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Abstract. Cryptographic smartcards provide a standardized, interop-
erable way for multi-factor authentication. They bridge the gap be-
tween strong asymmetric authentication and short, user-friendly pass-
words (PINs) and protect long-term authentication secrets against mal-
ware and phishing attacks. However, to prevent malware from capturing
entered PINs such cryptographic tokens must provide secure means for
user input and output. This often makes their usage inconvenient, as
dedicated input key pads and displays are expensive and do not inte-
grate with mobile applications or public Internet terminals. The lack of
user acceptance is perhaps best documented by the large variety of non-
standard multi-factor authentication methods used in online banking.
In this paper, we explore a novel compromise between tokens with ded-
icated card reader and USB or software-based solutions. We design and
implement a cryptographic token using modern secure execution tech-
nology, resulting in a �exible, cost-e�cient solution that is suitable for
mobile use yet secure against common malware and phishing attacks.
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1 Introduction

Although available for over a decade, cryptographic security tokens with asym-
metric multi-factor authentication are still not in common use for many daily
authentication procedures. Despite their signi�cant advantages, service providers
and users still prefer more usable but weak password-based authentication pro-
tocols that are highly vulnerable to simple malware and phishing attacks. More-
over, the lack of scalability in password-based authentication resulted in the
widespread deployment of password managers and federal ID systems, creating
single points of failures that pose a serious threat to a user's online identity,
personal data and business relationships.

In contrast, cryptographic tokens allow strong user authentication and secure
storage of authentication secrets. The PKCS#11 cryptographic token interface
speci�cation [26] is widely accepted and, when combined with a card reader



with dedicated user input/output pad, enables the secure authentication and
authorization of transactions even on untrusted systems. However, while a clear
return of investment can be identi�ed for well-de�ned environments like large
enterprises and organizations [10], end users face signi�cantly higher costs for
the deployment and maintenance of cryptographic token solutions. Moreover,
currently available solutions still fail to meet the �exibility and security required
in mobile usage scenarios. For example, the secure encryption of �les and emails
with smartcards is easily implemented at the work place but it is inconvenient
to use a dedicated keypad in addition to a laptop or smartphone, only to secure
the PIN entry process against malware attacks.

USB tokens were proposed to address the mobile usage scenario by integrat-
ing card reader and smartcard into a single USB stick [20]. However, in this case
the critical PIN entry and transaction con�rmation to the user is done in software
on the PC and thus again vulnerable to malware and interface spoo�ng attacks.
Alternatively, one-time password systems are sometimes deployed as a compro-
mise between usability and security. However, such systems essentially use a
symmetric authentication mechanism and do not easily scale to authenticate a
user towards multiple service providers. Moreover, as demonstrated in the recent
security breach at RSA Security5, the employed centralized server-side storage
of master secrets and lack of scalable revocation mechanisms represents a severe
security risk. Similarly, the several proposed authentication and transaction con-
�rmation methods for online banking (e.g., [11]) are often special-purpose solu-
tions: Approaches that use dedicated security hardware are not easily extendible
for use with multiple service providers, while software-based solutions, such as
using a mobile phone to transmit a transaction con�rmation number out of
band (mobileTAN), are again vulnerable to malware attacks. In contrast, a se-
cure general-purpose solution using smartcards, like �Secoder/HBCI-3�6, again
requires dedicated secure hardware, making it inconvenient for mobile use.

In recent years, consumer hardware was extended with the ability to execute
programs independently from previously loaded software, including the main
operating system [16,1]. These so-called Secure Execution Environment (SEE)
allow the secure re-initialization of the complete software state at runtime and
can be used to launch a new OS or simply execute a small security-sensitive
program while the main OS is suspended. Sophisticated systems have been pro-
posed to use these capabilities for securing online transactions, however, they
require substantial modi�cation of existing authentication procedures and soft-
ware stacks. In contrast, this work presents a conservative approach that uses
secure execution to implement a standards-compliant cryptographic token, thus
simplifying deployment and interoperability with existing software infrastruc-
tures.

