
Bridging the Gap between TCPA/Palladium

and Personal Security

Ahmad-Reza Sadeghi

Ruhr-University Bochum, Germany

sadeghi@crypto.rub.de

Christian Stüble

Saarland University, Germany

stueble@cs.uni-sb.de

Abstract

Microsoft Palladium (Pd) and TCPA are announced
to be the next-generation computing platforms, and
claimed to improve users’ security. However, the
public debate on TCPA/Pd is full of skepticism
and mistrust about the claimed security enhance-
ments for the users. People are concerned about
those features and capabilities of these systems that
can be applied to realize Digital Rights Manage-
ment: they may allow content providers to gain too
much power and control over the use of digital con-
tent and users’ private information. The general
negative and sometimes prejudiced response about
TCPA/Pd left less space for an unbiased and objec-
tive evaluation.

To clarify this situation, we first formulate the se-
curity requirements of a ”trustworthy” platform on
which users’ security policies and providers’ DRM
policies are protected in the sense of multilateral se-
curity. Based on the common layered architecture
for computing platforms, we analyze at which layers
the security policies for users and the DRM policies
for providers should be enforced. We then examine
to what extent TCPA/Pd fulfill the requirements
of a trustworthy platform where our analysis (and
speculations) rely on the available TCPA/Pd doc-
umentations. Based on our experience in designing
and implementing security kernels, we show how one
can build and efficiently implement an open-source
trustworthy platform using TCPA/Pd hardware.

1 Introduction

A lot has been reported about Microsoft’s next-
generation secure computing base for Windows (for-
mer Palladium or Pd) [9, 14] and the Trusted Com-

puting Platform Alliance1 (TCPA) [12, 11]. The
stated goal of these systems is to improve users’
security [13, 20, 25, 24]. However, since their
announcement, there is an ongoing public debate
about the negative economical, social and techni-
cal consequences of these platforms. There are
many concerns regarding their capabilities, in par-
ticular, in conjunction with Digital Rights Man-
agement (DRM)2. People are worried about the
possibility that TCPA/Pd may give vendors and
content providers too much control over personal
systems and users’ private information: they may
allow commercial censorship3, political censorship,
destroy innovation4 or undermine the General Pub-
lic License (GPL). Especially, the open-source com-
munity seems to resist against TCPA/Pd, mainly
because they are more sensitive regarding user se-
curity and privacy issues (see [3] and [28] for more
discussions on TCPA/Pd).

Thus, we are faced with many open questions
and uncertainties about the real capabilities of
TCPA/Pd: do these platforms provide users with
enhanced security features (e.g., better protection
against spam and viruses), or do they protect digi-
tal content providers (such as large motion pictures)
allowing them to misuse DRM capabilities against
users (e.g., violate their privacy) leading us to infor-
mation dependency and slavery?

There are several reasons for this situation: firstly,

1www.trustedcomputing.org
2The notion of DRM is often used for systems which con-

trol the use of digital content with the goal to protect the
(copy)rights of authors and holders of digital properties. For
instance, a digital content provider may sell consumers music
or video clips which run only on TCPA/Pd and the users are
prevented from making (unauthorized) copies.

3Microsoft, as the vendor of Palladium, is able to remotely
delete documents that are locally stored on a Pd-machine.

4For instance, word could encrypt all documents using
keys only known to Microsoft, making it impossible for rival
products (e.g., OpenOffice or StarOffice) to be compatible.

1

with a very few exceptions5, the public discussions
were solely dedicated to non-technical issues and led
to improper conclusions about the capabilities of
TCPA/Pd. Secondly, there exist very few technical
documentations on TCPA which can be analyzed
so far for the feedback purposes, and nearly noth-
ing technical is available on Palladium. Thirdly,
new announcements appear occasionally, attempt
to justify these platforms as security enhancements
for users but by giving obscure argumentation why
they are not appropriate for DRM applications. For
instance, in [25] it is claimed that TCPA is to pro-
tect user’s private data against remote attacks, and
since it is not tamper-resistant, it is also not suited
to DRM. However, if this is the goal of TCPA, then
there is also no need for a new chip since the smart-
cards already do the job. They have even the ad-
vantage that they are only bound to an individual
and not to a platform.6

To clarify some of these problems, we first define the
requirements for a trustworthy platform. By trust-
worthy we mean a platform which protects both the
privacy of users and the rights of digital content
providers in the sense of multilateral security. In
this context, users are free to accept or reject DRM
policies for each individual application without af-
fecting their own security requirements.

Based on a common layered computing platform ar-
chitecture, we analyze at which layers security and
DRM policies have to be enforced. Our analysis re-
lies on available documentations on TCPA/Pd. We
then evaluate to what extend TCPA/Pd satisfy or
violate these requirements. We come to the conclu-
sion that the hardware features of TCPA and Pal-
ladium in their basic form cannot harm the security
of the user, in the sense of the terrifying scenarios
mentioned above, if the underlying operating sys-
tem does not support the related scenarios.

Based on our experience in designing and imple-
menting security kernels, we propose design rules
that avoid such problematic scenarios. Further-
more, we propose an architecture for a trustworthy

5see, e.g.,[6] and [33]
6Another argument in [25] is that there are too many dif-

ferent possible system configurations to be managed by con-
tent providers to be able to enforce DRM policies. However,
in our opinion, there is no reason why this should be unman-
ageable. One could define a list of trusted components and
configurations and compute the required combinations on de-
mand. Alternatively, providers may support only a small set
of allowed configurations, e.g., a secure configuration of com-
mon operating systems.

platform and show how one can efficiently imple-
ment it using modern operating system technology
and the TCPA/Pd hardware. For a concrete real-
ization of such a system, we use an existing open-
source security kernel [23]. An additional advantage
of this approach is that it provides the open-source
community with an alternative solution to commer-
cial products.

