was 0.2s and
increased the login time from 1.5s to 1.7s. The memory consumption during these
tests is acceptable with approximately 60 kB resident RAM, including Paros.

Regarding the performance of our architecture, we do not expect a significant
overhead when WalletCore is implemented on top of ObC instead of as a user
space process. The performance of bytecode executing on the ObC interpreter is
slightly slower compared to native code. This is due to the performance penalty
of bytecode interpretation and additional switches from the insecure side to
the ObC interpreter on TrEE side. According to our experiments with other
similar ObC scripts we can estimate that execution of WalletCore would take
10-20 ms. This cost is negligible compared to the execution time required for
the necessary operations during an TLS/SSL connection, e.g., cryptographic
operations. Moreover, the invocations of WalletCore will be limited to the steps
required to ensure the secrecy of the user’s credentials and to the initial steps of
the TLS/SSL connection. By providing the session keys for the remaining parts
of the TLS/SSL connection to the WalletHelper, the bulk of the operations during
the connection will be performed in the insecure environment and do not add
any further overhead. Thus, the performance overhead imposed by migrating
the WalletCore on top of ObC will be minimal.

12 http://www.gnu.org/software/wget/

13

Based on our experience in implementation of other ObC scripts, we envision
following challenges in porting WalletCore as ObC script: First, implementing
fully flexible X.509 certificate parsing and verification under the constraints of
limited TrEE resources has turned out to be challenging. Second, in many cases
verification of a single certificate is not enough, but rather full certificate chain
verification is needed. Since existing TrEEs on mobile devices are constrained in
resources, full certificate chains cannot be verified in one go, but rather chaining
of subsequent ObC script executions is needed. The ObC Interpreter provides
support for such statefulness. Third, flexible certificate verification implies that
multiple trust roots (e.g. hashes of CA public keys) are fixed to the WalletCore
script implementation. This increases the size and complexity of the WalletCore
script implementation.

6 Security Considerations

Protection of user credentials. The user credentials are protected by the fol-
lowing means: (i) run-time isolation. All operations on user credentials (except
user input) are performed within the TrEE. As the TrEE is isolated from the
rest of the system in terms of processing and memory, that guarantees protec-
tion of the user’s credentials at run-time from potentially malicious OS and other
OS-side components. (ii) secure storage. Sealing with a key that is protected by
the TrEE and bound to authorized scripts provides secure storage of persistently
stored credentials outside the TrEE. When sealed, credentials cannot be unsealed
by malware or an adversary performing physical attacks; (iii) strong passwords.
TruWalletM generates high-entropy passwords which are unique for each ac-
count to prevent dictionary, brute-force and reuse credential attacks; (iv) blind
passwords. Classical and malware phishing attacks are prevented because the
passwords are unknown to the user. TruWalletM either creates the passwords
within the TrEE and does not reveal them to the user (as proposed in [20]),
or, when entered by the user, requests the user to initiate a password change
(i.e., to visit a password change page of the associated web server); (v) tamper-
resistant TrEE. As discussed in Section 2 (assumptions), we assume that TrEE is
tamper-resistant against standard physical attacks aiming to access the security
sensitive information within TrEE.

Trusted path. The trusted path between the user and the web server is com-
posed of two parts: (i) between the TrEE and the web server, and (ii) between
the user and the TrEE.

The first part is provided by the SSL/TLS channel: Passwords are trans-
mitted to the server through an SSL/TLS protected connection, this prevents
the adversary from eavesdropping on the communication channel with the web-
server. The web-server and the TrEE are mutually authenticated, that prevents
man-in-the-middle and phishing attacks. The TrEE authenticates the web-server
by validating the SSL/TLS certificate, and the server authenticates the TrEE by
means of the password authentication protocol. This part of the trusted path is

14

secure, because the server certificate is verified within TrEE and credentials asso-
ciated with the SSL/TLS channel (such as a pre-master secret key and a session
key) are protected by the TrEE. Also, passwords used during the authentication
protocol are available only within the TrEE.