5 A security breach of the RSA Security servers resulted in a compromise of the widely
deployed SecurID tokens, incurring an estimated $66 million in replacement costs:
www.theregister.co.uk/2011/07/27/rsa_security_breach/

6 http://www-ti.informatik.uni-tuebingen.de/~borchert/Troja/

Online-Banking.shtml#HBCI-3

www.theregister.co.uk/2011/07/27/rsa_security_breach/
http://www-ti.informatik.uni-tuebingen.de/~borchert/Troja/Online-Banking.shtml#HBCI-3
http://www-ti.informatik.uni-tuebingen.de/~borchert/Troja/Online-Banking.shtml#HBCI-3


Contribution. In this paper, we present the design and integration of a software
security token that uses secure execution technology available in commodity
PCs. Our solution achieves comparable security features to hardware tokens in
face of software attacks and basic protection against common hardware attacks
such as device theft and o�ine brute-force attacks. In contrast to previously
proposed secure transaction systems using trusted computing, our solution aims
for interoperability and deployment, supporting the widely accepted PKCS#11
standard. Hence, our prototype is directly usable with many existing applica-
tions, such as enterprise single sign-on solutions, authentication in VPN, e-Mail
and WiFi clients and password managers. By implementing secure facilities for
user input/output, we can also provide secure and convenient mechanisms for
deployment, backup and migration of our software token. We implement a pro-
totype using Flicker and OpenCryptoki, providing an easily deployable solution
that can be used on many standard Laptops and PCs today.

2 Background and Related Work

Cryptographic Smartcards and Tokens. Smartcards and cryptographic tokens
are used in many large organizations today. The Cryptographic Token Informa-
tion Format Standard PKCS#15 [25] was developed to provide interoperability
between cryptographic smartcards and is today maintained as ISO 7816-15. On
a higher layer, the Cryptographic Token Interface Standard PKCS#11 speci�es
a logical API for accessing cryptographic tokens, such as PKCS#15-compatible
smartcards or Hardware Security Modules (HSMs). Alternative standards and
APIs exist to access security tokens but are outside the scope of this work.

Apart from smartcards with external card readers, security tokens are also
available in form of USB tokens or microSD cards7. The TrouSerS [15] TCG
software stack also provides a PKCS#11 interface, using the TCG TPM [31] to
prevent password guessing attacks against a purely software-based security token
implementation. Similar to our work, these solutions o�er di�erent kinds of com-
promises between security and usability. However, in contrast to the aforemen-
tioned systems our solution provides secure facilities for user input/output (trusted
user I/O) and is therefore resilient against common malware attacks.

TCG Trusted Computing. The Trusted Computing Group (TCG) [30] published
a number of speci�cations to extend computing systems with trusted comput-
ing. Their core component is the Trusted Platform Module (TPM), a processor
designed to securely record system state changes and bind critical functions,
such as decryption, to pre-de�ned system states [31]. For this purpose, the TPM
introduces Platform Con�guration Registers (PCRs) to record of state change
measurements in form of SHA-1 digests. By resetting the PCRs only at sys-
tem reboot and otherwise always only extending the current PCR value with
the newly recorded state change, a chain of measurements is built. This chain
can be used to securely verify the system state. The TPM then supports basic

7 E.g., Aladdin eToken Pro, Marx CrypToken or Certgate SmartCard microSD.



mechanisms to bind cryptographic keys or data to speci�c system states. Most
signi�cantly for our design, keys can be sealed to a given system state by en-
crypting them together with the desired target PCR values under a storage root
key (SRK)8. Since the SRK is only known to the TPM, it can check upon un-
sealing if the current system state recorded by the PCRs matches the desired
state stored together with the sealed key, and otherwise reject the request.

A major problem of this approach is dealing with the huge amount and
complexity of software in today's systems, resulting in a very large chain of mea-
surements. Moreover, the problem of runtime compromise is currently unsolved,
i.e., the TPM is only informed of explicit program startups but cannot assure
that already running software was not manipulated.

Secure Execution and Flicker. A recent extension in many hardware platforms
is the SEE, a mechanism that executes code independently from previously exe-
cuted software. Essentially, the CPU is reset at runtime, so that the subsequently
executed program (the payload) is not a�ected by previously executed, poten-
tially malicious, software.