2 Requirement Analysis

In general, IT-systems involve many different par-
ties having different interests, and thus different se-
curity requirements. We distinguish between secu-
rity requirements of the user or owner of IT-systems,
and the requirements of providers of digital con-
tent7. For our analysis of computing platforms we
use the common layered architecture as illustrated
in Figure 1. In the following, we differentiate be-
tween a secure platform, a DRM platform and a
trustworthy platform.

Hardware

Operating System Kernel

Operating System Environment

Application Application Application

Figure 1: Different layers of a general system archi-
tecture.

The hardware layer provides the interface of hard-
ware components like CPU, display, storage and
other peripheral devices. The operating system layer
controls hardware resources and implements strate-
gies to share them. The operating system environ-
ment layer offers services to the application layer to
ease the use of the operating system and is either
provided as libraries (e.g. the libc in Unix) or as
separated user-space processes (e.g., a daemon or
the Java virtual machine). At the application layer
users can execute their applications.

7Here, providers represent all parties who possess
(copy)rights on digital properties including authors and
rights holders.

2.1 Secure Platforms

In the conventional sense, secure platforms are those
systems that enforce security policies defined by
their users or owners to protect them against at-
tacks from inside and outside of the platform (e.g.,
against other users, remote adversaries and mali-
cious applications such as a virus or worm).

Traditional security targets to be achieved by secure
platforms are privacy, integrity and availability. The
measures used to enforce security policies are infor-
mation flow control and access control, where the
latter can be partitioned into two classes, manda-
tory access control (MAC) and discretionary access
control (DAC) [22]. To realize such policies the un-
derlying platform has to provide appropriate mech-
anisms. We postponed describing them to Section
2.3.

Trust Model. It is assumed that users do not
break their own security policy8. Further, users
trust all hardware and software components that
can break their security policy. The set of trusted
components is called TCB (Trusted Computing
Base). Users do not trust applications in gen-
eral. Moreover, we distinguish between two types
of threats, called Adv1 and Adv2. Adv1 is the gen-
eral case, where adversaries can access (manipu-
late or analyze) the hardware. This usually implies
tamper-resistance assumptions on hardware. Beside
the fact that tamper-resistance is a very strong as-
sumption, today’s computing platforms do not ful-
fill this assumption at all [4]. In Adv2 it is assumed
that the environment protects the hardware (e.g.,
by locks) in such a way that adversaries can only
perform attacks remotely (e.g., by a worm or virus).

Enforcing Security Policies. Security policies
can be enforced at different layers. Now we turn
our attention to the question at which layer secure
platforms should enforce security policies. We dis-
cuss advantages and disadvantages of possible ap-
proaches. Note that we do not discuss where and
how bypassing of policies can be prevented. This is
a completely orthogonal aspect which we consider
in Section 2.3.

8Nevertheless, unexperienced users may break their secu-
rity policy by mistake.

• Hardware: Enforcing security policies at this
layer is not very common since certain informa-
tion about the data, such as encoding or data
type information, is not available at this layer.
For instance, a harddisk cannot distinguish be-
tween a music track and an image.

• Operating System: Enforcing security poli-
cies at this layer is necessary, because any en-
tity controlling the hardware is capable of con-
trolling all other software components. Typi-
cal examples are the protected mode of com-
mon CPU’s or DMA (Direct Memory Access)
which allow the controlling entity to access ev-
ery physical memory region. However, the en-
forced policies are restricted to the data types
known to the operating system (mainly file,
user, process, etc.).

An important issue to note is that some secu-
rity policies such as mandatory access control
(MAC) have to be realized at this layer, since
they have to be applied system-wide.

• Operating System Environment: For en-
forcing security policies the same holds here as
for the application layer (see below).

• Application: Enforcing security policies at
this layer makes sense, because in contrast to
the other layers, it has information about the
data, such as encoding or the data type. Of-
ten it does not make a difference whether the
corresponding security policies are enforced by
the operating system or the application. The
reason is that for many practical uses the ap-
plication has to be trusted anyway.9

Research results in operating system security have
shown that secure platforms can be build using
modern operating system technology [23, 29, 17].
Optionally, smartcards can be used if the protec-
tion of cryptographic keys is of special interest [10].

2.2 DRM Platforms

Digital technology and media offer content providers
and producers many business opportunities and
users many advantages towards the realization of

9As an example, consider a signature application. No mat-
ter if the related security policy is implemented at the appli-
cation layer or at the operating system layer, the signature
application can always misuse its secret key.

new electronic marketplaces. In this context, trad-
ing digital goods over open networks, such as the
Internet, plays an important role. However, all
these technological possibilities for comfortable han-
dling and trading digital goods face us also with
challenging problems regarding copyright protection
of digital properties. Digital Rights Management
(DRM) platforms are often considered as systems
that should realize the appropriate environment for
trading digital works while protecting the rights of
authors and copyright holders. This is what we call
a DRM policy. Note that DRM policies attached to
digital works may get very complex, because rights
expressions may consist of permissions, constraints,
obligations, rights holders, etc. For instance, con-
sider Aisha and Bill who made a certain video (e.g.,
how to find oil in the dessert). George is only al-
lowed (usage permission) to watch certain parts of
the film for a certain number of times (constraint).
However, each time, George has to pay usage fee
(obligation to pay) to Aisha and Bill (rights holder).

