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Abstract Today, virtualization technologies and hypervisors celebrate
their rediscovery. Especially migration of virtual machines (VMs) be-
tween hardware platforms provides a useful and cost-e�ective means to
manage complex IT infrastructures. A challenge in this context is the
virtualization of hardware security modules like the Trusted Platform
Module (TPM) since the intended purpose of TPMs is to securely link
software and the underlying hardware. Existing solutions for TPM vir-
tualization, however, have various shortcomings that hinder the deploy-
ment to a wide range of useful scenarios. In this paper, we address these
shortcomings by presenting a �exible and privacy-preserving design of a
virtual TPM that in contrast to existing solutions supports di�erent ap-
proaches for measuring the platform's state and for key generation, and
uses property-based attestation mechanisms to support software updates
and VM migration. Our solution improves the maintainability and appli-
cability of hypervisors supporting hardware security modules like TPM.

1 Introduction
Corporate computing today is characterized by enterprises managing their own
IT infrastructure. In his article, �The end of corporate computing� [1], Nicholas
G. Carr predicts a shift from holding corporate assets to purchasing services
from third parties. Similar to electricity suppliers, there would be enterprises
o�ering IT functionality to other companies. Virtualization technology would be
one of the key drivers of the changing IT paradigm.

Indeed, virtualization enables the deployment of standardized operating envi-
ronments on various hardware platforms, features the execution of several virtual
machines (VMs) on a single platform, and allows to suspend a VM and resume
it at a later time. An important feature of virtualization is that one can migrate
a VM between hardware platforms, which allows an easy transfer of working
environments, e.g., in case of hardware replacements or switching to another
computer. Moreover, Virtual Machine Monitors (VMM), or hypervisors, are also
known to be an e�cient way to increase the security of computer systems [2].
They provide isolation between VMs by mediating access to hardware resources
and by controlling a rather simple interface of resources compared to a full oper-
ating system. Thus, di�erent environments can be protected against harm from



other environments or violations of user privacy. For instance, an employee can
simply separate home and o�ce usage in VMs.

Trusted Computing is considered to be another promising concept to im-
prove trustworthiness and security of computer systems. The Trusted Comput-
ing Group (TCG), an industrial initiative towards the realization of Trusted
Computing, has speci�ed security extensions for commodity computing plat-
forms. The core TCG speci�cation is the Trusted Platform Module (TPM) [3,4],
currently implemented as cost-e�ective, tamper-evident hardware security mod-
ule embedded in computer mainboards. The TPM provides a unique identity,
cryptographic functions (e.g., key generation, hash function SHA-1, asymmet-
ric encryption and signature), protected storage for small data (e.g., keys), and
monotonic counters (storing values that can never decrease). Moreover, it pro-
vides the facility to securely record and report the platform state (so-called
integrity measurements) to a remote party. The platform state typically consists
of the hardware con�guration and the running software stack, which is measured
(using cryptographic hashing) and stored in the TPM. Several operating system
extensions [5,6] already support the TPM as underlying security module.

In this context, the combination of virtualization and trusted computing pro-
vides us with new security guarantees such as assurance about the booted VMM,
but it also faces us with new challenges. On the one hand, VMs should be �exible
to support migration. On the other hand, security modules like the TPM act
as the root of trust attached to the hardware, and must be shared by various
VMs. Hence, di�erent approaches for TPM virtualization have already been pro-
posed [7,8,9]. Being able to migrate a VM together with its associated virtual
TPM (vTPM) is of special importance to guarantee the availability of protected
data and cryptographic keys after migration. However, the existing solutions
have some shortcomings which strongly limit their deployment: After migrating
a VM and its vTPM to another platform with di�erent integrity measurements
than the source platform, or after performing an authorized update of software,
the VM cannot access cryptographic keys and the data protected by those keys
anymore. This hinders the �exibility of migrating the VM to a platform pro-
viding the same security properties but di�erent integrity measurements as the
source platform. Moreover, di�erentiated strategies for key generation and us-
age are missing. Some IT environments demand for cryptographic keys generated
and protected by the hardware TPM while some VMs would bene�t from the
performance of software keys. In addition, some VMs can be migratable while
others must not be.

