
TruWallet: Trustworthy and Migratable Wallet-Based Web
Authentication

Sebastian Gajek
gajek@post.tau.ac.il

School of Computer Science
Tel Aviv University, Israel

Hans Löhr, Ahmad-Reza Sadeghi,
Marcel Winandy

{hans.loehr, ahmad.sadeghi,
marcel.winandy}@trust.rub.de

Horst Görtz Institute for IT-Security
Ruhr-University Bochum, Germany

ABSTRACT
Identity theft has fostered to a major security problem on the Inter-
net, in particular stealing passwords for web applications through
phishing and malware. We present TruWallet, a wallet-based au-
thentication tool that improves previous solutions for protecting
web-based authentication. In contrast to other wallet-based solu-
tions, TruWallet provides (i) strong protection for users’ credentials
and sensitive data by cryptographically binding them to the user’s
platform configuration based on Trusted Computing technology,
(ii) an automated login procedure where the server is authenticated
independently from (SSL) certificates, thus limiting the possibility
of attacks based on hijacked certificates and allowing less depen-
dency on the SSL PKI model, and (iii) a secure migration protocol
for transferring wallet data to other platforms. Our implementation
uses a small virtualization-based security kernel with trusted com-
puting support and works with standard SSL-based authentication
solutions for the web, where only minor modifications and exten-
sions are required. It is interoperable so that we can re-use existing
operating systems and applications like web browsers.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and Protection; D.4.6 [Operating Systems]: Security and Pro-
tection—Authentication, Security Kernels; K.4.4 [Computers and
Society]: Electronic Commerce—Security; K.6.5 [Management
of Computing and Information Systems]: Security and Protec-
tion—Authentication, Unauthorized access

General Terms
Security

Keywords
Identity theft, phishing, password wallet, trusted computing, secure
migration

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STC’09, November 13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-788-2/09/11 ...$10.00.

1. INTRODUCTION
Identity theft has become one of the fastest growing crimes on

the Internet, leading to huge financial losses and privacy concerns
[2, 5] because of rising online fraud [22] and software attacks [45].
Among the most prominent attacks are phishing and pharming,
where users are lured to faked sites and asked to disclose their iden-
tity credential information. Attackers exploit the fact that the aver-
age Internet user is unable to distinguish a legitimate site from a
fake one—even though browser vendors introduced improved user
interfaces [11]. Moreover, attackers benefit from weak issuing poli-
cies of certificate authorities [33] or the use of over-aged crypto-
graphic algorithms to generate SSL certificates [47].

An additional powerful class are cross-site-scripting, request for-
gery or malware attacks. They compromise and infiltrate the user’s
computing platform with malicious code (e.g., browser scripts, key-
loggers or transaction generators) [3, 29, 30, 40]. Commodity op-
erating systems do not mitigate the impact of these attacks appro-
priately. They suffer from various conceptual shortcomings. Be-
side architectural security problems and the inherent vulnerabilities
resulting from high complexity, today’s operating systems require
careful system administration skills that ordinary users typically do
not have.

Several approaches have been proposed to address the mentioned
attacks. Delegated identity management systems exist, where the
user calls a trusted third party in form of a distributed server for
hosting and providing identity information. Examples include Go-
ogle’s single-sign on and Microsoft’s Cardspace protocols. How-
ever, they turned out to have deficiencies [7, 15, 20, 31, 39].

On-board credentials (ObC; cf. [32]) are another recent approach
to address these threats. ObC use hardware features (such as Trusted
Computing technology) to protect credentials and provide a promis-
ing and flexible credential system, in particular for mobile devices.
However, the model assumes that secret data is “provisioned” ex-
plicitly for this system. It is not obvious how ObC could be used to
provide secure password-based authentication for existing web ser-
vices with legacy general-purpose browsers; this approach seems
more suitable to provide a robust security solution for novel web
services that are developed explicitly for ObC.

Against this background, wallet-like approaches have gained at-
tention (e.g., [14, 25, 26, 27, 34]). A wallet calls an authentication
agent in an isolated trusted environment to separate the handling
of credentials from the normal web browsing (see also [42, 51]).
Most of the existing proposals counteract specific attacks. They
do not provide a general approach to protect against all attacks in
the wild (see Section 7 for more discussions). However, a desired

property is that the user relies on a self-contained solution that pro-
tects against any threat of identity theft—be it a phishing or be it
malware attack.

To protect average Internet users against these threats, we present
the design and implementation of TruWallet, a wallet-based ap-
proach for secure web authentication. TruWallet consists of (i) a
trusted wallet acting as web proxy to perform the user login at web
sites, and (ii) a security kernel that provides a secure environment
for the wallet and a secure user interface as trusted path between
the user and the wallet. As our main contribution, we address the
mentioned objectives as follows:

• We propose a method to achieve an SSL-PKI-independent
login, assuming trustworthy SSL certificates only during the
registration phase (Section 3). Our protocols establish a shared
secret between TruWallet and server during registration which
is then used for server authentication during login.

• We present an efficient and secure migration protocol for the
wallet data using trusted computing functionality based on
Trusted Platform Modules (TPMs) [50] and security services
interfacing the TPM (Section 4). Our protocol allows the
user to securely transfer the secrets to a wallet on another
platform in order to access web sites from there.

• As a proof of concept, we describe our reference implemen-
tation based on a microkernel architecture that supports vir-
tualization and trusted computing functionality (Section 5).
We are able to re-use existing operating systems (Linux in
our prototype) and applications like commodity web browsers.

Our approach has the advantage that the user may install arbi-
trary software in the same security context the browser is executed
(because the wallet runs in an isolated, i.e. protected execution
environment). TruWallet works with standard SSL-based authen-
tication solutions for the web except that minor modifications and
extensions on the server-side are necessary. TruWallet, including
the security kernel, is based on open source and can be installed on
x86 PCs equipped with a TPM, which are already included in many
computers of various vendors.

2. SYSTEM OVERVIEW
In this section we describe the threats and security objectives,

and give an overview of TruWallet’s architecture and its usage.