To enforce DRM policies, one actually requires an
ideal “trusted media player”, also called “trusted
viewer” enabling only the authorized users to
“view” (watch, listen to, edit, execute, etc.) digital
works10 while controlling the use of works according
to the specified DRM policy.11 The realization of
such a trusted viewer requires the combination and
interplay of various components to achieve at least
some of the desired properties of an ideal “trusted
media player”.

Trust Model. In contrast to the trust model of
secure platforms, DRM platforms assume that users
are malicious. Both provider and user have to trust
the TCB, because it can break both security poli-
cies and DRM policies. Users do not have to trust
applications, but providers trust their own media
players. Here, only threat model Adv1 holds, be-
cause the user (which is untrusted) has physical ac-
cess to the platform. This implies tamper-resistance
assumptions. Past solutions were not satisfactory
for general purpose platforms. For instance, a way
for distributing software products is to use dongles,

10Note that the media player can control access to informa-
tion only within the platform. Users may still be able to make
unauthorized copies by using cameras or audio recorders.

11In this context, one of the earliest approaches for efficient
distribution of software is super distribution. The idea is to
make software freely available without any restriction, but,
the software would run on a system only if this system have
installed the “super distribution technology” (see [19] and
[15]).

hardware devices plugged, e.g., into the printer port.
The software does not work unless the dongle is in-
stalled. However, dongles turned out to be imprac-
tical for mass software market. Consumers did not
accept them since for each application a separate
dongle was needed (see also [2]).

Enforcing DRM Policies. Based on the layered
system architecture presented in Section 2.1 (see
Figure 1), we now discuss at which layer DRM poli-
cies can (or should) be enforced. Again, we do not
consider the required mechanisms to prevent that
policies can be bypassed. This will be mentioned in
Section 2.3.

• Hardware: As for security policies, the en-
forcement of DRM policies on this layer is
only meaningful for special purposes, e.g., mp3-
player that completely prevent read access to
the contained music tracks.

• Operating System: Enforcing DRM policies
is also possible at this layer, but very critical,
since it allows external entities to control the
system – a system-wide censorship of files is
one of the many possible horrible scenarios [3].
Furthermore, only a restricted number of data
types are known at this layer (see Section 2.1)
and complex DRM policies, as mentioned in the
example above, cannot be realized efficiently.
Nevertheless, the operating system has to en-
sure that applications cannot bypass enforce-
ment mechanisms of the application layer.

• Environment: The same argumentation
holds as for the application layer (see also Sec-
tion 2.1).

• Application: Enforcing DRM policies at the
application layer makes sense for the following
main reasons: first, the required information
about the used data types are only available
at this layer. Second, the policy defining en-
tity can only enforce the policy within the cor-
responding application and not system-wide.
Third, the provider of digital works has to trust
its own media player anyway.

2.3 Trustworthy Platforms

DRM policies and security policies often conflict,
e.g., if the externally controlled system-wide cen-

sorship contradicts with a locally defined availabil-
ity requirement of a user, or if a software product
can prevent the installation of competitive prod-
ucts. While users are interested in unrestricted
use, copying and even redistributing digital works,
the providers want to protect their digital goods
against misuse to limit financial damage. However,
providers are not always the victims: they may also
become the delinquents, and misuse DRM policies
against users (see also [3] and [28]).

Therefore, as mentioned in the introduction, we
need a platform that satisfies the requirements of
both sides on a reasonable level in the sense of mul-
tilateral security. To achieve this, we propose to
enforce DRM policies only at the application layer,
where, as we discussed above, the providers cannot
control more than their own media player and the
corresponding digital goods. This is by no means a
restriction on providers, because the media player
applications have to be trusted by providers at this
layer anyway. However, the provider must be en-
sured that the underlying platform layers guaran-
tee that users cannot circumvent the DRM policies.
This is what we call a trustworthy platform.

We will show in Section 4, after a brief review of
TCPA and Palladium, how to efficiently provide
such a platform by combining modern operating sys-
tem technology and the hardware of TCPA or Pal-
ladium. However, first we have to discuss the func-
tional requirements that have to be fulfilled by such
a trustworthy platform on a more technical level.

• Confidentiality and integrity of applica-

tion code and data during execution:

The system has to protect application data in
the memory during execution of the applica-
tion, e.g. to prevent concurrent processes from
accessing digital goods. The TCPA/Pd docu-
ments call this curtained memory.

In the operating system community curtained
memory is known as memory protection and
can be realized by mechanisms provided by
common CPU’s. An example is virtual ad-
dress spaces which can12 ensure that a process
cannot access a memory page of another pro-
cess. Additionally, all other mechanisms that
allow untrusted components to bypass mem-
ory protection must be prevented. For ex-
ample, an untrusted process must not be al-
lowed to access the video memory buffer of the

12In combination with an appropriate memory manager.

graphic adapter13 or to control DMA-enabled
devices14.

• Confidentiality and integrity of applica-

tion code and data during storage:

The system has to protect application data and
code when they are persistently stored, e.g.,
whenever digital contents are written into a file.
This is what TCPA/Pd call sealing.

In theory, it would suffice to have a complete
tamper-resistant platform, but the reality fre-
quently shows that this is a strong assumption
[4, 2]. Another approach is to use cryptographic
primitives such as encryption and authentica-
tion codes. Since applications can easily be bro-
ken by re-engineering methods, the keys should
not be stored in software. A possible approach
for Adv2 is the derivation of a master key (used
for sealing all other keys) entered by the user
at system startup.