Contribution. In this paper we address these problems in the following way:
� We propose a vTPM architecture that supports various functions to measure

the state of the platform, various usage strategies for cryptographic keys, and
both based on a user-de�ned policy of the hypervisor system (Sect. 5).

� We show how the new measurement functions of our vTPM can be used to
realize property-based attestation and sealing. Our design can protect user
privacy by �ltering properties to be attested in order to not disclose the
particular system con�guration (Sect. 6).



� We allow a transparent migration of vTPM instances to platforms with a
di�erent binary implementation and show this is possible without losing the
strong association of security properties (Sect. 7).

Moreover, our design does not require to modify the software of a VM (except for
the driver in the guest OS that interfaces to the vTPM instead of the hardware
TPM). Existing TPM-enabled applications directly pro�t from the �exibility of
the underlying vTPM. We expect furthermore that our vTPM design can be
realized based on other secure coprocessors [10,11] because of its �exibility and
high-level abstraction of functionality.

Outline. We describe typical use cases that need �exible vTPMs in Sect. 2 and
de�ne corresponding requirements in Sect. 3. Section 4 considers background of
the TPM and discusses the related work. We present our contribution in Sect. 5,
6, and 7, whereas we address in Sect. 8 how we achieve the requirements.

2 Use Case Scenario: Corporate Computing

We consider the use case in a corporate setting as our running example to make
various essential requirements on VMs and vTPMs more clear. Nevertheless,
these requirements also hold for many other applications such as e-government,
grid computing, and data centers.

Suppose an enterprise employee uses a laptop for both corporate and private
tasks which run in isolated VMs (Fig. 1).

Figure 1. Private and corporate working environments with virtual TPMs.

Private working environment: This environment may use the TPM, e.g., to
protect the key of a hard-disk encryption program or the reference values of an
integrity checker. Using existing vTPM approaches, the protected data would
become unavailable if the user updates a software component within the VM.
Unclassi�ed corporate environment is for processing unclassi�ed data of
the company. Users should be able to migrate this VM to their computer at



home to continue working. After migration, access to protected data and report-
ing integrity measurements of the VM should still be possible as long as the
underlying platform conforms to the company's security policy.
Classi�ed corporate environment: This environment is for processing clas-
si�ed data. Hence, it has stronger security requirements regarding the usage of
encryption keys. To access a corporate VPN, the company's security policy may
require this environment to be bound to this speci�c hardware and that the
cryptographic keys are protected by a physical TPM.

3 Requirements on TPM Virtualization

The scenarios described above show the need for a �exible vTPM architecture
that supports all required functionalities. We consider the main requirements
of such an architecture below, where we add new requirements R5-R8 to those
(R1-R4 ) already identi�ed by [7].

R1 Con�dentiality and integrity of vTPM state: All internal data of a vTPM
(keys, measurement values, counters, etc.) have to be protected against unau-
thorized access.

R2 Secure link to chain of trust : There must be an unforgeable linkage between
the hardware TPM and each vTPM as well as between the VM and its
associated vTPM. This includes trust establishment by managing certi�cate
chains from the hardware TPM to vTPMs.

R3 Distinguishability : Remote parties should be able to distinguish between
a real TPM and a vTPM since a virtual TPM may have di�erent security
properties than a physical one.

R4 Uncloneability and secure migration: The state of a vTPM shall be protected
from cloning, and it can be securely (preserving integrity, con�dentiality, au-
thenticity) transferred to another platform if the destination platform con-
forms to the desired security policy.

R5 Freshness: The vTPM state shall not be vulnerable to replay attacks (e.g.,
an adversary shall not be able to reset the monotonic counters of a vTPM).

R6 Data availability : Data sealed by a vTPM should be accessible if the plat-
form provides the desired security properties. This should also hold after
migration or software updates.