The second part of trusted path is provided by means of the trusted user
interface TrustedUI. TrEE authenticates the user by means of user login upon
the start of TruWalletM , while the user authenticates TrEE by recognizing a
customized interface element, e.g., a unique phrase or background image. This
customized element is securely stored in the secure storage and is accessible only
by the TrustedUI component. We rely on a customizable user interface since some
studies show positive results of such an approach [14], however, this is an issue
that requires extensive usability tests since other studies say users tend to ignore
security hints [21].

To protect user credentials from malware such as keyloggers, malicious web-
browser and phishing programs, the user enters his passwords only via the
trusted user interface. However, as in current implementation TrustedUI is real-
ized as OS-side component, we can only guarantee its integrity at system (re)boot
(by means of secure boot). Thus, the user can enter his passwords securely via
TrustedUI only immediately after system reboot, but later on security guaranties
do not hold anymore as TrustedUI is susceptible to runtime compromise.

Discussion on runtime compromise of TrustedUI. In general, a compro-
mised TrustedUI does not provide secure user input from the user to the TrEE,
e.g., during the initialization of TruWalletM the entered password can be dis-
closed by a compromised TrustedUI. Another issue relates to the registration
protocol. As it is initiated by an untrusted component, WalletHelper, it can omit
the invocation of WalletCore or substitute the server certificate with another
valid one for a malicious website, while the compromised TrustedUI indicates a
successful and secure execution of the protocol.

The out-of-band provisioning of credentials (as was discussed in Section 4.2)
can mitigate these issues in certain cases like the initialization. However, to
provide a fully trusted path, either runtime integrity monitoring mechanisms or
a TrEE-based user interface are required, which are both currently infeasible for
mobile devices. The former either requires extra hardware support (e.g., [22]) or
utilizes virtualization technology (e.g., [23]) which is hardly affordable for mobile
devices due to the induced overhead and also contradicts to our requirement
on software reuse. The latter is infeasible due to the very limited resources of
contemporary TrEE.

7 Related Work

As mentioned earlier, on desktop PCs there exist wallet-like authentication
agents [1,2,3,4,5] that automatically manage mutual authentication between the
user and a web server. To prevent malware from disclosing the credentials based
on run-time attacks against the wallet, the wallet is generally executed in an envi-

15

ronment that isolates it from the rest of the software stack that is responsible for
web browsing. This is similar to the TrEE we use in our design here, however, on
the PC-based wallets, the isolated execution is achieved by running the trusted
and untrusted parts in different virtual machines that are controlled by a trusted
virtual machine monitor. For instance, TruWallet [1] uses a virtualization-based
security kernel for isolation and a Trusted Platform Module (TPM) [24] to bind
the credential data to the wallet. In contrast, Delegate [4] is a web proxy run-
ning on a physically different machine and not on the same device the user runs
the browser. Besides the protection of the login credentials, SpyBlock [3,11] also
protects against malicious software that misuses authenticated sessions to issue
illegitimate transactions (so called transaction generators). The trusted authen-
tication agent is therefore extended with a transaction confirmation component.
But this design can be applied to all wallet-like solutions, and, thus, to our
TruWalletM as well.

To overcome with some of the problems of username/password authentica-
tion, alternative authentication protocols have been proposed. For instance, the
PAKE protocol for password-assisted key exchange may be used, e.g., [25,26,27].
PAKE protocols can be used for mutual authentication, i.e., it is not necessary
to transmit username and password over the SSL/TLS channel during login. The
simple remote password (SRP) protocol [27] can be used as well. RFC5054 [28]
specifies the use of SRP for SSL/TLS authentication. However, these protocols
have the drawback that (i) their security-sensitive operations are not appropri-
ately isolated when used on standard operating systems, and (ii) they are not
compatible to legacy web server as they require to change the server logic.

Another alternative is to use challenge-response protocols to verify knowledge
of a shared secret between client and server, e.g., as used in TruWallet [1].
However, this again requires to change the authentication verification method
at the server, which was one aspect we wanted to avoid in our design.