For Adv1 the keys have to be stored into a
tamper-resistant module (e.g., a smartcard).
This is more reasonable than requiring a com-
plete tamper-resistant platform.

• Integrity of the operating system and un-

derlying hardware:

Systems have to protect the integrity of the
operating system and the underlying hardware
to allow them to satisfy the requirements men-
tioned above.

For instance, one can allow only a fixed and
trusted system configuration to be used. The
simplest way would be to put all critical parts
into a read-only module (e.g., a secure boot-
ROM). However, this module must be tamper-
resistant for Adv1. The main disadvantage of
this solution is its inflexibility, because it forces
users and providers to use a predefined system.

A more flexible approach allows users to ex-
plicitly change the system to be installed, e.g.,
by modifying the system BIOS after entering a
passphrase. Unfortunately, this approach can-
not be used if the platform configuration has to

13A piece of untrusted software that can read these buffers
has full access to digital content, and can therefore bypass
DRM policies. If write access is possible, the platform cannot
provide an application authentication mechanism any more.

14DMA (Direct Memory Access) allows peripheral hard-
ware, e.g., the video adapter or the sound card, to directly
access physical memory by circumventing memory protection
mechanisms. Thus malicious modules which control DRM-
enabled hardware (e.g., an unimportant device driver), can
bypass policy enforcing mechanisms.

be authenticated to external entities, because
users may maliciously modify the installed sys-
tem.

A possible solution is to ’bind’ digital content
to a specific system configuration. Binding in
this context means that encrypted documents
can only be decrypted by using the same system
configuration as used for encryption. The ad-
vantage of this approach is that both user and
provider can use any system they trust or use
different systems on the same hardware plat-
form. This is the way how TCPA and Palla-
dium work (see Section 3.1 and 3.2).

• Platform authentication:

The platform has to be able to authenticate
itself to its user and external entities.

Authenticating the platform (or, at least, to
visualize changes) to the user is important in
both Adv1 and Adv2 to prevent that adver-
saries modify or change critical components15.
An important issue in this context is providing
the user with a mechanism to securely verify
the results of the integrity check [1].

Authentication to external entities is required,
for instance, to convince providers of the cor-
rectness of the system configuration.

• Trusted path to user:

The platform has to ensure the confidentiality
of user’s input, e.g., preventing unauthorized
access to passwords. Further, the platform has
to provide a mechanism that allows users to
authenticate applications, e.g., to prevent faked
dialogs [30, 8].

Application authentication also requires a se-
cure application manager that provides the nec-
essary information about the applications, e.g.,
a unique, user-defined application name.

• Secure channel to devices and between

applications:

The platform has to guarantee integrity, confi-
dentiality and authenticity of inter-application
communication to allow applications to enforce

15While Palladium and TCPA allow an authentication of
external entities based on the provided keys (see also Section
3.1 and 3.2), there is no mechanism provided that allows
users to check whether their system is correct or not. Sealing
alone does not help here, because an adversary may install
a malicious operating system that behaves like the original
one (at least for some time, e.g., until the user has entered a
passphrase).

their own policy, e.g., to identify other applica-
tions. Further, the platform has to ensure that
untrusted components can neither read from
nor write to buffers of peripheral devices.

• Reliability:

Another important issue is the size of trusted
critical components. As stated in [25] a typical
Unix or Windows system (including major ap-
plications) consists of about 100 Million lines of
code (loc) and contains lots of security-related
bugs ([25] mentions about one per 100 LOC).

As a bottom line of this section, we can stress that
security and DRM requirements are not mutually
exclusive. Quite the contrary is the case: nearly all
required security measures overlap. Therefore, by
strictly separating the enforcement of DRM poli-
cies and security policies, it is possible to provide
a platform that allows external providers to enforce
their policies without allowing them to misuse these
mechanisms against users.

2.4 Consequences of DRM

If DRM is enabled, providers are capable of enforc-
ing any kind of policy within their specific media
player. This is independent of any design and is up
to the users whether they are willing to use a DRM
system or not. This implies, for instance, that a
media player can censor the documents that it con-
trols and that a TCPA/Palladium version of word
can encrypt its documents in such a way that other
products like open-office cannot read them. If users
desire to use DRM-enabled platforms and if they ac-
cept the underlying DRM conditions, then the only
possibility to prevent issues such as censorship is the
regulations by law.

The important aspect about a trustworthy platform
is that it allows users to freely decide whether to ac-
cept or to reject applications that use such policies.
If they do perform censorship, the provider has to
mention it in the purchase agreement. Especially, it
allows users to remove such an application without
consequences for the other applications or system
components.

3 TCPA and Palladium

In this section, we briefly review the architecture of
TCPA and Palladium and possible ways of enforcing
DRM policies. Moreover, we shortly compare their
main characteristics.

3.1 TCPA

Figure 2 outlines the required components of a
TCPA platform [12, 11]. Beside the conventional
hardware, TCPA consists of two tamper-resistant
modules called TPM (Trusted Platform Module)
and CRTM (Core Root Trust Module) and an oper-
ating system that supports these hardware modules.

Application Application Application

Hardware
CRTMTPMCPUVideoSound

New components

Existing components

TCPA TCPA TCPA

TCPA Operating System Environment

TCPA Operating System Kernel

Chipset

Figure 2: The TCPA architecture.

The main tasks of the CRTM is to initialize the
whole system when it is turned on, and to au-
thenticate the system BIOS (Basic Input Output
System) and the hardware configuration (installed
adapters, etc). The TPM performs mainly the plat-
form authentication and sealing by using an inter-
nally stored certified signing key (of a secure signa-
ture scheme) and an encryption key.