R7 Privacy : Users should be able to decide which information about the plat-
form state (con�guration of hardware and hypervisor) is revealed to a VM
or to a remote party.

R8 Flexible key types: Di�erent protection levels and implementations of cryp-
tographic keys should be supported (as described in the use case scenarios).

As we will discuss later, the existing vTPM solutions do not ful�ll all require-
ments of the typical use cases as described in Sect. 2.



4 Background and Related Work

4.1 The Trusted Platform Module

The TPM has two main key (pairs): the Endorsement Key (EK) representing
the TPM's identity and the Storage Root Key (SRK), used to encrypt other keys
generated by the TPM (which are stored outside the TPM). The TPM supports
trusted boot by allowing to record measurements of the hardware con�gura-
tion and software stack during the boot process. These measurements (typically,
SHA-1 hash of binaries) are stored in speci�c TPM registers called Platform
Con�guration Registers (PCRs). Adding a hash m to a PCR is called extension
and requires to use the function TPM_Extend(i, m), which concatenates m to
the current value of the i-th PCR by computing a cumulative hash.

Based on these PCR values, the TPM provides the sealing functionality,
i.e., binding encrypted data to the recorded con�guration, and attestation, i.e.,
reporting the system state to a (remote) party. The latter uses the function
TPM_Quote, which presents the recorded PCR values signed by an Attestation
Identity Key (AIK) of the TPM. The AIK plays the role of a pseudonym of the
TPM's identity EK for privacy reasons, but to be authentic the AIK must be
certi�ed by a trusted third party called Privacy-CA.

4.2 Integrity Measurement

AEGIS [12] performs an integrity check during the boot process of the operating
system and builds a chain of trust based on root reference values protected by
special hardware. Enforcer [13] is a Linux kernel security module operating as
integrity checker for �le systems. It uses a TPM to verify the integrity of the
boot process and to protect the secret key of an encrypted �le system. IMA [6]
inserts measurement hooks in functions relevant for loading executable code in
Linux in order to extend the measurement chain to the application level.

Enforcer and IMA are examples of TPM-enabled applications which could
be used and executed in a VM that has a vTPM.

4.3 Property-Based Attestation

TCG binary attestation has some important drawbacks: (i) disclosure of plat-
form con�guration information could be abused for platform tracking (privacy)
and discriminating against speci�c system con�gurations; (ii) lack of �exibil-
ity, i.e., data bound to a particular con�guration is rendered inaccessible after
system migration, update or miscon�guration (data availability); (iii) less scala-
bility due to necessary management of every trusted platform con�guration. To
tackle these problems, property-based approaches were proposed in the litera-
ture (see below): Instead of attesting hash values of binaries, they attest abstract
properties describing the behavior of a program or system, e.g., that the hyper-
visor is certi�ed according to a certain Common Criteria protection pro�le. The
advantage is that properties can remain the same even if the binaries change.



Haldar et al. [14] present an approach exploiting security properties of pro-
gramming languages, e.g., type-safety. This allows to provide a mechanism for
runtime attestation. However, it requires a trusted language-speci�c execution
environment and is limited to applications written in that language.

Jiang et al. [15] have shown that it is possible to have certi�cates stating
that the keyholder of a certain public key has a desired property, e.g., to be an
application running inside an untampered secure coprocessor.

A pragmatic approach for property-based attestation uses property certi�-
cates [16,17,18]. A trusted third party (TTP) issues certi�cates cert(pkTTP , p,m),
signed by the TTP's public key pkTTP , and stating that a binary with hash m
has the property p. When a PCR of the TPM is going to be extended with a
measurement value, a translation function looks for a matching certi�cate. If the
function can �nd and verify a matching certi�cate, it extends the PCR with the
public key pkTTP or, as proposed by [19], with a bit string representation of p.
If no certi�cate is found or the veri�cation fails, the PCR is extended with zero.

While these approaches can be applied to existing TPMs or vTPMs by adding
the translation function to a trusted component outside of the (v)TPM, we apply
the translation functions inside our vTPM (Sect. 5.1)3. This allows us to control
the translation in each vTPM instance individually and reduces the dependency
of external software components (e.g., running in VMs).