8 Conclusion and Future Work

In this paper, we present a secure wallet-based system and protocols for pro-
tecting user credentials on mobile devices used to access Internet services. Our
solution does not rely on a secure operating system, but exploits hardware secu-
rity features, in particular Trusted Execution Environment (TrEE) available on
many modern mobile phones. It is fully compatible with legacy software (e.g.,
standard browsers and standard OSes) and standard web authentication meth-
ods (here password-based authentication and SSL). It does not impose noticeable
performance overhead during transfer of conventional data, but slightly slows
down communication when transferring user passwords (e.g., during login/regis-
tration/password change). We propose a prototype implementation on a Nokia
N900 device with M-Shield technology.

Our design assumes the availability of a trusted user interface. Currently
this interface is implemented as part of the OS, because the constraint resources
of contemporary TrEEs prohibit a full user interface implementation in the se-

16

cure execution environment. The security issues imposed by this design decision,
especially a run-time compromise of the interface leading to credential misuse
or potential disclosure, have been pointed out. However, recognizing the trend
of device manufacturers to further extend their devices’ TrEE capabilities, we
argue that our proposed architecture is fundamentally a step into the right di-
rection towards hardware secured user credentials on mobile end-user devices.
The challenge of implementing a TrEE-based GUI (and generic I/O inside the
TrEE) is orthogonal to the work presented in this paper.

Our further ongoing work concerns the design and development of a confir-
mation channel and migration protocols. The former assures a user that a certain
transaction has been correctly performed while the latter allows the user to se-
curely transfer his credentials from a mobile platform to another platform. This
protocol is required to enable users to login from different platforms, because in
our solution users do not know their actual (high-entropy) passwords (this is to
avoid phishing attacks).

References

1. Gajek, S., Löhr, H., Sadeghi, A.R., Winandy, M.: TruWallet: trustworthy and
migratable wallet-based web authentication. In: STC ’09: Proceedings of the 2009
ACM workshop on Scalable trusted computing, ACM (2009) 19–28

2. Gajek, S., Sadeghi, A.R., Stüble, C., Winandy, M.: Compartmented security for
browsers – or how to thwart a phisher with trusted computing. In: 2nd Inter-
national Conference on Availability, Reliability and Security (ARES’07), IEEE
Computer Society (2007) 120–127

3. Jackson, C., Boneh, D., Mitchell, J.: Spyware resistant web authentication using
virtual machines. http://crypto.stanford.edu/spyblock/ (2006)

4. Jammalamadaka, R.C., van der Horst, T.W., Mehrotra, S., Seamons, K.E., Venka-
subramanian, N.: Delegate: A proxy based architecture for secure website access
from an untrusted machine. In: 22nd Annual Computer Security Applications
Conference (ACSAC’06), IEEE Computer Society (2006) 57–66

5. Kwan, P.C.S., Durfee, G.: Practical uses of virtual machines for protection of
sensitive user data. In: Information Security Practice and Experience Conference
(ISPEC’07), Springer (2007) 145–161

6. Selhorst, M., Stüble, C., Feldmann, F., Gnaida, U.: Towards a trusted mobile
desktop. In: Trust and Trustworthy Computing (TRUST 2010). Volume 6101 of
LNCS., Springer (2010) 78–94

7. Kostiainen, K., Ekberg, J.E., Asokan, N., Rantala, A.: On-board credentials with
open provisioning. In: Proc. of the 4th ACM Symposium on Information, Com-
puter, and Communications Security (ASIACCS’09), ACM (2009) 104–115

8. Azema, J., Fayad, G.: M-Shield mobile security technology: making wireless se-
cure. Texas Instruments White Paper (2008) http://focus.ti.com/pdfs/wtbu/

ti_mshield_whitepaper.pdf.
9. Alves, T., Felton, D.: TrustZone: Integrated hardware and software security. In-

formation Quaterly 3 (2004)
10. Security, H.: Hacker extracts crypto key from TPM

chip (2010) http://www.h-online.com/security/news/item/

Hacker-extracts-crypto-key-from-TPM-chip-927077.html.