2.1 Threats and Security Objectives
TruWallet addresses the following threats:

T.Phishing Classical phishing and pharming attacks lure the user
to faked web sites;

T.WeakPol Weak issuing policies of SSL certificates or choice of
weak cryptographic algorithms allow the attacker to retrieve
a valid SSL certificate;

T.XSS Cross-site scripting or cross-site request forgery attacks ex-
ploit server vulnerabilities in order to inject malicious script
code into the browser;

T.Malware1 Malicious software on client system compromises sys-
tem components and applications;

T.Malware2 Malicious software makes unauthorized use of sys-
tem components and applications; For example, the malware
could wait for the user to log in at a web site and subse-
quently generate fake transactions.

T.Access Unauthorized access of the client system where the at-
tacker impersonates a legitimate user by misusing active brow-
ser sessions or stealing credentials.

To address the threats, we need a comprehensive solution that
protects both the web authentication mechanism and the software
running on the client system. Our main objectives are therefore:

O.ProtectPW Passwords must be unique for each site, resistant to
dictionary attacks, and protected from unintentional disclo-
sure;

O.SecExec Secure execution environment for security-critical com-
ponents and a trusted path to the user to prevent malware at-
tacks;

O.SecStorage Secure storage environment for credentials when
the system is offline (i.e., powered off);

O.LessCert Reduced dependencies from SSL certificates to miti-
gate weak issuing policies of certificate authorities;

O.SecMigrate Secure migration of credentials among different plat-
forms, where the migration mechanism must ensure that each
platform complies to the user’s security policy.

2.2 Introduction to TPM and TCB
The main component of trusted computing as specified by the

Trusted Computing Group is the TPM chip [50]. The TPM pro-
vides a secure random number generator, non-volatile tamper-re-
sistant storage, key generation algorithms, cryptographic functions
like RSA encryption/decryption, and the hash function SHA-1. It
protects a variety of keys. Two of its main asymmetric keys are the
Endorsement Key (EK), an encryption key that uniquely identifies
each TPM, and the Storage Root Key (SRK) uniquely created inside
the TPM. The private SRK never leaves the TPM, and it is used to
encrypt all other keys created by the TPM. The TPM state contains
further security-critical data shielded by the TPM. Amongst them
is a set of registers called Platform Configuration Registers (PCR)
that can be used to store hash values. During the platform boot
the hardware and software constellation of the platform is hashed
and securely stored in specific PCRs which constitute the platform
configuration (integrity measurement). Moreover, the TPM allows
to report the configuration of a platform to a remote party (attesta-
tion), and to cryptographically bind data to a certain system config-
uration, i.e., a subset of the PCRs (sealing). Sealed data can only
be accessed (unsealed) if the corresponding system can provide the
specific configuration for which the data has been sealed. During
attestation the recorded PCR values are signed by an Attestation
Identity Key (AIK) of the TPM and send to the remote party. The
AIK plays the role of a pseudonym of the TPM’s identity EK. To be
authentic, the AIK must be certified, e.g., by a trusted third party
called privacy-CA. It is important to note that this privacy-CA is
conceptually simpler than a SSL-certificate authority. The TPM
ist trusted to function correctly, and to never disclose secrets, such
as the private EK, SRK, and AIKs. A TPM works in conjunction
with software components that are critical to its security. We call
the combination of all trusted components in the system the trusted
computing base (TCB). Modern operating systems strive to reduce
the size of the TCB so that an exhaustive examination of its code
base (by means of manual or computer-assisted software audit or
program verification) becomes feasible.

2.3 Architecture
Our system model consists of several parties (see Figure 1): A

user interacts with a computing platform through a secure graph-
ical user interface secure GUI. A browser is used to render web
pages that it gets from the wallet, which is acting as a proxy. The
wallet obtains the requested pages from the server, blinds security-
sensitive fields (e.g., password) on the pages presented to the brow-
ser, and fills in login credentials when logging into a website. For
this, TruWallet has to handle two different SSL sessions: one be-
tween wallet and browser, and one between wallet and server. The
secure GUI controls the input/output devices and multiplexes the
screen output of the browser and of the wallet. Moreover, it always
indicates the name of the application the user is currently interact-
ing with via a reserved area on the screen, hence providing a trusted
path between user and application.

The TruWallet architecture is based on a security kernel, which
is a small trusted software layer belonging to the TCB, providing
trusted services and isolated compartments. Thus, the security ker-
nel ensures runtime security of the system. Compartments con-
tain arbitrary software, e.g., a complete legacy operating system
(Linux in our case), and may communicate only via well-defined
interfaces. In particular, a malicious compartment cannot read ar-
bitrary memory of other compartments. In our solution, browser
and wallet run in different compartments, and we assume that arbi-
trary software (including malware like Trojan horses and viruses)
may be running in the browser compartment. Hence, the browser
is assumed to be untrusted and any security-enhancing tools based
on browser plugins may be modified or deactivated. Therefore,
our solution is based on a trusted component (wallet) that is exe-
cuted in a separated compartment. In our implementation, we re-
alize the compartmentalization by using the isolation property of
virtual machines combined with the resource sharing control of the
underlying microkernel. The wallet compartment is trusted, which
is motivated by the fact that the complexity of the wallet is much
lower than that of a web browser. Moreover, the user cannot install
arbitrary software (which may be malicious or flawed) in the wallet
compartment. To prevent unauthorized access by other users to the
platform and, hence, the sensitive data, the security kernel requires
an overall user authentication (e.g., a user password) to login into
the whole system. In this way, the credentials stored by the wallet
are bound to the corresponding user.1

Trusted Computing (TC) hardware and TC-enabled software is
used to provide trusted boot, i.e., based on a “chain of trust”, the in-
tegrity of the software stack including the TCB can be verified dur-
ing data migration. Moreover, TC hardware can be used for secure
storage, i.e., encryption keys protected by the hardware can only be
used if load-time integrity of the system is maintained. As already
mentioned before, our implementation uses a TPM as TC hardware
(see Sections 4 and 5). The credentials stored by the wallet are
bound to the TCB to prevent an adversary from gaining access to
the data by replacing software (e.g., booting a different OS).

An alternative way of using TC hardware would be to execute
the trusted software via hardware-based dynamic root of trust, us-
ing hardware support of modern CPU architectures [4, 21]. In-
stead of measuring the whole software stack at boot time, the CPU
allows to execute trusted code in a special mode where integrity
measurements are taken dynamically and stored in the TPM un-
til the trusted code execution ends [37]. In principle, such an ap-

1In fact the security kernel has to provide comprehensive user ac-
cess control as in typical operating systems, including system login
and screen lock functionality, in order to prevent unauthorized ac-
cess to the wallet. However, the details of those mechanisms are
out of scope of this paper.