4.4 Trusted Channel

A trusted channel is a secure channel with the additional feature that it is bound
to the con�guration of the endpoint(s). An attestation (binary or property-
based) of the involved endpoint(s) is embedded in the establishment of the secure
channel [20,21]. Hence, each endpoint can get an assurance whether the counter-
part complies with trust requirements before the channel is settled. Asokan et
al. [22] describe a protocol which creates a secret encryption key that is bound
not only to the TPM of the destination platform, but also to the con�guration
of the trusted computing base (TCB). Binding a key to the con�guration of the
underlying TCB has been used with TPM [13] and secure coprocessors [15,10].

4.5 TPM Virtualization

Berger et al. [7] propose an architecture where all vTPM instances are executed
in one special VM. This VM provides a management service to create vTPM
instances and to multiplex the requests. To protect the vTPM state when it is
stored on persistent memory, the state is encrypted using the sealing function of
the physical TPM. Optionally, the vTPM instances may be realized in a secure
coprocessor card. Compared to a real TPM, the vTPM has a di�erent certi�cate
for its vEK, e.g., including a statement that it is virtual. Thus, a verifying
party will be able to distinguish between a vTPM and a TPM. The authors
3 We use the simple version of property certi�cates, e.g., issued by a corporate CA,
certifying �approved by IT department�.



discuss di�erent strategies for trust establishment, i.e., the way new certi�cates
are issued for a vTPM: (a) The vEK is signed by the AIK of the physical TPM
and the vTPM requests certi�cates for its vAIKs at a privacy CA. (b) The TPM
directly signs the vAIK with its AIK. (c) A local CA issues a certi�cate for the
vEK of the vTPM.4 In order to extend the chain of trust, they link the vTPM
to its underlying TCB by mapping the lower PCRs of the real TPM to the
lower PCRs of a vTPM. This is supposed to enable the vTPM to include the
con�guration of the underlying hypervisor platform during attestation.

However, this approach has the restriction that after migrating a VM and its
vTPM to a di�erent hypervisor platform, the VM cannot access data that was
sealed by the vTPM on the source platform (R6 data availability). In our ap-
proach, we show how property-based measurement can be realized in the vTPM
while the interface to the VM remains the same as for binary attestation. This
removes the restriction that migration is only possible between binary identical
platforms. Moreover, our design allows �exible key types (R8 ) and protects pri-
vacy (R7 ) by allowing to �lter the information to be revealed during attestation.

GVTPM [9] is an architectural framework that supports various TPMmodels
and di�erent security pro�les for each VM under the Xen hypervisor [23]. The
authors discuss two di�erent vTPM models: software-based and hardware-based.
The former generates and uses cryptographic keys entirely in software, whereas
the latter uses the keys of the physical TPM. GVTPM is not limited to TPM
functionality and may be generalized to any security coprocessor. This is similar
to our approach since we also use a high-level abstraction of TPM functionality.
However, they realize �exible key types with di�erent vTPM models, whereas
our vTPM design can support both. Moreover, GVTPM does not address our
requirements of data availability (R6 ) and privacy (R7 ).

Anderson et al. [24] realize the implementation of vTPM instances as isolated
domains instead of running all vTPMs in one privileged VM. Except for the
implementation, they provide no new aspects of the vTPM, but refer to [7].
Our architecture can also execute vTPM instances in isolated domains since our
approach does not depend on a speci�c implementation.

Goldman and Berger [8] have speci�ed additional commands that would be
needed to enhance a physical TPM to directly support VMs. The realization is
similar to [7], except that the vTPM-speci�c functions are realized within the
hardware TPM. Hence, they do not address data availability (R6 ) and privacy
(R7 ). Moreover, there is no such enhanced TPM chip model available at present.