A major advantage of this technology is that the aforementioned chain of
measurements can be reset, since previously executed software does not in�uence
the security of the current software state anymore. For this purpose, the TPM
was extended with a set of PCRs that can be reset by the CPU when entering the
SEE. The CPU then measures the SEE payload and stores the measurements in
the previously reset PCRs. This allows the use of shorter, more manageable mea-
surement chains that are easier to verify. Several implementations of SEEs are
available, most notably Secure Virtual Machines (SVM) [1], Trusted Execution
Technology (TXT) [16] and M-Shield [4].

A �exible framework for using the SEE provided by Intel TXT and AMD
SVM is Flicker [22,23]. Flicker implements a framework for executing a security
critical Piece of Application Logic (PAL) by temporarily suspending the main
OS and diverting execution to the SEE. In this work we use and extend Flicker
to implement the security-critical cryptographic operations and secure user I/O
inside the SEE.

Secure Transaction Schemes. Several previous proposals aim to protect user
credentials, typically using either a persistent security kernel that protects the
credentials [14,17,6] or relying on external trusted hardware [18]. We know of
only one system that uses Flicker, aiming to provide a uni-directional trusted
path [13] as an instrument for transaction con�rmation. It uses Flicker to take
control of devices for user I/O and then asks the user to con�rm a speci�c
transaction. Using remote attestation, a remote system can then verify that the
transaction was securely con�rmed by a human user. All of these approaches
require substantial modi�cation of individual applications or even the addition
of a hypervisor. In contrast, our solution uses the widely established PKCS#11

8 It is also possible to use a hierarchy of keys, however, for the purpose of this work
we simply assume all sealed data to be encrypted using the SRK.



interface [26] and works seamlessly with existing applications and operating sys-
tems that make use of this interface.

The On-board Credentials (ObC) framework was introduced for mobile em-
bedded devices [21]. ObC uses device-speci�c secrets of M-Shield to provide
an open provisioning protocol for credentials (code and data), that are securely
executed/used inside the SEE. TruWalletM [8] implements a secure user authen-
tication for web-services based on ObC. ObC is complementary to our solution
and may be used to provide a similar solution for mobile embedded devices.
However, in its current state ObC supports only very limited applications due
to high memory constraints.

3 A Softer Smartcard with Secure Execution

In the following we present the security requirements, architecture and protocols
of our solution. We identify the following security requirements for a secure
cryptographic token:

Secure Token Interface: The interface used for interaction between the (trusted)
token and the (untrusted) outside world must prevent the leakage or manip-
ulation of any secret information contained in the token, such as keys or key
properties.

Secure User I/O: The user interface of the token solution must provide a
secure mechanism for the user to (1) judge the current security status of the
token, (2) infer the details of a pending transaction to be authorized and
(3) input the authorization secret (Personal Identi�cation Number, PIN).

Moreover we can identify the following functional requirements:

Interoperability: The token should use a standards-compliant interface to pro-
vide interoperability with existing applications, such as the PKCS#11 or
Cryptographic Service Provider (CSP).

Usability: The token should be usable in the sense that it's use should not
impose a signi�cant burden on the user. In particular, the user should not
be required to buy additional hardware and the token should be usable in
mobile scenarios.

Migration and Backup: The token should provide facilities for secure migra-
tion between di�erent hardware platforms or implementations, and for the
creation of secure data backups.

Adversary Model. We assume an adversary that can compromise the user's op-
erating system and applications (malware, trojan horse attacks) or tries to lure
the user into revealing authentication secrets by imitating local applications and
web services (phishing, spoo�ng). However, the adversary has no physical con-
trol over the user's cryptographic token and is thus restricted to the application
interface of the token. The goal of the adversary is to compromise long-term
secret keys, to authorize transactions or decrypt con�dential data of the user.



3.1 System Architecture

We aim to protect the user's sensitive information by implementing the func-
tionality of a cryptographic token in a Secure Execution Environment (SEE).
The SEE manages and protects the credentials even if the underlying operating
system is untrusted and potentially compromised. Hence, the secure execution
environment must also establish a trusted input/output path between user and
token and must be able to authenticate itself towards the user. We combine the
SEE with the data sealing mechanism of the TPM to let only the locally au-
thenticated user access the secret token state, and to assure that only a trusted
token implementation running in the SEE can access the sensitive token state.
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Fig. 1. Integration of an SEE-based cryptographic token.