Figure 1: Architecture of TruWallet

proach reduces the amount of needed TCB code. However, when
the trusted code is executed, the remaining system code (the oper-
ating system, browser, etc.) is halted until the trusted code termi-
nates. This mechanism is intended to (repeatedly) execute small
trusted code pieces and resume again. We did not choose dynamic
root of trust in our design because the trusted code does not only
need to insert passwords (which would be a relatively small func-
tionality), but we also need to authenticate the server, verify the
authenticity of the SSL channel, and provide a trusted GUI so that
the user can always be sure about the application interacting with.
Thus, significant parts of the system need to execute very often or in
parallel, which would introduce a noticeable performance overhead
when using dynamic root of trust. This becomes of even more im-
portance when the wallet is enhanced with additional functionality
like transaction confirmation, where trusted code needs to inspect
the network traffic continuously.

2.4 Assumptions
Our solution is based on the following assumptions: First, the

user is trained to enter credentials only into the wallet (single cre-
dential store mechanism). In our implementation, the user can es-
tablish a trusted path to the wallet by pressing a secure attention
key. Second, the wallet can rely on a PKI during registration at a
server (minimal PKI). A PKI is needed to prevent attacks like DNS-
spoofing during the setup/registration process. The wallet relies on
a correct SSL certificate to identify a remote site. However, we aim
at minimizing this assumption: to protect sensitive user data during
a later session, it is important to highlight that we do not rely on a
trustworthy SSL-PKI.

2.5 Usage Overview
Registration of a new account at a website with the wallet works

almost the same way as in existing approaches, with two differ-
ences: first, the user enters sensitive data (e.g., passwords) only
into TruWallet (never into the browser); second, TruWallet gener-
ates a high-entropy password that is unique for this account. To
log into a previously registered site, the user just opens the login
page in the browser and clicks on the “login” button. TruWallet is
acting as man-in-the-middle proxy and automatically checks if the
server is authorized to obtain the credentials before it fills in the
login credentials on behalf of the user (for details, see Section 3).
Note that, since the wallet is also an SSL proxy, several SSL con-
nections (and hence user logins) can be handled simultaneously,
e.g., when the user opens several websites in multiple browser tabs
or instances. Each SSL connection between a browser tab or in-
stance has a corresponding SSL connection between the wallet and
the respective web server.

To enable the user to access web sites from another computer, we
propose a secure migration scheme for the wallet to transfer or syn-
chronize its data with a trusted wallet running on the other device.
We use TC functionality to establish a trusted channel ensuring the
integrity of the target system to transfer the data (Section 4).

3. SECURE USER AUTHENTICATION
In the following, we describe a scheme for registration and login.

It follows the idea of SSL-session awareness [38]. Our schemes
rely on SSL certificates only during registration, and require only
minimal changes of client and server.

Registration.
When the user registers at a website for the first time, a setup

step is needed to enable logins that are independent from SSL cer-
tificates later on. Note that this is the case when the wallet first
learns about the site and creates a corresponding login/password
entry. Hence, this step is completely transparent to the user.

We require that a SSL connection is used for registration, and
that the wallet verifies the SSL certificate of the remote site.2 We
use the SSL server finished message to infer an additional shared
secret ss := SERV ER_FINISHED. The server finished mes-
sage is derived by computing the hash of the protocol transript (pro-
vided the protocol did not abort). A transcript trnscrpt includes all
the messages the wallet has received from and sent to the server, re-
spectively. It is important to note that the SSL protocol requires to
authenticate and encrypt the finished value, using the derived ses-
sion key. No attacker perceives the finished message in plain text.
At the end of the registration, wallet and server store the shared
secret ss securely.

Login.
Our login protocol uses SSL only to provide a secure (confi-

dential) channel. For the crucial server authentication, the shared
secret ss from the registration protocol is used. The loging pro-
ceeds as follows: The server S authenticates in challenge-and-
respond protocol by proving knowledge of the shared secret ss .
For ease-of-implementation, we utilize the SSL transcript trnscrpt
as a challenge. Our approach makes use of the fact that the tran-
script includes a randomly chosen nonce from client. In fact, it
would be sufficient to use this nonce alone without security loss.
The server answers to the challenge by computing the response
R := HMACss(trnscrpt), where HMAC() denotes a keyed-hash
message authentication code, ss the shared secret key between wal-
let and server, and trnscrpt the login transcript of the SSL proto-
col. Without any modification to the native SSL implementation,
the response message R is postponed to the last server message,
i.e., the server finished message of the SSL handshake protocol.

The wallet runs the SSL protocol in the normal way and aborts,
if the protocol does so. Next, the wallet verifies that R is a valid
response. If R 6= HMACss(trnscrpt), it aborts the protocol. Oth-
erwise, authentication proceeds as usual (username and password
are transmitted).

Security.
The use of the SSL SERVER_FINISHED to derive the shared

secret ss ensures that no adversary can compute ss . It can be shown

2At this point, we have to trust the certificate. Later on, we are
independent from any changes/updates of the SSL certificate. Note,
there exist no authenticated protocols without setup assumptions.
Yet, this is an open research problem. We stress the fact that in this
paper the gooal is to minimize the setup assumptions.

that computing the finished value is reducible to the security of
the SSL protocol. Furthermore, the server’s response in the login
protocol cannot be forged by an adversary (even if the adversary
managed to obtain a valid SSL certificate and acts as a man-in-
the-middle) because an HMAC keyed with ss is used to tie the
authentication to the SSL sessions. Man-in-the-middle attacks are
not possible in the login protocol—even if the adversary managed
to obtain a valid certificate—because the check of the server’s re-
sponse performed by the wallet succeeds only if both parties use the
same shared authentication secret ss . This is only possible for the
two endpoints of the SSL channel. These considerations imply that
the wallet only executes the normal (password-based) login with a
party that possesses the shared secret which was computed during
registration, and hence only the server where the user registered
can obtain the user’s credentials. Attackers cannot re-compute ss ,
because for this, they need access to the ephemeral secrets from the
SSL handshake during registration, which were known only to the
two (trusted) endpoints: TruWallet and the web server. Thus, even
a full compromise of the SSL PKI does not help to recover ss .