5 Flexible vTPM Architecture
This section describes the general design of our vTPM architecture. For each
VM that needs a vTPM, there is a separate vTPM instance. We assume the
underlying hypervisor to protect the internal state and operations of each vTPM
from any unauthorized access. This can be achieved by using a secure hypervisor
4 For our example scenario, we can choose the certi�cate strategy (c) since the em-
ployee's company could serve as a local CA to issue these certi�cates.



as proposed in [25,26], which enforces access control to resources and controls
communication between virtual machines. A VM can only access its associated
vTPM via the vTPMInterface.

Figure 2 shows the logical design of our vTPM. The main building blocks are
the following: PropertyManagement represents the virtual PCRs and manages
di�erent mechanisms to store and read measurement values (Sect. 5.1); Key-
Management is responsible for creating and loading keys (Sect. 5.2); vTPMPolicy
holds the user-de�ned policy of the vTPM instance (Sect. 5.3); Cryptographic-
Functions provide monotonic counters, random number generation, hashing, etc.;
MigrationController is responsible for migrating the vTPM to another platform.

Figure 2. Logical architecture of the vTPM

5.1 Property Management and Property Providers

To improve �exible migration and to preserve the availability of sealed data after
migration or software updates, an essential step is to support other measurement
strategies. Applying property-based measurement and attestation [15,19,17,18]
to a vTPM allows much more �exibility in the choice of the hypervisor and for
easier updates of applications � a VM can still use sealed data or run attestation
procedures if the properties of the programs remain the same (see Sect. 4.3).

We de�ne the process of recording measurements into the TPM in a more
general way. Therefore, we rede�ne the extension function of the TPM:

Extend(i, m): PCRi ← translate(PCRi,m).

In case of the TCG speci�cation, translate is SHA1(PCRi||m).



Our vTPM design is based on a plug-in-like architecture for various vPCR
extension strategies. Each extension strategy is realized by a PropertyProvider
module implementing another translate() function. To add measurement values
to the PCRs of the vTPM (vPCRs), the guest OS in a VM simply uses the stan-
dard TPM_Extend() function, specifying the PCR number i and the hash data
m to be stored. The PropertyManagement calls each property provider to extend
the corresponding vPCR with the measured data value. Each PropertyProvider
applies its translation function on the data and stores the resulting value in the
corresponding vPCR �eld. The general form of the PCR extension is as follows:

PropertyProviderj .Extend(i, m): vPCRi,j ← translatej(vPCRi,j , m)

Note that each PropertyProvider has its own vector of virtual PCRs. Thus there
is a matrix of vPCR values for each vTPM, as depicted in Fig. 3. The way how
to store the vPCR values is up to the implementation of each property provider.
One could cumulatively hash all input values, as the TCG version of Extend. An
alternative is to simply concatenate the inputs on each invocation of Extend.

Figure 3. Matrix of vPCRs for a vTPM instance.

To give an example of di�erent property providers, consider the virtual ma-
chine V Mk wants to extend PCRi with a hash value m of a binary, e.g., when
the guest OS within V Mk loads and measures a software component. The vTPM
instance vTPMk is associated with V Mk. Suppose there are two PCR extension
strategies, a HashProvider and a Certi�cateProvider. The HashProvider extends
PCRi with the hash m as provided by the VM. The Certi�cateProvider, how-
ever, looks for a property certi�cate (see Sect. 4.3).

In this example, the vTPM actually has two PCRs for PCRi, i.e., vPCRi.hash

and vPCRi.cert. However, when V Mk requests to read the current PCR value,
e.g., by invoking the function TPM_PCRRead(i), the VM is only aware of an
abstract PCRi and the returned data must be of �xed-length for compliance
to the TCG speci�cation. This is achieved by the PropertyFilter that de�nes,
based on vTPMPolicy, which property provider has to be used when reading this
particular vPCR. The responsible provider then returns the requested value.



5.2 Flexible Key Generation and Usage

To achieve a �exible key usage, the KeyManagement hides details of di�erent
strategies to create cryptographic keys when a VM requests a new key pair. The
keys can be generated as software keys in the vTPM and as a result they are
protected as part of the vTPM's state. Alternatively, the vTPM can delegate
the key generation to a physical security module, e.g., a TPM or a smartcard.
In this case, the keys are protected by the hardware.