The overall architecture of our SEE-based token is depicted in Figure 1. It
consists of a �legacy� software stack with operating system, token middleware,
and the secure execution environment on the left-hand side, which runs our
Secure Execution Token Application (SETA) in parallel to the legacy operating
system.

Applications must be compatible with the middleware interface to make use
of cryptographic tokens. Multiple tokens can be supported by the token mid-
dleware, and in our design we add another type of token beside hardware and
software tokens that calls the SEE with appropriate parameters. The call into
the SEE is implemented using an SEE driver provided by the legacy OS, such
as Flicker. Finally, the SETA is started as the main component of this archi-
tecture, implementing the semantics of the cryptographic token and enforcing
the security-critical interfaces based on (1) isolated execution using the SEE
and (2) state-speci�c data encryption using the TPM sealing operation (cf. Sec-
tion 2). The SETA component running in the SEE supports three major inter-
faces, as shown in Figure 1. The user interface (user I/O) implements inter-
action with the platform peripherals for user input and output using keyboard
and graphics card. The TPM interface is used for basic interaction with the
TPM, speci�cally for the sealing, unsealing and interaction with the TPM's
monotonic counters. Finally, the input and output of the SETA module, upon



entering and leaving the SEE, is used to implement the cryptographic token
interface. The token interface operation op() that is to be executed is provided
together with the encrypted token state [ts]. SETA must then request autho-
rization for executing op() by requesting the PIN pin via user I/O, decrypt the
token state ts = unseal(pin, [ts]) using the TPM interface and compute the result
res = execute(op(), ts) to be returned as the output of SETA.

3.2 Component Interaction and Protocols

Usability and �exibility are among the main concerns when using cryptographic
tokens today. In the following, we present more detailed protocol �ows for the
main smartcard operation and caching of the user's PIN, and discuss the prob-
lems of deployment, migration and backup.

3.3 Deployment

Before using the software token for the �rst time, the user must initialize it in a
trusted enrollment environment and choose an individual picture img and PIN
number pin, as illustrated in Figure 2(a). The picture is used later on to authen-
ticate Secure Execution Token Application (SETA) towards the user, while the
PIN is used to authenticate the user towards the token. After initialization, the
token state is sealed to the expected TPM PCR values of SETA, which are also
supplied as input, so that only SETA can open and modify the token.

Note that if the initialization and enrollment system is di�erent from the
user's target platform, the SEE-based token can be created centrally and de-
ployed to the user's target platform using the token migration procedure de-
scribed in Section 3.4. This is particularly interesting for enterprises, which
often require central enrollment and backup of authentication and encryption
secrets. Hence, the overall procedure remains identical to the deployment of
regular smartcards, except that the user is not required to (but could) use a
physical device to transport the token state from enrollment platform to the
target platform.

3.4 Migration and Backup

Secure backup and migration of credentials is essential for both enterprise and
personal use. Note that backup and migration are very similar, since backup can
be regarded as a �migration into the future�, using either a dedicated backup
platform as intermediate migration target or a direct migration to a target plat-
form of yet unknown con�guration.

For best usability in personal usage scenarios, we propose to realize secure
migration simply based on trusted user I/O and a user passphrase Km as illus-
trated in Figure 3.3: To migrate the token, the user must �rst launch SETA and
enter the correct PIN pin to access the protected token state ts. Upon issuing
the migrate() command, SETA encrypts ts using a symmetric randomly chosen
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Fig. 2. Procedures for the secure deployment and migration/backup of SETA.

passphrase Km and returns the encrypted token state [ts]Km to the untrusted
environment of the source platform. The passphrase Km is disclosed to the user
via trusted I/O, enabling the owner of the token (authorized by the entered PIN)
to import the encrypted token state [ts]Km

at the target platform.
Additionally, the migration procedure can be wrapped in a trusted channel

if the target platform is known in advance and is equipped with a TPM: As
proposed in [3,9], the encrypted token state [ts]Km can be bound to a speci�c
target platform's TPM and platform state before disclosing it to the source
platform's untrusted environment. As a result, the protected token state can only
be imported by the designated target platform, and only from within the trusted
SETA environment. Token migration using trusted channels can thus e�ectively
mitigate brute-force attacks on Km and, based on the authentication image img
sealed to SETA, also prevent impersonation of the importing application at the
target platform. Note that if the backup system is equipped with a TPM, this
extended migration protocol can also be used for secure backups.