To authenticate the platform to external entities16

(e.g., providers of digital content), the TPM sends
to the challenging entity signed information about
the currently active system configuration. This al-
lows the provider to accept or reject the user’s sys-
tem configuration.

16Note that the TCPA specification does not consider au-
thentication to the local user. This security relevant feature
has to be additionally provided by software mechanisms.

If a provider wants to enforce a DRM policy, it en-
crypts the corresponding digital content, a list of
allowed system configurations and a list of the iden-
tifiers of the allowed media players using the en-
cryption key of the TPM. To use digital content the
corresponding application has to invoke the TPM
to decrypt it. The TPM reveals the content to the
application only if the current system configuration
and the invoking application are contained in the
lists. Sealing is performed in a similar way: if an
application invokes the TPM to seal data, the sys-
tem configuration, the application identifier and the
data are encrypted and signed by the TPM.

A TCPA system measures the system configuration
by observing the whole bootstrap process17. An
authentication chain is created starting with the
CRTM which will extend the BIOS of today’s PCs
[11]. The CRTM writes the authentication data of
the hardware to a protected area of the TPM. Then
the TPM hands over the control to the next instance
of the boot process, e.g., the boot sector. This pro-
cedure is continued until the operating system is
loaded. A more detailed technical overview is given
in [33].

Note that the TPM cannot distinguish between dif-
ferent applications. Thus, the application identifier
(e.g., a hash value of the application code) has to
be provided by the operating system.

3.2 Palladium

Unfortunately, no technical information about Pal-
ladium has been published. From the existing non-
technical descriptions one may derive an architec-
ture as outlined in Figure 3.

The main components of Palladium are a tamper-
resistant Palladium-CPU, Palladium-devices a secu-
rity chip called Security Support Component (SSC),
a Palladium motherboard chipset and a Palladium
kernel called nexus. In contrast to TCPA, Palla-
dium allows a conventional operating system to be
executed in parallel to the nexus18.

17The functionality is very similar to those described in [7].
18This is done by adding a new mode of operation that

allows the nexus to protect itself (and applications for which
the nexus acts as the operating system) against the conven-
tional operating system. A possible implementation of the
extension is to add another CPU protection ring, e.g. r

−1

below protection ring r0 [5] and give it capabilities to hide
memory pages and process structures to protect itself and

Existing components

New components

Hardware
VideoSound

Nexus

Environment

Application

Operating System Environment

Operating System Kernel

Application Application

Chipset SSC CPU

Palladium

Palladium

Figure 3: The Palladium architecture.

Similar to TCPA, Palladium can authenticate the
platform and can bind digital works to system con-
figurations. Since applications which depend on the
nexus do not depend on the conventional operating
system, it follows that the platform authentication
does only depend on the nexus and the underlying
hardware. This leads to a simpler mechanism for
measuring the system configuration than in TCPA,
since only the configuration of the nexus has to be
measured by the underlying platform.

System authentication, sealing and the enforcement
of DRM policies is similar to the mechanisms de-
scribed in Section 3.1.

3.3 Comparison

In our opinion, the functionalities provided by Pal-
ladium and TCPA are similar, at least on a technical
level. TCPA provides a basis for developing DRM
applications on top of it, and leaves it to developers
whether and how to provide backward compatibility
to existing operating systems. The backward com-
patibility on top of TCPA may be reached by the
following approaches:

• One can extend an existing operating system
by TPM-supporting features and develop, e.g.,
a TCPA-Windows or TCPA-Linux 19. The dis-
advantage of this approach is obvious: Both
Windows and Linux have monolithic kernels

critical applications from code executed on r0 or above (the
conventional operating system).

19e.g., see www.research.ibm.com/gsal/tcpa/

containing critical and uncritical components
without protection mechanisms between them.
Therefore, one bogus or faulty part (e.g., an
unimportant device driver) can compromise the
whole system allowing adversaries to circum-
vent security and DRM policies. The exist-
ing and continously announced patches and ex-
ploits signify the problems of such kernels. We
do not expect them to become more stable in
the future since their internal structure has to
be frequently adapted due to new hardware and
user requirements.

• Alternatively, one can securely separate critical
and uncritical parts by developing a small and
stable kernel that executes a conventional op-
erating system and DRM applications in paral-
lel. The resulting architecture would be similar
to those suggested by Microsoft, except that
it can be provided with existing operating sys-
tem and hardware technology [23, 16]. This is
a very promising approach which we will ex-
plain in more details in Section 4 to overcome
the concerns about TCPA and Palladium.

In contrast to TCPA, the Palladium solution al-
lows a conventional operating system to run in par-
allel to the DRM kernel (nexus). This backward
compatibility is achieved only through new hard-
ware components. This concerns the CPU design
for Palladium and new designs of hardware exten-
sions like a Palladium-enabled graphic adapter or
a Palladium-enabled sound card: they have to pre-
vent the conventional operating system from reading
the data which is written into the adapter buffer by
DRM applications. Although the available mate-
rial on Palladium does consider this requirement, it
is not clear whether Palladium has forseen mecha-
nisms that prevent the conventional operating sys-
tem from writing into the buffer of such devices. As
we remarked earlier, this is an important security re-
quirement to authenticate applications for protect-
ing the user against faked dialogs [30, 8].

Both TCPA and Palladium provide only a subset of
the requirements discusses in Section 2. These are
platform authentication and protection of data in-
tegrity and confidentiality. The mechanisms for re-
alizing these requirements are passive mechanisms
and rely on the operating system. The other re-
quirement must be fulfilled by the operating system.
Therefore, the terrifying scenarios described in the
introduction can occur only if the operating system
supports the corresponding policies. Nevertheless,

care must be taken that also future designs of hard-
ware make only use of passive mechanisms.