For example, in our �classi�ed� corporate VM scenario, it is required to have
an encryption key protected by the physical TPM. When the VM requests to
create the key at the vTPM, the KeyManagement delegates the request directly
to the hardware TPM. Note that the VM cannot decide which key type to be
used; instead, this is decided by the vTPM policy.

Although the vTPMPolicy can specify which type of key is to be used, not
all combinations are possible. A vTPM cannot use a hardware AIK to sign
the vPCRs because the vTPM does not possess the private key part of the
AIK. However, the realization of KeyManagement is not limited to software and
physical TPMs. Instead, the underlying �exibility allows the realization based
on di�erent hardware security modules while providing VMs compatibility to
the TCG speci�cation.

5.3 User-De�ned vTPM Policy

The user of the hypervisor system can specify a vTPMPolicy per vTPM instance
when the instance is created. The policy speci�es what information about the
system state is actually visible to the VM and, hence, to other systems the
VM is allowed to communicate with. This is possible due to the selection of
property providers, which de�ne possible translations of measurement values.
For all vTPM operations, the policy de�nes what property provider has to be
used. For example, a policy can de�ne to always use the Certi�cateProvider for
sealing operations requested by the VM in order to enable �exible migration to
a certi�ed platform.

For each vTPM instance, the vTPMPolicy speci�es the key strategy to be
used. In this way, we can source out privacy issues the VM would have to handle
otherwise. For instance, the policy decides when to use a particular vAIK and
how often it can be used until the KeyManagement has to generate a new one.

5.4 Initialization of the vTPM

On its instantiation, the vTPM creates a new Endorsement Key (vEK) and a
new Storage Root Key (vSRK). Certi�cates for the vEK and for vAIKs can be
issued, e.g., by a local CA.

Existing vTPM solutions [7] propose to directly map the lower PCRs of the
physical TPM to the lower vPCRs of the vTPM. These PCRs contain measure-
ments of the BIOS, the bootloader, and the hypervisor. While this provides a



linkage to the underlying platform, it is based on the hash values of binary code
only, which hinders migration as discussed earlier.

In our solution, we map these PCR values by applying our property providers
and build up a vPCR matrix, holding a vector of vPCRs for each property provi-
der. How the mapping is actually done is up to the implementation of the prop-
erty providers. After initialization of the platform by means of trusted boot, the
physical TPM contains the measurements of the platform con�guration. When
a new vTPM instance is created by the hypervisor, the PropertyManagement of
this vTPM requests the physical TPM to read out all PCRs, i.e., from PCR0 to
PCRn. Then each property provider is invoked with the following function:

PropertyProviderj .initVirtualPCRs (PCR0,...,PCRn)

For example, PropertyProviderA could map the values of PCR0,...,PCR7

one to one to vPCR0.A,...,vPCR7.A, whereas PropertyProviderB could accumu-
late somehow all physical measurements into one single vPCR. Finally, Prop-
ertyProviderC could translate the PCR values into properties using certi�cates.
This approach allows to support di�erent mapping strategies simultaneously.

By de�ning the vTPM policy accordingly, we can control which mapping will
be used later. For instance, to support availability of sealed data after migration,
we can de�ne to use the certi�cate-based property provider when the VM wants
to seal data to vPCR0,...,vPCR7. If �exible migration should not be allowed,
we would de�ne to use PropertyProviderA, resulting in sealing data to binary
measurements of the underlying platform.

6 Realizing Property-Based Functionality with vTPM

In this section we describe how we can use the feature of property providers to
realize property-based attestation and property-based sealing in the vTPM.