3.5 Token Operation

The protocol for the regular operation of our SEE-based token is illustrated in
Figure 3. As outlined in previous Section 3.1, the token middleware executes
security-sensitive operations op() on behalf of the applications, which in turn
delegates execution of the required algorithms to SETA and returns the result
res at the very end of the protocol �ow. For this purpose, the middleware keeps
track of one or more token states [ts] and their supported types of operations
op(). Speci�cally, [ts] consists of encrypted token state cstatetk, cstatepal and the
corresponding encryption keys [Ktk], [Kpal] sealed to the SETA environment.
To execute a speci�c operation op(), the middleware determines the required
cryptographic token algorithm algo to be executed and then asks the operating
system's SEE driver to launch an instance of the SETA module, supplying the
algorithm identi�er algo, the token identi�er id and the respective protected
token state [ts] as shown in step 2.
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Once launched, SETA unseals Kpal in step 3 to decrypt the PAL meta-data
state statepal to retrieve the master key Kctr of the counter list clist and the
secret authentication picture img. Kctr is used to decrypt ctrs, a list of counters
that is shared by all trusted applications on the platform. In correspondence
with previous work on secure virtual counters [27], the sum of the elements in
ctrs is compared with a prede�ned secure monotonic counter in the TPM in
step 4. If the sum matches, ctrs and thus also cstatepal and the individual to-
ken's counter ctrs[id] and img are fresh. In step 5, the picture img is used to
authenticate SETA to the user and retrieve the authentication PIN pin. The
PIN and token identi�er id are fed into the password-based key derivation func-
tion (PBKDF2 [19]) to generate the user authentication key Kpin. This secret
is in turn used in step 6 to unseal Ktk, so that cstatetk can be decrypted to
retrieve the secret token state statetk and the veri�cation counter cntrtk. To
assure the freshness of cstatetk, SETA checks if known fresh cntrid is equal to
cntrtk. If successful, the actual token algorithm algo can �nally be executed in
the context of statetk, yielding the return value res. If the state statetk was
updated during the execution of algo, we must increment the freshness counters
cntrtk and ctrs[id] (step 7), update the TPM hardware counter accordingly and
then re-encrypt the token state cstatetk, cstatepal (dashed box). If updated, the
new states cstatetk, cstatepal are returned together with the result res in step 8.
Finally, the result of the operation op() can be returned to the application in
step 9.



Note that even if veri�cation of the virtual counter vector ctrs, which is
shared together with Kctr among all trusted applications that require secure
TPM-bound counters, is unsuccessful, the application can still recover the de-
sired secret states and also determine the number of version rollbacks that have
occurred as num = cntrID − cntrtk. Hence, in case of system crashes or mis-
behavior of other software components SETA can inform the user and o�er
recovery. However, in this case the user must assure that no malicious version
rollback of the sealed token state [ts] took place.

While the TPM speci�cation imposes a frequency limit on the use of the
TPM's secure monotonic counters, it is unlikely that the use of SETA is a�ected
by this limit: Most common operations carried out with the token, such as signa-
ture creation, do not modify the token state and thus do not require an update
of the TPM secure counters. Moreover, common operations such as enquiring
the algorithms supported by the token are not actually security sensitive and
can be implemented within the token middleware's SETA adapter.

3.6 PIN Caching

It is often useful to cache a given user authorization for a certain time or certain
number of uses. For example, in the current adoption of security tokens in health
care systems it is often simply too time consuming to authorize prescriptions
and other documents of minor sensitivity individually. Hence, so-called �batch
signatures� were introduced that sign multiple documents at once [12]. In the
following, we present an optional PIN caching mechanism for our SEE-based
token that allows the authorization of multiple token operations.

Instead of requiring the PIN for each transaction, our system is able to se-
curely cache the PIN for multiple uses. For this purpose, we seal the cached
authorization secret Kpin to the trusted system state of SETA and add a us-
age counter uses to be maintained by the (untrusted) token middleware. We
verify the value of uses based on the non-invertible status of a PCR register
p, so that the usage count can be tracked independently from the token state
cstatetk, cstatepal. Another advantage of this construction is that an unexpected
reset of the platform or update of the PCR p does not invalidate the token state
but only the cached PIN.