According to the available documentation, it is un-
clear to us how TCPA/Pd could better protect users
against viruses and spam than existing tools, since
both cannot be prevented using integrity preserv-
ing mechanisms. TCPA/Pd may only reduce the
damage caused by viruses by protecting the confi-
dentiality and the integrity of application code us-
ing the provided sealing mechanism. However, this
feature can only be used by TCPA-enabled appli-
cations. Existing applications (especially the con-
ventional operating system in Palladium) remain as
insecure as before.

4 Towards a Trustworthy Platform

In this section, we show how to provide a trustwor-
thy platform that fulfills the requirements of users
(security) and the providers (DRM) using modern
operating system technology. The idea is, as already
discussed in Section 2.3, to implement the DRM
policies at the application layer based on any hard-
ware platform which supports DRM such as TCPA
and Palladium. To preserve the security of the
user (against misuse by providers) the communica-
tion between the application layer and the hardware
layer is controlled by a trustworthy layer (kernel).
This kernel provides the appropriate environment
where users can define their own policies. Further,
the implementation of the trustworthy platform en-
sures that users cannot circumvent the DRM poli-
cies that they have already accepted. This require-
ment is fulfilled since core components of the the
trustworthy platform cannot be manipulated by the
user at runtime.

The architecture we propose is outlined in Figure 4.
As one can see, DRM applications and secure appli-
cations (e.g., a digital signature) can run in parallel
on top of the trustworthy platform (above the green
line). To be backward compatible to existing plat-
forms, it would be desirable that the trustworthy
platform offers the appropriate binary interfaces of
a conventional operating system.

To fulfill the requirements we discussed in Section
2.3, the trustworthy kernel provides the following
features:

Conventional Operating System

Operating System Kernel

Operating System Environment

Application Application Application

Existing components

New components

(e.g. Linux)

Hardware
TCPA or Palladium

green
line

red
line

Trustworthy Kernel

Secure and DRM
Applications

Figure 4: An overview of the proposed architecture
for a trustworthy platform. The green line indicates
the border between application layer and trustwor-
thy platform.

• It protects confidentiality and integrity of appli-
cation code and data during execution by con-
trolling the memory protection mechanisms of
the CPU, and by providing a memory manager
which strictly separates memory pages of appli-
cations. Further, the trustworthy kernel con-
trols all other hardware components that are
able to bypass the memory protection mech-
anism. For this, the security kernel ensures
that only its components can (i) access mem-
ory buffers of hardware components (e.g., of
the video adapter or the sound adapter) and
(ii) control the hardware components which are
able to perform DMA.

• It protects confidentiality and integrity of appli-
cation code and data during storage by a seal-
ing interface and a boot manager. The sealing
interface allows applications to use the sealing
functionality provided by the underlying hard-
ware. The boot manager is a module which pro-
tects application code during persistent stor-
age.

• It protects the integrity of the operating system
and the hardware when the system is off. This
is done implicitly by using the sealing mech-
anisms as described in Section 2.3. Addition-
ally, the integrity of the operating system is pro-
tected during execution, since the trustworthy
kernel is the only component that runs in pro-
tected mode.

• It allows platform authentication by using the
appropriate features of the underlying hard-
ware (see Section 3). To prevent the leakage of
information about the platform configuration
against user’s will, a response to an authenti-
cation challenge is only generated if the user
agrees.

• It provides a trusted path to users by controlling
common user I/O components like keyboard,
display and mouse. Further, the trustworthy
kernel controls a protected region of the dis-
play for application authentication purposes,
e.g., displaying the application’s name.

• Integrity and confidentiality of the communica-
tion channel between applications is provided
by the underlying IPC (Inter-Process Commu-
nication) mechanism. Authentication of appli-
cations is provided by an additional service,
e.g., by a mapping between local process iden-
tifiers and authentication codes.

• An Application Manager controls the applica-
tions to be installed and enforces a user-defined
security policy. Possible instantiations would
be the use of code signing, source-code anal-
ysis, object analysis, or proof-carrying code
[27, 26, 32, 21]. The application manager uses
the cryptographic features of the TCPA/Pd
hardware to be able to decrypt DRM applica-
tions and then generates unique identifier for
applications (e.g., an authentication code for
the TCPA/Pd hardware and a unique identi-
fier for the authentication by users). Addition-
ally, the application manager allows the user to
set system-wide access control rules (e.g., allow
two applications to communicate or not).

The trustworthy platform mentioned above can be
implemented efficiently by a slightly modified se-
curity kernel. A concrete existing implementation
of such a kernel is PERSEUS20 [23] which we will
shortly describe in the following section.

4.1 PERSEUS Security Kernel

PERSEUS is a security architecture developed
based on the functional requirements of the Com-
mon Criteria [22]. Its main design goal was to real-

20www.perseus-os.org

ize a very small21 (and thus manageable, stable and
evaluable) security kernel for conventional hardware
platforms such as IBM-PC and personal devices like
PDA’s. The architecture of PERSEUS is illustrated
in Figure 5.

Conventional Operating System

Operating System Kernel

Operating System Environment

Application Application Application

Existing components

New components

(e.g. Linux)

PERSEUS Security Kernel

Hardware

Secure
Apps

Figure 5: An overview over the PERSEUS architec-
ture.