17

http://crypto.stanford.edu/spyblock/
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://focus.ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf
http://www.h-online.com/security/news/item/Hacker-extracts-crypto-key- from-TPM-chip-927077.html
http://www.h-online.com/security/news/item/Hacker-extracts-crypto-key- from-TPM-chip-927077.html

11. Jackson, C., Boneh, D., Mitchell, J.: Transaction generators: Root kits for web.
In: 2nd USENIX Workshop on Hot Topics in Security (HotSec’07), USENIX As-
sociation (2007) 1–4

12. Ristic, I.: Internet SSL server survey. In: BlackHat USA 2010. (2010)
13. Dhamija, R., Tygar, J.D.: The battle against phishing: Dynamic security skins. In:

SOUPS ’05: Proceedings of the 2005 symposium on Usable privacy and security,
New York, NY, USA, ACM (2005) 77–88

14. Bank of America: Identity Theft Fraud Protection from Bank of America. http:

//www.bankofamerica.com/privacy/sitekey (2010)
15. Itoi, N., Arbaugh, W.A., Pollack, S.J., Reeves, D.M.: Personal secure booting.

In: ACISP ’01: Proceedings of the 6th Australasian Conference on Information
Security and Privacy. (2001) 130–144

16. Network Working Group: The transport layer security (TLS) protocol. version 1.2.
Standards track (2008) http://tools.ietf.org/html/rfc5246.

17. Wu, M., Miller, R.C., Little, G.: Web Wallet: Preventing Phishing Attacks by
Revealing User Intentions. In: 2nd Symposium on Usable Privacy and Security
(SOUPS’06), ACM (2006) 102–113

18. Maemo: Project website. http://maemo.org (2010)
19. Paros: Project website. http://www.parosproxy.org (2010)
20. Gajek, S., Sadeghi, A.R., Stuble, C., Winandy, M.: Compartmented security for

browsers - or how to thwart a phisher with trusted computing. In: ARES ’07:
Proceedings of the The Second International Conference on Availability, Reliability
and Security, Washington, DC, USA, IEEE Computer Society (2007) 120–127

21. Schechter, S.E., Dhamija, R., Ozment, A., Fischer, I.: The emperor’s new security
indicators. In: SP ’07: Proceedings of the 2007 IEEE Symposium on Security and
Privacy, Washington, DC, USA, IEEE Computer Society (2007) 51–65

22. Nick L. Petroni, J., Fraser, T., Molina, J., Arbaugh, W.A.: Copilot - a coprocessor-
based kernel runtime integrity monitor. In: Proceedings of the 13th USENIX
Security Symposium, USENIX (2004) 179–194

23. Baiardi, F., Cilea, D., Sgandurra, D., Ceccarelli, F.: Measuring semantic integrity
for remote attestation. In: Trusted Computing, Second International Conference,
Trust 2009, Oxford, UK, April 6-8, 2009, Proceedings, Springer (2009) 81–100

24. Trusted Computing Group: TPM Main Specification, Version 1.2 rev. 103. (2007)
25. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols

secure against dictionary attacks. In: IEEE Symposium on Security and Privacy
(S&P’92). (1992) 72–84

26. Jablon, D.P.: Strong password-only authenticated key exchange. Computer Com-
munication Review 26 (1996) 5–26

27. Wu, T.: The secure remote password protocol. In: Network and Distributed System
Security Symposium (NDSS’98), The Internet Society (1998) 97–111

28. Taylor, D., Wu, T., Mavrogiannopoulos, N., Perrin, T.: RFC5054: Using the secure
remote password (SRP) protocol for TLS authentication (2007) http://www.ietf.
org/rfc/rfc5054.

18

http://www.bankofamerica.com/privacy/sitekey
http://www.bankofamerica.com/privacy/sitekey
http://tools.ietf.org/html/rfc5246
http://maemo.org
http://www.parosproxy.org
http://www.ietf.org/rfc/rfc5054
http://www.ietf.org/rfc/rfc5054

	TruWalletM: Secure Web Authentication on Mobile Platforms
	Sven Bugiel, Alexandra Dmitrienko, Kari Kostiainen, Ahmad-Reza Sadeghi, Marcel Winandy