Figure 4 shows a modi�ed version of the main protocol in Figure 3 to support
PIN caching. When the PIN is provided for the �rst time and should be cached,
the maximum desired number of PIN uses usesmax, the user authorization se-
cret Kpin ← PBKDF(pin, id) and a randomly chosen secret s are added to the
token state cstatepal. For subsequent SETA executions with cached Kpin, the
respective values are recovered from cstatepal as shown in Figure 4 after step 2.

In step 4, the current value reg′ of PCR p is read in addition to the veri�cation
of ctrs. Due to the non-invertibility of the PCR states, this allows to verify the
value of uses based on the purported PCR pre-image reg and the secret s. If
this veri�cation succeeds and uses < usesmax, the cached PIN can be used and
the PCR p is updated for the incremented uses counter in step 5a. Otherwise,
the user is asked for authorization in step 5b. After successful execution of the
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following steps 6 and 7, the result res is returned together with the current usage
counter uses and possibly updated state [ts] in step 8 and 9.

If step 6 executes successfully following step 5b, the caching state can be
reset as reg = reg′, uses = 0. Otherwise, if the PIN was (repeatedly) entered in-
correctly, Kpin should be purged from cstatepal. As a result of this construction,
the PIN caching works mostly independent from the more expensive token state
updates: The values of usesmax and s can be considered relatively static and
remain in cstatepal even if PIN caching is not used. Moreover, an unexpected
modi�cation of PCR p, including platform reset, only invalidates the PIN caching
status, requiring only a regular user authentication to continue operation.

4 Implementation and Results

We implemented a proof of concept prototype of our SEE-based token based on
the software token of the OpenCryptoki middleware [5]. OpenCryptoki imple-
ments the PKCS#11 interface [26], a well-known standard supported by many
applications, including major web browsers, eMail clients, several VPN clients
and other authentication solutions.

To build SETA, we separated the security-sensitive functions implemented
by the OpenCryptoki software token into a separate software module that is
then executed using the Flicker SEE driver. Additionally, we implemented ba-
sic drivers for accessing keyboard and graphics hardware from within SETA, to
provide a secure user input/output interface while the untrusted OS and appli-
cations are suspended by the SEE. In this respect, we extend the work of [13]
that could only provide a basic text output from within the SEE.



4.1 Performance Evaluation

While the processors in many hardware tokens are optimized for low cost and
resistance against physical attacks, our solution bene�ts from the high perfor-
mance of today's CPUs. The main delay for executing operations with SETA is
caused by the switch into the SEE itself using Flicker, and the interaction with
the (often rather slow) TPM for unsealing and counter update.

Existing Tokens Time

CrypToken MX2048 2.9s

eToken Pro 32k 4.3s

opencryptoKi SW-Token 0.05s

Our SETA Solution Time

Switch to SEE +1.20s
TPM interaction +1.50s
Signing in SEE +0.05s

Overall Signing in SETA =2.75s

Table 1. Speed comparison for a PKCS#11-compliant 1024 bit RSA signature.

We compared the time required for a PKCS#11 signing operation using
hardware and software tokens versus using our SETA. The signature operation
is perhaps the most common operation for security tokens, as it is used for
authentication as well as document signing. The speci�c document or data length
is insigni�cant in this case, as most applications simply hash the document
themselves and only sign the hash digest, to reduce the amount of data that
would otherwise have to be transferred and handled by the token.

As shown in Table 1,
Speci�cally, we compared an older Aladdin eToken Pro 32k and a newer

MARX CrypToken MX2048 as hardware tokens against the opencryptoKi soft-
ware token and our SEE-based solution on a standard Dell Optiplex 980 PC
with an Intel 3.2 GHz Core i5 CPU. For the signature operation we use the
PKCS#11 C_Sign command using RSA-1024 as the signature mechanism. As
can be seen in Table 1, SETA is almost twice as fast as the older eToken Pro
and still faster than the modern MX2048. As can be seen in the explicitly listed
time overheads for switching to Flicker and interacting with the TPM, signi�cant
performance improvements can be expected for more complex token operations.
We also expect improvements in the SEE switching and TPM interaction times
once these components are relevant for daily use.