In contrast to other security approaches in the con-
text of operating systems, PERSEUS acts as a small
security kernel that controls all critical hardware re-
sources to be able to protect security critical appli-
cations. It is located between hardware and conven-
tional operating system. On the top of PERSEUS a
conventional operating system (Linux) runs in par-
allel to security-critical applications. Controlled by
the security kernel, it provides users a common en-
vironment to execute uncritical applications.

The PERSEUS security kernel is based on an ef-
ficient microkernel and provides all critical system
services and device drivers as separated processes (a
so-called multi-server system). This prevents that
errors of one component can affect others. Security-
critical applications and the conventional operating
system are realized as separated processes which can
only communicate to each other or to the underlying
hardware through the security kernel. This allows
PERSEUS to enforce its own user-defined security
policy.

To obtain a trustworthy platform, the PERSEUS
security kernel must be extended with appropriate

21By counting all lines of code (loc) we get the following
sizes: microkernel (the only component that is executed in
protected mode) 1911 loc, resource-manager 2201 loc, secure
services including trusted path, logserver, sealing, utility lib
and gui lib about 1650 loc. Thus, the complete TCB (Trusted
Computing Base) has a size far below 10.000 loc.

features, e.g., by adding TPM support to PERSEUS
based on the source-code provided by IBM22. The
trustworthy kernel could have the structure as
shown in Figure 6.

Microkernel

Trustworthy User Interface

DMA Controller Memory Manager

Application ManagerBoot Manager

Access Control

red
line

line
green

Figure 6: A more detailed illustration of the possible
architecture of a trustworthy kernel if it is based
on the PERSEUS security architecture. Again, the
green line indicates the border between application
layer and trustworthy platform.

4.2 Advantages of the Proposed Plat-
form

In summary, the proposed trustworthy platform has
the following advantages:

• It allows providers to protect their digital goods
by DRM mechanisms and it protects security
interests of users.

• It provides a high security level, because it
benefits from TCPA/Pd features like DMA-
protection, a true random generator and a se-
cure bootstrap architecture.

• It provides backward-compatibility to an ex-
isting operating system without the need to
change the underlying hardware, as required by
Palladium.

• It allows the parallel execution of other pro-
prietary operating systems, e.g., Windows, be-
cause it can be used as a nexus in a Palladium
environment.

• Depending on the hardware platform, existing
protection mechanisms (e.g. DMA control by
the motherboard chipset) can be used or imple-
mented in software.

• The size of critical components is very small
compared to a conventional operating system

22www.research.ibm.com/gsal/tcpa/

like Windows and Linux. This allows an effi-
cient evaluation of critical components, or even
a formal verification of the source-code (the mi-
crokernel used by the PERSEUS security plat-
form is currently formally verified [18]).

• The distribution under the GNU GPL open-
source license allows every user to verify the im-
plementation or compile it with its own trusted
compiler.

• The architecture is open and not developed by
any particular company preventing a monopoly.
Further, unnoticed modifications, e.g., back-
doors by any organization are prevented.

5 Conclusion

In this paper, we evaluate the capabilities of
Microsoft Palladium (recently renamed to “next-
generation secure computing base for Windows”)
and TCPA based on the available documentation.
Independent of the concrete hardware, we define
general requirements for different types of plat-
forms: (i) security platform where users’ security
policies are enforced, (ii) DRM platform where con-
tent provider policies are enforced and (iii) trust-
worthy platform which allows users to protect their
privacy and allows content providers to protect their
copyrights.

We come to the conclusion that TCPA/Palladium
can be used as security and DRM platforms. The
DRM capabilities of TCPA/Palladium can be mis-
used against users, if the underlying operating sys-
tem does not prevent it. The philosophy behind
the trustworthy platform is the strict separation be-
tween the enforcement of DRM policies and security
policies. This allows user security policies and DRM
policies to coexist and gives users the freedom to
accept or reject a DRM application without further
consequences.

We present an architecture for a trustworthy plat-
form that contains a trustworthy kernel. The ker-
nel can rely on the features of TCPA/Pd hardware
to prevent users from violating the DRM policies
they have already accepted. Further, it prevents
providers from misusing DRM policies against users.
The proposed architecture is based on a concrete
existing implementation of an open-source security
kernel called PERSEUS.

According to our experience in developing secu-
rity kernels, the trustworthy kernel can be imple-
mented without much effort, providing the open-
source community an alternative to commercial
products. With the proposed architecture we also
demonstrate that highly secure systems can profit
from the features of TCPA or Palladium. However,
the border between the security and the censorship
is small and the community should observe further
developments in this area carefully.

References

[1] A. Alkassar and C. Stüble. Towards secure iff
- preventing mafia fraud attacks. In Proceed-
ings of IEEE Military Conference (MILCOM),
2002.

[2] R. J. Anderson. Security Engineering — A
Guide to Building Dependable Distributed Sys-
tems. John Wiley & Sons, 2001.

[3] R. J. Anderson. The TCPA/Palladium
FAQ. http://www.cl.cam.ac.uk/ rja14/tcpa-
faq.html, 2002.

[4] R. J. Anderson and M. Kuhn. Tamper re-
sistance – a cautionary note. In Proceedings
of the 2nd USENIX Workshop on Electronic
Commerce [31], pages 1–11.

[5] J. L. Antonakos. The Pentium Microprocessor.
Prentice Hall Inc., 1997.

[6] B. Arbaugh. The TCPA; what’s wrong;
what’s right and what to do about.
http://www.cs.umd.edu/ waa/TCPA/TCPA-
goodnbad.html, 2002.