Discussion.
Essentially, any password-authenticated key exchange (PAKE)

protocol where the server proves knowledge of the password could
be used instead of our registration and login protocols, as long as it
is used in a way that ensures resistance against man-in-the-middle
and replay attacks (see, e.g., [9, 24, 52]). PAKE protocols can be
used for mutual authentication, i.e., using PAKE, it is not neces-
sary to transmit username and password over the SSL channel dur-
ing login. However, note that not all authors explicitly discuss and
analyze the important (for our case) requirement that the server
proves knowledge of the password. In particular, the simple re-
mote password (SRP) protocol [52] is well-suited for our purpose,
and RFC5054 [49] specifies the use of SRP for SSL authentication.
A detailed security analysis (including a proof) is provided in [52].

Our custom protocols are easier to implement than a PAKE pro-
tocol because only minor modifications to existing software are
needed. Both, the SSL handshake and the login procedure remain
unchanged in our protocols, whereas PAKE protocols require a
dedicated key exchange protocol. However, a complete implemen-
tation of RFC5054 as a standard-compliant authentication solution
might be beneficial in many scenarios and could be the preferred
approach for a production-quality implementation.

4. SECURE WALLET DATA MIGRATION
To protect the confidentiality of the wallet data on persistent stor-

age, the wallet data is sealed, i.e., encrypted with a key that is bound
to the configuration (integrity measurements) of the wallet’s TCB
and shielded by the TPM. If the user wants to use the wallet on
another platform, e.g., in order to switch to another machine or
because of hardware replacement, the sealed data would become
inaccessible. We also do not want to expose the wallet data to a
platform the user does not trust. Hence, we need to check the “trust
status” of the target platform before we re-bind the wallet data.

A trusted channel is a secure channel (i.e., authenticity, integrity
and confidentiality) with the additional feature that it is bound to the
configuration of the endpoint(s). The idea is to embed an attestation
of the involved endpoint(s) in the establishment of the secure chan-
nel [18, 48]. Hence, each endpoint can get an assurance whether
the counterpart complies with trust requirements before the secure
channel is settled.

Besides the wallet, we consider two trusted components of the
security kernel to take part in the migration procedure: (1) the
StorageManager provides an abstraction of persistent storage to

Figure 2: Migration of the wallet data based on a trusted channel

other compartments, here especially the wallet, and enforces addi-
tional security requirements to protect confidentiality and integrity
by means of encryption and sealing. (2) the TrustManager pro-
vides an abstraction of the functionality of a TPM and is the only
software component that directly communicates with the TPM.

When the user wants to migrate or copy the wallet data from
one platform (source) to another (target), then a trusted channel be-
tween the two platforms, i.e., between two wallet instances, must
be established (see Figure 2). The wallet on the target platform calls
the TrustManager of its platform to initiate the trusted channel. The
TrustManager uses the TPM to create a new asymmetric key pair
as binding key (PKBind , SKBind). The TPM creates the key pair,
encrypts the private key part with the SRK, and returns PKBind

and the encrypted private key ESKBind . Note that decryption of
the private key is now bound to the configuration of the TCB as
measured during the boot process and represented by the values of
the PCRs of the TPM, i.e., TCB_conf . Moreover, the TrustMan-
ager requests the TPM to sign the public key with an AIK in order
to create a certificate certBind . The TrustManager returns certBind ,
PKBind and ESKBind to the wallet, which then sends the binding
key PKBind and the certificate certBind to the source platform.

The wallet on the source platform can now verify the certifi-
cate and decide whether the target platform complies to the wallet’s
trustworthiness requirements. Therefore, it needs the public key of
the AIK of the target platform and the certificate from the Privacy-
CA. Then, the source wallet loads its data from the StorageMan-
ager and encrypts the data wd with the binding key PKBind . The
encrypted wallet data ewd is sent to the target wallet, which then
requests the TrustManager to unbind ewd . Therefore, the Trust-
Manager first calls the TPM to load the key ESKBind into the TPM,
and then requests the TPM to unbind ewd . The TPM in turn ver-
ifies with verify(TCB_conf) whether the TCB configuration
(i.e., its integrity measurement) is the same as at creation time of the

binding key. If this is the case, the TPM proceeds and first decrypts
ESKBind to retrieve the private part of the binding key, which it
uses subsequently to decrypt the wallet data. The decrypted data
wd is returned to the TrustManager and the wallet, respectively.

Discussion.
Once a trusted channel is established, it can be re-used for subse-

quent wallet synchronization between the platforms. The binding
of the key pair to the configuration of the TCB guarantees that no
other platform and even no modified system booted on the same
platform can decrypt the key and, hence, the wallet data. However,
for each device the user wants to use TruWallet, the user has to (i)
establish a trusted channel, and (ii) if the TCB or the wallet have to
be updated, the trusted channel has to be re-established. In princi-
ple, it is not necessary that both platforms are online for migration.
The binding certificate can be computed beforehand. Of course,
the user has to know the potential destination platforms a-priori,
but can transfer the data on offline storage, e.g., on a memory stick.

Requiring a certificate for the AIK from the Privacy-CA intro-
duces another PKI dependency, but we expect very few AIK certifi-
cates (typically one to four TPMs for the platforms the user wants
to use, e.g., laptop, home PC, office PC, mobile device). However,
the number of certificates for usual SSL server authentication is
much higher (e.g., 10–20 web sites or more used by one user).

5. IMPLEMENTATION
Our implementation is built on top of the Turaya security kernel3,

which is based on an L4 microkernel [35]. Besides virtualization,
Turaya provides TC support based on a TPM and a secure GUI.
Moreover, using Turaya allows us to re-use and extend the open
source Wallet-Proxy developed by Gajek et al.[14]. Figure 3 shows
our implementation architecture.
3www.emscb.org/content/pages/turaya.htm

Figure 3: Implementation of our wallet-based architecture

In our prototype, the user compartment contains a Linux OS
with arbitrary applications chosen by the user. As web browsers,
we use Opera and Firefox. The TruWallet compartment is realized
based on a minimally configured Linux OS. Only the wallet (im-
plemented in Java) and the proxy (using Paros [1], a Java-based
HTTP/HTTPS proxy) are running, whereas the Linux system con-
tains only functionality that is needed by these applications (i.e.,
Java runtime environment, shell scripts, and a simple X server for
GUI dialogs). In contrast to the user compartment, the user is not
allowed to install applications into the wallet compartment.