5 Security Considerations

The security of our overall scheme depends on the enforcement of information
�ow control to maintain the con�dentiality and integrity of the internal token
state. Speci�cally, our token must meet the two security requirements formu-
lated in Section 3, (1) preventing unauthorized leakage or manipulation of the
token state and (2) providing a user interface that is secure against spoo�ng
or eavesdropping attacks by a compromised legacy operating system and that
detects attempts to tamper with the SETA token implementation.



Secure Token Interface. Requirement (1) holds based on the assumption that
the user and TPM are trusted and the PKCS#11 token interface is secure and
securely implemented. The �rst two assumptions are standard assumptions and
di�er from the security of regular hardware-based cryptographic tokens mainly
in that the TPM is not designed to be secure against hardware attacks.

Considering the limited security of hardware tokens against hardware at-
tacks [2,29,24] and the prevalence of remote software attacks it is reasonable
that we exclude hardware attacks in our adversary model. While some attacks
on PKCS#11 implementations have been shown [7], the speci�cation itself is
considered highly mature and implementation �aws are independent from the
token type.

Secure User I/O. Requirement (2) is met by our combination of SEE and TPM,
which results in isolated execution of trusted code with full control over the local
platform. The SEE suspends the legacy OS, preventing any potentially loaded
malware from manipulating the execution of SETA payload and giving it full
hardware access. By implementing appropriate keyboard and graphics drivers
in SETA we can thus provide secure I/O on standard computing platforms.
Additionally, to prevent the replacement of SETA by malicious applications,
we use the TCG TPM's sealing capability to bind data to designated system
states, such that a malicious SETA' 6= SETA is unable to access the protected
token state [ts] and user authentication image img. Speci�cally, since only the
pristine SETA program can access and display the secret authentication image
img, the user can always recognize if the currently running application is the
untampered SETA. A well-known open problem, in this context is that users
often disregard such security indicators, allowing an adversary to spoof the user
interface and intercept the secret PIN [28]. However, in our solution, an attacker
that has gained knowledge of the user's PIN also requires the untampered SETA
program to which the user's sealing key is bound and to which he thus has to
enter the PIN (physical presence). Hence, although our solution cannot fully
prevent interface spoo�ng against attacks against unmindful users, the attack
surface is notably reduced by restricting the TPM unseal operation to pre-de�ned
physical platforms and requiring physical presence. We suggest that enterprises
monitor the migration and authorization of SETA modules for such events.

Some recent works also manage to break the rather novel SEE implementa-
tions through security bugs in BIOS and PC �rmware [32,33]. The works show
that PC-based SEE environments currently still require secure BIOS implemen-
tations, which can be veri�ed using the respective TPM PCRs. Again, these
vulnerabilities in the execution environment are not speci�c to our solution, as
illustrated by recent attacks on dedicated smartcard readers 9. However, similar
to bugs in the PKCS#11 implementations such vulnerabilities are rare and usu-
ally very hard to exploit in comparison with common trojan horse or phishing
attacks. Overall, SETA thus signi�cantly improves the security of user authenti-

9 E.g., a smartcard reader by Kobil allowed unauthorized �rmware manipulation:
http://h-online.com/-1014651

http://h-online.com/-1014651


cation and transaction authorization by preventing the vast majority of malware
attacks and signi�cantly reducing the applicability of social engineering.

6 Conclusion and Future Work

We introduced an SEE-based PKCS#11 token that combines the �exibility of a
software-based PKCS#11 token with the security of modern trusted computing
technology. While our solution does achieve the same resilience against hard-
ware attacks as some hardware cryptographic tokens, it presents a signi�cant
improvement over software-based solutions or cryptographic tokens used with-
out dedicated keypad and display for secure PIN entry and transaction con�rma-
tion. By integrating secure user I/O with increasingly deployed SEE technology
and leveraging standard cryptographic token interfaces, we can provide a se-
cure plug-in solution that is especially attractive for today's mobile computing
environments.

For future work, we aim to further reduce time delay when accessing SETA
by parallelizing TPM interactions with software computations. Moreover, we aim
to port our prototype to other platforms such as ObC or the Windows OS and
include additional PKCS#11 functionality such as elliptic curve cryptography.
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