[7] W. A. Arbaugh, D. J. Farber, and J. M. Smith.
A reliable bootstrap architecture. In Pro-
ceedings of the IEEE Symposium on Research
in Security and Privacy, pages 65–71, Oak-
land, CA, May 1997. IEEE Computer Society,
Technical Committee on Security and Privacy,
IEEE Computer Society Press.

[8] N. Asokan, H. Debar, M. Steiner, and M. Waid-
ner. Authenticating public terminals. Com-
puter Networks, 31(8):861–870, May 1999.

[9] A. Carroll, M. Juarez, J. Polk, and
T. Leininger. Microsoft ”Palladium”: A
business overview. Technical report, Microsoft
Content Security Business Unit, August 2002.

[10] P. C. Clark and L. J. Hoffman. BITS: A smart-
card protected operating system. Communica-
tions of the ACM, 37(11):66–70, Nov. 1994.

[11] T. T. Committee. TCPA PC specific imple-
mentation specification v1.00. Technical re-
port, TCPA Alliance, September 2001.

[12] T. T. Committee. Trusted computing plat-
form alliance (TCPA) main specification v1.1b.
Technical report, TCPA Alliance, February
2002.

[13] M. Corporation. Building a secure platfrom
for trustworthy computing. Technical report,
Microsoft Corporation, 2002.

[14] M. Corporation. Microsoft ”Palladium” tech-
nical FAQ. http://www.microsoft.com, Aug.
2002.

[15] B. Cox. Superdistribution, Objects as Property
on the Electronic Frontier. Addison-Wesley
Publishing Company, 1996.

[16] H. Härtig, M. Hohmuth, and J. Wolter. Taming
linux. In Proceedings of PART’98. TU Dresden,
1998.

[17] H. Härtig, O. Kowalski, and W. Kühnhauser.
The BirliX security architecture. Journal of
Computer Security, 2(1):5–21, 1993.

[18] M. Hohmuth, H. Tews, and S. G. Stephens. Ap-
plying source-code verification to a microkernel
- the vfiasco project. In Proceedings of the 10th
ACM European SIGOPS Workshop, 2002.

[19] R. Mori and M. Kawahara. Superdistribution:
the concept and the architecture. Technical Re-
port 7, Inst. of Inf. Sci. & Electron (Japan),
Tsukuba Univ., Japan, July 1990.

[20] C. Mundie, P. de Vries, P. Haynes, and M. Cor-
wine. Microsoft whitepaper on trustworthy
computing. Technical report, Microsoft Cor-
poration, Oct. 2002.

[21] G. C. Necula and P. Lee. Safe kernel exten-
sions without run-time checking. In USENIX,
editor, 2nd Symposium on Operating Systems
Design and Implementation (OSDI ’96), Octo-
ber 28–31, 1996. Seattle, WA, pages 229–243,
Berkeley, CA, USA, 1996. USENIX.

[22] C. C. P. S. Organisations. Common Crite-
ria for Information Technology Security Evalu-
ation (Version 2.1). Common Criteria Project

Sponsoring Organisations, 1999. adopted by
ISO/IEC as Draft International Standard IS
15408 1-3.

[23] B. Pfitzmann, J. Riordan, C. Stüble, M. Waid-
ner, and A. Weber. The PERSEUS sys-
tem architecture. Technical Report RZ 3335
(#93381), IBM Research Division, Zurich Lab-
oratory, Apr. 2001.

[24] D. Safford. Clarifying misinformation on
TCPA. White paper, IBM Research, Oct. 2002.

[25] D. Safford. The need for TCPA. White paper,
IBM Research, Oct. 2002.

[26] F. B. Schneider. Enforceable security policies.
ACM Transactions on Information and System
Security, 3(1):30–50, Feb. 2000.

[27] F. B. Schneider, G. Morriset, and R. Harper. A
language-based approach to security. In R. Wil-
helm, editor, Informatics – 10 Years Back, 10
Years Ahead, volume 2000 of Lecture Notes
in Computer Science, pages 86–101. Springer-
Verlag, Berlin Germany, 2001.

[28] B. Schneier. Palladium and the TCPA.
http://www.counterpane.com/crypto-gram-
0208.html#1.

[29] J. S. Shapiro, J. M. Smith, and D. J. Farber.
EROS: a fast capability system. In Proceed-
ings of the 17th ACM Symposium on Operating
Systems Principles (SOSP’99), pages 170–185.
Kiawah Island Resort, near Charleston, Sout
Carolina, Dec. 1999. Appeared as ACM Oper-
ating Systems Review 33.5.

[30] J. D. Tygar and A. Whitten. WWW electronic
commerce and Java Trojan horses. In Proceed-
ings of the 2nd USENIX Workshop on Elec-
tronic Commerce [31], pages 243–250.

[31] USENIX. Proceedings of the 2nd USENIX
Workshop on Electronic Commerce, Oakland,
California, Nov. 1996.

[32] R. Wahbe, S. Lucco, T. E. Anderson, and S. L.
Graham. Efficient software-based fault isola-
tion. ACM SIGOPS Operating Systems Re-
view, 27(5):203–216, December 1993.

[33] Wintermute. TCPA and Pal-
ladium technical analysis.
http://wintermute.homelinux.org/miscelanea/TCPA
Security.txt, Dec. 2002.

	Introduction
	Requirement Analysis
	Secure Platforms
	DRM Platforms
	Trustworthy Platforms
	Consequences of DRM

	TCPA and Palladium
	TCPA
	Palladium
	Comparison

	Towards a Trustworthy Platform
	PERSEUS Security Kernel
	Advantages of the Proposed Platform

	Conclusion