The TrustManager is also a minimally configured Linux com-
partment, which contains a TPM driver and an application provid-
ing an interface to the TPM, e.g., used to generate a certificate for
the trusted channel of the wallet data migration. The StorageMan-
ager is an L4 process which encrypts data from other compartments
and seals the data to the integrity measurements of the TCB, using
the sealing function of the TPM via TrustManager. In particular,
the integrity measurements of the TCB include all trusted software
components as depicted in Figure 3.

Our secure user interface is realized with a minimal GUI ser-
vice (mGUI), which is a native L4 process that has full control over
the keyboard, mouse, and video hardware. The mGUI provides a
trusted path between the user and the TCB. Implementation mech-
anisms are out of scope of this paper since related work such as
Nitpicker [13] covers details extensively.

TruWallet associates the login data with the URL of the login
form of the corresponding web site. This association has to be set
up in the wallet. Whenever the wallet detects a password field and
has no matching login data, it displays a dialog in its compartment.

Registration.
In practice, different methods are used to register users at a ser-

vice. Users obtain an initial password via an out-of-band channel
(e.g., by email), they might want to set up an existing account for
use with TruWallet, or the initial password is entered in a registra-
tion form prior to the first login.

To register a new account, the user enters non-sensitive data (lo-
gin name) in the browser. The wallet recognizes password fields
in the registration form and indicates (via the secure GUI) that the
user has to switch to the wallet compartment by pressing a secure
attention key. In case the user already possesses a password, the

user enters the password into a special input form displayed by the
wallet. Otherwise, the wallet generates a new password. The wal-
let submits the complete data to the server, and the user can switch
back to the browser and use the web site. If an existing password is
used, TruWallet reminds the user to initiate a password change as
soon as possible (see Section 5).

In contrast to existing password managers, which in such cases
associate the URL of the registration form with the login data,
TruWallet offers the user a checkbox to indicate registration forms.
At the next login, the user can associate the login data stored at
registration time to the actual URL of the login form.

Login.
Now that the user has registered and the wallet setup for this site

is complete, the password is filled in automatically whenever the
user logs in. The wallet recognizes the URL of the login form, thus,
whenever users log in, they just enter their username (the password
form should be blocked) and click on the “submit” button. The
wallet fills in the password automatically based on the URL and
username. Hence, TruWallet supports multiple accounts at one web
site.

Password Change.
As proposed in [14], TruWallet must change the user’s password

to a unique high-entropy secret. The new password should not be
known to the user because otherwise the user could be tricked to
disclose it unintentionally to a phishing site. For this, TruWal-
let sets the new password to pwnew := HASH(pwold , r), where
pwold is the password chosen by the user and r is a random value.
However, a fully automated generic approach to change passwords
which works for any website is unrealistic, given the enormous va-
riety of different procedures employed on the Internet.

We conducted a survey on popular websites – including several
banking sites, Amazon, eBay, PayPal, Walmart, and others – which
led to the conclusion that a simple heuristic for finding out how to
change passwords (such as looking for links with a specific text,
like “change password”) is not sufficient. The difficulties finding
the right links and URLs include: HTML-tags enclosing parts of
the actual text link (e.g., for emphasis), complex framesets partially
generated dynamically using JavaScript, multi-column forms with
multiple options for the user, forms where users have to prove their

identity by inserting additional information (different from the old
password), etc.

In our approach, the user has to initiate the password change
on the web site and switch to the wallet compartment. TruWallet
displays a special input form offering two options for each pass-
word field: “generate new password” and “fill in old password”.
The user selects the appropriate options, and the wallet submits the
completed form to the server. TruWallet stores the new login data.

Migration.
We have implemented the essential steps of the wallet migration

and tested it on two PCs with identical configuration (i.e., both run-
ning the same security kernel and equipped with a TPM 1.1). Cur-
rently, our prototype requires manual initiation of the migration at
the target (trusted channel establishment) and manual transfer of
the encrypted wallet data (e.g. via USB memory stick).

6. SECURITY OF TRUWALLET
Our solution realizes objective O.ProtectPW by generating new

high-entropy passwords not known to the user. Moreover, the wal-
let verifies the legitimacy of the server before disclosing the pass-
word. This mitigates threat T.Phishing.

Assuming SSL certificates were trustworthy during initial regis-
tration, we provide security against certificate hijacking during any
later login. This means that our login procedure is resistant against
T.WeakPol by following O.LessCert. Our approach works without
modification of the SSL handshake protocol. Hence, the security
properties of SSL remain unchanged.

To address the threat T.XSS, we isolate the usage and storage
of credentials from the browser. The wallet performs all tasks re-
lated to establish authenticated connection to a web server, includ-
ing storage and management of session cookies. Hence, attacks
such as cross-site scripting and cross-site request forgery, which
attack the browser, cannot obtain these credentials.

The security kernel and the use of trusted computing function-
ality realize O.SecExec and O.SecStorage. During runtime, the
security kernel isolates compartments by default and allows only
controlled inter-process communication. Thus, malware running in
one compartment cannot read or modify the data and configuration
of other compartments. The TCB cannot be compromised during
runtime because of the assumption that it is small enough to be
verified and tested thoroughly, and based on the fact that the user
cannot install arbitrary applications within trusted compartments.
Hence, the only “entry-point” for malware is the user compart-
ment, which is isolated from the wallet compartment. TruWallet
only routes network traffic between the browser and network. If
software components are modified in order to compromise the sys-
tem, the modification of trusted components will result in different
integrity measurements taken during the boot process and recorded
in the TPM. Thus, the wallet data cannot be unsealed and remains
encrypted. The security in this case is based on the security of
the encryption and the protected key storage of the TPM. This ad-
dresses T.Malware1 on the local platform.