6.1 Property-Based Attestation

The Certi�cateProvider is one example of a property provider that uses property
certi�cates issued by a TTP. As mentioned in Sect. 5.1, Certi�cateProvider ap-
plies its translation function to extend vPCRi.cert with the TTP's public key
pkTTP . The attestation protocol works as follows: A veri�er requests attestation
to (PCRi,...,PCRj) of V Mk; the VM requests its vTPM to quote the corre-
sponding vPCRs with the key identi�ed by vAIKID :

(pcrData, sig) = vTPMk.Quote(vAIKID , nonce, [i,...,j])

where pcrData denotes the quoted vPCR values, sig denotes the vTPM's signa-
ture on pcrData and nonce. Internally, the PropertyManagement of the vTPM
decides according to the vTPMPolicy which property provider is to be used for
attestation. If the Certi�cateProvider is chosen, then vTPMk will use its vAIK
as identi�ed by vAIKID to sign the values of vPCR[i,...,j].cert.



The veri�er veri�es the signature sig and whether pcrData represent the de-
sired properties. Hence, we can use vTPMPolicy to restrict attestation to certain
property providers, depending on the use case. This allows to control which
information about the VM and the user's system is going to be revealed to a
remote party and as a result ful�lls our privacy requirement.

6.2 Property-Based Sealing

The sealing procedure of our vTPM works as follows. A virtual machine V Mk

chooses a handle vBindkeyID of a binding key that was previously created in
the virtual TPM instance vTPMk, and then issues the sealing command to seal
data under the set of virtual PCRs (PCRi,...,PCRj). The vTPM realizes the
sealing function as follows:

vTPMk.Seal(vBindkeyID , [i,...,j], data):
provider := vTPMPolicy.askForProvider([i,...,j]);
FOR l := i TO j DO propl := provider.PCRRead(l);
pk := KeyManagement.getPublicKey(vBindkeyID);
ed := encrypt[pk](i||propi||...||j||propj ||data);
return ed.

The vTPM asks its vTPMPolicy which property provider to use, which can
depend on the combination of vPCRs for the sealing operation. It requests the
KeyManagement to load the corresponding binding key, retrieves the vPCR val-
ues of the speci�ed PropertyProvider, and encrypts data, and the vPCR values
with corresponding vPCR number. When the VM wants to unseal the data
again, the vTPM proceeds as follows:

vTPMk.UnSeal(vBindkeyID , ed):
(sk, pk) := KeyManagement.getKeyPair(vBindkeyID);
(i||propi||...||j||propj ||data) := decrypt[sk](ed);
provider := vTPMPolicy.askForProvider([i,...,j]);
FOR l := i TO j DO BEGIN

prop′l := provider.PCRRead(l);
if (prop′l 6= propl) return ∅;

END
return data.

The vTPM �rst loads the binding key pair identi�ed by vBindkeyID and de-
crypts the sealed data ed. The vTPMPolicy decides again which PropertyProvider
to use. The current vPCR values are compared to the values stored in the sealed
data. Only if all matching pairs are equal, the plain data is returned to V Mk.

Of course, a property provider like Certi�cateProvider is needed as one possible
way to realize property-based sealing. This is especially interesting if sealing is
related to software components in the VM. Depending on the realization of the
property provider, unsealing will be possible if the measured applications of the
VM are changed but still provide the same properties, i.e., the corresponding
property certi�cate is available and valid.



Moreover, property-based sealing enables the availability of sealed data after
migration of a VM and its corresponding vTPM to a platform with a di�erent
binary implementation. This can be achieved, e.g., by using a Certi�cateProvider
for the vPCR[0,...,7].cert, representing the properties of the underlying hypervisor
platform. This measurement does not change after migration to a target platform
having a certi�cate stating the same properties.

7 Migration of vTPM

Our vTPM migration protocol is based on the vTPM migration protocol in [7].
However, in contrast to [7] we do not use a migratable5 TPM key to protect
the session key but rather we propose to embed the migration procedure in a
trusted channel. As described in Sect. 4.4, the trusted channel allows to create
a secret encryption key that is bound not only to the TPM of the destination
platform but also to the con�guration of its TCB. In our case the TCB comprises
the vTPM and the hypervisor. The advantage of using such a trusted channel
is that, once it has been established, it can be re-used for migration of several
vTPM instances between the same physical platforms. Moreover, a transfer can
even securely occur after the target machine has rebooted.