Moreover, our secure migration protocol for copying or transfer-
ring wallet data to another device realizes O.SecMigrate to address
T.Malware1 on target platforms. TruWallet ensures that the target
provides at least the same security properties as the source platform
– reflected by the integrity measurements verified during the attes-
tation of the target system. Transaction security can be provided to
protect sensitive data after the login process by incorporating trans-
action confirmation functionality [26, 27, 34] into the trusted wallet
compartment. Our modular architecture allows for an easy integra-
tion of such extensions that would mitigate T.Malware2. The threat

T.Access can be prevented by typical user access control (system
login at start-up, screen lock when leaving the computing device).

7. RELATED WORK
Password wallets and trusted virtualization infrastructures are

the most relevant related works, which we discuss in this section.

Wallet-Based Web Authentication.
Wu et al. [51] introduce Web Wallet, which is a browser extension

and distinguishes between input of sensitive data and service usage
by strictly deactivating login forms in the browser. The user has to
press a special security key whenever she wants to enter sensitive
data. The wallet checks the destination site using SSL certificates
and other indicators (e.g., site popularity) and if unsure asks the
user to explicitly choose the destination site from a list. Although
this approach reduces the risk of classical phishing attacks, it does
not isolate the wallet from the browser and hence lacks protection
against malware that modifies the wallet or fakes its user interface.

Jackson et al. [25, 26] present SpyBlock, a browser extension
that requests authentication as well as confirmation of transactions
from the user by calling a separated confirmation agent. The brow-
ser runs in a virtual machine and, hence, virtualization is used to
isolate the agent from the browser and to provide a trusted path
to the user. However, they use a type 2 virtual machine monitor
(VMM)4 and the agent runs on the host OS (Windows Vista), and
they have no further protection of the agent, i.e., no secure storage
like binding the agent data to the platform configuration. Thus, if
the host OS gets compromised, malware may be able to manipu-
late the agent. In our approach, the wallet runs on a small (minor
complexity) security kernel and we use a TPM [50] to seal the wal-
let data to the platform and its TCB. Moreover, SpyBlock does not
realize O.ProtectPW because it uses password hashing based on a
master password and the domain name of the web site, which a
phisher can compute if the user is tricked to enter the master pass-
word somewhere. The master password is used to derive all other
passwords. Thus, for migrating the authentication data to other
platforms, users would need to disclose the master password to all
platforms they desire to use, which is a security risk if a platform
is compromised. SpyBlock uses a shared secret key between the
agent and the web site to compute a MAC of the transaction based
on the shared secret which the server can verify, and cryptograph-
ically binds the result of a password-authenticated key exchange
(PAKE) protocol to the SSL channel, which could be used to ob-
tain a login that is independent from the SSL-PKI (cf. Section 3).
However, this does not seem to be a goal of the authors.

Delegate [27] is a web proxy to store credentials and to authen-
ticate to web sites on behalf of the user. The web proxy is running
on a different machine and not on the same device the user runs
the browser. To realize the trusted path, they use a trusted mobile
phone. Thus, they use physical isolation to separate the browser
from the authentication part. However, this approach requires users
to have an extra device (the phone) besides their PC and an on-
line connection to the proxy for each login request. In contrast to
their approach, TruWallet uses a TPM as trusted device attached to
the platform the user operates on and a security kernel to isolate
browser and credentials on the same platform. Hence, users need
to rely only on one platform to perform web authentications.

4According to [17], a type 1 VMM executes directly on hard-
ware, whereas a type 2 VMM needs a host operating system to
run on. VMWare Workstation is an example for a type 2 VMM,
and Xen [12] a type 1 VMM (also called hypervisor).

Approach Strong
Passwords

Web Site
Verification

Isolation Trusted Path Secure
Storage

Less PKI
Dependency

Trusted Migra-
tion

Web Wallet [51] no yes (checking
certificates etc.)

no no no no no

Delegate [27] no no (user checks
servername)

yes (differ-
ent physical
machines)

yes (using
mobile phone)

no no partly (us-
able from any
machine)

SpyBlock [25, 26] no yes (using
PAKE)

yes (type 2
VMM)

yes (reserved
area)

no partly (using
PAKE)

no

Vault [34] no no (user checks
servername)

yes (type 1
VMM)

yes (secure
attention key)

no no no

Wallet-Proxy [14] yes yes (using SSL
certificates)

yes (type 1
VMM)

yes (reserved
area + secure
attention key)

yes (TPM
sealing)

no no

Our approach
(TruWallet)

yes yes (proving
shared secret)

yes (type 1
VMM)

yes (reserved
area + secure
attention key)

yes (TPM
sealing)

yes (establish
shared secret)

yes (trusted
channel)

Table 1: Comparison of wallet-based approaches

Kwan and Durfee [34] define a protocol framework for the in-
teroperation between an untrusted compartment and a trusted com-
partment (Vault) handling sensitive user data. They use virtual ma-
chines and a type 1 VMM to isolate the compartments and to pro-
vide a trusted path to Vault. However, they do not address classical
phishing directly because users have to enter passwords into Vault
at each login and verify the legitimacy of web sites on their own.

Gajek et al. [14] present Wallet-Proxy, a trusted wallet to store
passwords and to automatically perform the login on behalf of the
user. They propose to replace the user-provided password with a
hash of the original password concatenated with a random value.
However, they do not present details of how the wallet can define a
new password for existing or newly registered accounts. In contrast
to our approach, they heavily rely on a PKI, i.e., SSL certificates,
in order to authenticate web servers during the login process. They
also use a TPM to seal the wallet data to the platform configura-
tion (integrity measurements of the wallet and its underlying TCB).
While sealing provides a secure storage on one platform, our solu-
tion allows to securely migrate the wallet data to another machine.

Trusted Computing and Virtualization.
Binding a key to the configuration of the underlying TCB has

been realized with TPMs [36] and secure coprocessors [28, 46].
Asokan et al. [8] describe a protocol for a trusted channel to re-
alize license transfer in a DRM scenario. Our trusted migration
protocol is a novel application of this license transfer. We require
less components and less protocol steps since our trusted channel
is not needed to transfer huge amount of media data like in their
DRM scenario, and we do not have a freshness requirement, i.e.,
replaying wallet data is not a security problem in our scenario.

Since we use sealing to protect the wallet data during persistent
storage and migration, respectively, an appropriate integrity mea-
surement mechanism during boot-up of the system is essential. Per-
forming integrity checks during the boot process [6], extending the
measurement of loaded modules during runtime [44], and binding
secrets to integrity measurements [36] are well explored concepts.