Figure 4. A vTPM migration based on a trusted channel.

5 There are various attributes for TPM keys. Migratable keys are allowed to be mi-
grated to another TPM.



Figure 4 shows our migration procedure, based on the trusted channel pro-
tocol of [22].The process (of the hypervisor) responsible for migrating the VM
also initiates the migration of the associated vTPM. After creating a new vTPM
instance on the target system, the source vTPM requests to establish a trusted
channel to the destination vTPM. When the trusted channel is successfully es-
tablished, the source vTPM encrypts its state and transfers it to the destination.
The source vTPM destroys itself subsequently, i.e., the vTPM deletes its own
state from memory. On the target, the vTPM decrypts and activates the state.

Additionally, there is another issue if the hypervisor supports to suspend
a vTPM, i.e., if the vTPM state was stored on persistent memory before. If
the suspended vTPM state is sealed to the hardware TPM (see Sect. 4.5), a
migration of the suspended vTPM state (�o�ine migration�) is not possible.
However, we can resume a suspended vTPM (i.e., unseal the vTPM state) on
the source platform, migrate the vTPM state to the target, and suspend and seal
the vTPM state on the target platform to its hardware TPM, respectively. To
ensure that the vTPM state is unique and cannot be reactivated at the source
platform, the hypervisor has also to delete the key used to seal the vTPM state.

In order to prevent data loss from transmission failures during migration, the
encrypted vTPM state can be stored persistently before transmission so that the
state can be transmitted again to the target platform (if the migration is still
pending and the keys of the trusted channel are still valid). Based on the ideas of
[11], the encrypted state could be deleted on the source after the source receives
an acknowledgment from the target.

8 Requirements Revisited

We brie�y address the requirements of Sect. 3. Our architecture supports �exible
key types by means of KeyManagement (Sect. 5.2). We have addressed data avail-
ability with PropertyManagement (Sect. 5.1) and property-based sealing (Sect. 6).
To protect privacy, we make use property-based attestation and PropertyFilter,
which controls the disclosure of properties according to the vTPM policy. The
inclusion in the chain of trust is realized by mapping the PCRs of the phys-
ical TPM to the vTPM (Sect. 5.4). The requirement of distinguishability was
already addressed by prior work (see Sect. 4.5). To protect the con�dentiality
and integrity of vTPM state and to maintain uncloneability, we can also resort
to existing approaches, which we brie�y discuss below.

Runtime protection of the vTPM state is assumed to be provided by the
hypervisor through isolation. But to enable a VM and its vTPM to suspend and
resume, all data belonging to the state of vTPM instance need to be protected
against copying clones to other platforms or replaying old states on the local
platform. In case the vTPM state has to be stored on persistent memory, prior
work [7] encrypts the vTPM state using a key that is sealed to the state of PCRs
in the hardware TPM, i.e., binding it to the con�guration of the TCB.

To prevent a local replay of an old vTPM state, the sealed state has to be
stored on storage providing freshness. For instance, [22] proposes a solution based



on monotonic counters of the TPM. To prevent a replay of migration, the target
platform needs to be able to detect the freshness of the transferred vTPM state.
In [22] and [7], the source encrypts the data to be transferred together with a
unique nonce that was de�ned by the target platform.

9 Conclusion and Future Work

We have presented a �exible and privacy-preserving design for virtual TPMs
that supports di�erent approaches for measuring the platform's state and for
key generation. We have demonstrated that our design allows to implement
property-based sealing and attestation in a vTPM. This enables the availability
of protected data and cryptographic keys of the vTPM after migrating to another
platform that provides the same security properties but may have a di�erent
binary implementation. TPM-enabled applications executed in a VM can directly
pro�t from this �exibility without the need for modi�cation.

The vTPM design is part of a security architecture that we currently imple-
ment. We are going to decompose the vTPM functionality into several services
that can be used as required. Future work also includes the evaluation of per-
formance and scalability. Moreover, �exible o�ine migration of vTPM states is
an open issue which we will work on.
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