Using virtualization to implement secure browsers has been ex-
plored by Cox et al. [10]. They isolate different web applications by
running instances of web browsers in separated virtual machines.
Other works [23, 41, 19] achieve even more fine-grained control by
decomposing the web browser functionalities into single processes
and applying process protection mechanisms of the operating sys-
tem. However, browser security is complementary to our work be-
cause it does not protect against classical phishing attacks. Our
wallet architecture adds a trusted component besides the browser
to handle web authentication.

Xen [12] is a prominent hypervisor architecture. sHype [43]
adds policy-controlled isolation enforcement and resource sharing
to Xen. Terra [16] is another VMM architecture using trusted com-
puting functionality to provide attestation of VMs to remote parties.
In contrast to these hypervisors, an L4-microkernel-based VMM
has the advantage of running small native processes besides VMs,
which we use to implement security services like the StorageMan-
ager and TrustManager. This reduces the code size of the TCB one
has to trust compared to full VM installations.

8. CONCLUSION
We have presented TruWallet, a wallet-based architecture for se-

cure web authentication. TruWallet allows users to automatically
authenticate to web sites without revealing their long-term secrets
to untrusted applications or faked web servers. It prevents the user
from being tricked into revealing credentials by generating high-
entropy passwords that even the user does not know. Moreover,
we have presented secure registration and login protocols requiring
only minimal changes to existing server software. Furthermore, we
propose a secure migration protocol to be able to use wallet data
on different platforms. Our implementation based on trusted virtu-
alization technology is a proof of concept on PC platforms. Only
minor changes in user behavior are required, e.g., entering sensitive
data into the wallet instead of the web interface.

In contrast to existing solutions, we (i) achieve the additional re-
quirements of secure storage and trusted migration bound to the
state of the wallet and its underlying TCB using trusted computing
functionality available in many computing platforms, and (ii) re-
duce the high dependency on SSL certificates for server authentica-
tion. We demand a trusted PKI only for registration when creating
a new account at a server, and for establishing trusted migration.

9. REFERENCES
[1] Paros website. http://www.parosproxy.org.
[2] ID theft ring hits 50 banks, security firm says, 2005. http:

//news.cnet.com/2100-7349_3-5823591.html.
[3] New Trojans plunder bank accounts, 2006. http:

//news.cnet.com/2100-7349_3-6041173.html.
[4] AMD. AMD64 architecture programmer’s manual volume 2:

System programming. Technical Report Publication Number
24593, Revision 3.14, AMD, Sept. 2007.

[5] Anti Phishing Working Group. Phishing Activity Trends
Report(s), 2005-2008.
http://www.antiphishing.org.

[6] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and
reliable bootstrap architecture. In IEEE Symposium on
Security and Privacy (S&P’97), pages 65–71, Oakland, CA,
May 1997. IEEE Computer Society.

[7] A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. T.
Abad. Formal Analysis of SAML 2.0 Web Browser Single
Sign-On: Breaking the SAML-based Single Sign-On for
Google Apps. In 6th ACM Workshop on Formal Methods in
Security Engineering (FMSE’08), pages 1–10, Hilton
Alexandria Mark Center, Virginia, USA, 2008. ACM.

[8] N. Asokan, J.-E. Ekberg, A.-R. Sadeghi, C. Stüble, and
M. Wolf. Enabling fairer digital rights management with
trusted computing. In 10th Information Security Conference
(ISC’07), LNCS vol. 4779, pages 53–70. Springer, 2007.

[9] S. M. Bellovin and M. Merritt. Encrypted key exchange:
Password-based protocols secure against dictionary attacks.
In IEEE Symposium on Security and Privacy (S&P’92),
pages 72–84, 1992.

[10] R. S. Cox, J. G. Hansen, S. D. Gribble, and H. M. Levy. A
safety-oriented platform for web applications. In IEEE
Symposium on Security and Privacy (S&P’06), pages
350–364. IEEE Computer Society, 2006.

[11] R. Dhamija, J. D. Tygar, and M. Hearst. Why Phishing
Works. In Conference on Human Factors in Computing
Systems (CHI’06), pages 581–590. ACM, 2006.

[12] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the art
of virtualization. In ACM Symposium on Operating Systems
Principles (SOSP’03), pages 164–177. ACM, October 2003.

[13] N. Feske and C. Helmuth. A Nitpicker’s guide to a
minimal-complexity secure GUI. In 21st Annual Computer
Security Applications Conference (ACSAC’05), pages 85–94.
IEEE Computer Society, 2005.

[14] S. Gajek, A.-R. Sadeghi, C. Stüble, and M. Winandy.
Compartmented security for browsers – or how to thwart a
phisher with trusted computing. In 2nd International
Conference on Availability, Reliability and Security
(ARES’07), pages 120–127. IEEE Computer Society, 2007.

[15] S. Gajek, J. Schwenk, and X. Chen. On the insecurity of
microsoft’s identity metasystem cardspace. Technical Report
HGI TR-2008-004, Horst Görtz Institute for IT-Security,
Ruhr-University Bochum, 2008.

[16] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A virtual machine-based platform for
trusted computing. In 19th ACM Symposium on Operating
Systems Principles (SOSP’03), pages 193–206. ACM, 2003.

[17] R. P. Goldberg. Architectural Principles for Virtual
Computer Systems. PhD thesis, Harvard University, 1972.

[18] K. Goldman, R. Perez, and R. Sailer. Linking remote
attestation to secure tunnel endpoints. In First ACM
Workshop on Scalable Trusted Computing (STC’06), pages
21–24. ACM, November 2006.

[19] C. Grier, S. Tang, and S. T. King. Secure web browsing with
the OP web browser. In IEEE Symposium on Security and
Privacy (S&P’08), pages 402–416, Washington, DC, USA,
2008. IEEE Computer Society.

[20] T. Groß and B. Pfitzmann. SAML artifact information flow
revisited. In IEEE Web Services Security Symposium
(WSSS’06), pages 84–100. CERIAS, 2006.

[21] Intel Corporation. Intel trusted execution technology
software development guide. Technical Report Document
Number: 315168-005, Intel Corporation, June 2008.

[22] Internet Crime Complaint Center. 2008 Internet Crime
Report. http://www.ic3.gov/media/
annualreport/2008_IC3Report.pdf, 2008.

[23] S. Ioannidis and S. M. Bellovin. Building a secure web
browser. In FREENIX Track: 2001 USENIX Annual
Technical Conference, pages 127–134, Berkeley, CA, USA,
2001. USENIX Association.

[24] D. P. Jablon. Strong password-only authenticated key
exchange. Computer Communication Review, 26(5):5–26,
1996.

[25] C. Jackson, D. Boneh, and J. Mitchell. Spyware resistant
web authentication using virtual machines.
http://crypto.stanford.edu/spyblock/, 2006.

[26] C. Jackson, D. Boneh, and J. Mitchell. Transaction
generators: Root kits for web. In 2nd USENIX Workshop on
Hot Topics in Security (HotSec’07), pages 1–4. USENIX
Association, 2007.

[27] R. C. Jammalamadaka, T. W. van der Horst, S. Mehrotra,
K. E. Seamons, and N. Venkasubramanian. Delegate: A
proxy based architecture for secure website access from an
untrusted machine. In 22nd Annual Computer Security
Applications Conference (ACSAC’06), pages 57–66. IEEE
Computer Society, 2006.

[28] S. Jiang, S. Smith, and K. Minami. Securing web servers
against insider attack. In 17th Annual Computer Security
Applications Conference (ACSAC’01), pages 265–276. IEEE
Computer Society, 2001.

[29] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing cross site
request forgery attacks. In IEEE International Conference on
Security and Privacy in Communication Networks
(SecureComm’06). IEEE, 2006.

[30] E. Kirda, C. Krügel, G. Vigna, and N. Jovanovic. Noxes: a
client-side solution for mitigating cross-site scripting attacks.
In ACM Symposium on Applied Computing (SAC), pages
330–337. ACM, 2006.

[31] D. Kormann and A. Rubin. Risks of the passport single
signon protocol. Computer Networks, 33(1–6):51–58, 2000.

[32] K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala.
On-board credentials with open provisioning. In 4th
International Symposium on Information, Computer, and
Communications Security (ASIACCS’09), pages 104–115.
ACM, 2009.

[33] B. Krebs. The new face of phishing. Washington Post, 2006.
http:
//blog.washingtonpost.com/securityfix/
2006/02/the_new_face_of_phishing_1.html.

[34] P. C. S. Kwan and G. Durfee. Practical uses of virtual
machines for protection of sensitive user data. In Information
Security Practice and Experience Conference (ISPEC’07),
pages 145–161. Springer, 2007.

[35] J. Liedtke. On micro-kernel construction. In 15th ACM
Symposium on Operating System Principles (SOSP’95),
pages 237–250. ACM, 1995.

[36] R. Macdonald, S. Smith, J. Marchesini, and O. Wild. Bear:
An open-source virtual secure coprocessor based on TCPA.
Technical Report TR2003-471, Department of Computer
Science, Dartmouth College, 2003.

[37] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and
A. Seshadri. Minimal TCB code execution. In 2007 IEEE
Symposium on Security and Privacy (S&P’07), pages
267–272. IEEE Computer Society, 2007.

[38] R. Oppliger, R. Hauser, and D. A. Basin. SSL/TLS
session-aware user authentication revisited. Computers &
Security, 27(3-4):64–70, 2008.

[39] B. Pfitzmann and M. Waidner. Analysis of liberty
single-sign-on with enabled clients. IEEE Internet
Computing, 7(6):38–44, 2003.

[40] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and
N. Modadugu. The ghost in the browser analysis of
web-based malware. In First Workshop on Hot Topics in
Understanding Botnets (HotBots’07), pages 4–4, Berkeley,
CA, USA, 2007. USENIX Association.

[41] C. Reis, S. D. Gribble, and H. M. Levy. Architectural
principles for safe web programs. In 6th Workshop on Hot
Topics in Networks (HotNets’07). ACM, November 2007.

[42] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C.
Mitchell. Stronger password authentication using browser
extensions. In 14th USENIX Security Symposium. USENIX
Association, 2005.

[43] R. Sailer, T. Jaeger, E. Valdez, R. Perez, S. Berger, J. L.
Griffin, and L. van Doorn. Building a MAC-based security
architecture for the Xen open-source hypervisor. In 21st
Annual Computer Security Applications Conference
(ACSAC’05), pages 276–285. IEEE Computer Society, 2005.

[44] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
implementation of a TCG-based integrity measurement
architecture. In 13th USENIX Security Symposium, pages
223–238, August 2004.

[45] SANS Institute. SANS Top-20 2007 Security Risks.
http://www.sans.org/top20/2007/top20.pdf,
November 2007.

[46] S. W. Smith and S. Weingart. Building a high-performance,
programmable secure coprocessor. Computer Networks,
31(8):831–860, April 1999.

[47] A. Sotirov, M. Stevens, J. Appelbaum, A. Lenstra,
D. Molnar, D. A. Osvik, and B. de Weger. MD5 considered
harmful today—creating a rogue CA certificate. In 25th
Chaos Communication Congress (25C3), December 2008.
http://www.win.tue.nl/hashclash/rogue-ca.

[48] F. Stumpf, O. Tafreschi, P. Rder, and C. Eckert. A robust
integrity reporting protocol for remote attestation. In Second
Workshop on Advances in Trusted Computing (WATC’06
Fall), Tokyo, December 2006.

[49] D. Taylor, T. Wu, N. Mavrogiannopoulos, and T. Perrin.
RFC5054: Using the secure remote password (SRP) protocol
for TLS authentication, 2007.
http://www.ietf.org/rfc/rfc5054.

[50] Trusted Computing Group. TPM main specification, version
1.2 rev. 103, July 2007.
https://www.trustedcomputinggroup.org.

[51] M. Wu, R. C. Miller, and G. Little. Web Wallet: Preventing
Phishing Attacks by Revealing User Intentions. In 2nd
Symposium on Usable Privacy and Security (SOUPS’06),
pages 102–113. ACM, 2006.

[52] T. Wu. The secure remote password protocol. In Network
and Distributed System Security Symposium (NDSS’98),
pages 97–111. The Internet Society, 1998.

