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Abstract. Today, digital content is routinely distributed over the Inter-
net, and consumed in devices based on open platforms. However, on open
platforms users can run exploits, reconfigure the underlying operating
system or simply mount replay attacks since the state of any (persistent)
storage can easily be reset to some prior state. Faced with this difficulty,
existing approaches to Digital Rights Management (DRM) are mainly
based on preventing the copying of protected content thus protecting
the needs of content providers. These inflexible mechanisms are not ten-
able in the long term since their restrictiveness prevents reasonable usage
scenarios, and even honest users may be tempted to circumvent DRM
systems.

In this paper we present a security architecture and the correspond-
ing reference implementation that enables the secure usage and transfer
of stateful licenses (and content) on a virtualized open platform. Our
architecture allows for openness while protecting security objectives of
both users (flexibility, fairer usage, and privacy) and content providers
(license enforcement). In particular, it prevents replay attacks that is
fundamental for secure management and distribution of stateful licenses.
Our main objective is to show the feasibility of secure and fairer distri-
bution and sharing of content and rights among different devices. Our
implementation combines virtualization technology, a small security ker-
nel, trusted computing functionality, and a legacy operating system (cur-
rently Linux).
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1 Motivation

Timo was about to board a train home when he noticed an advertisement for
a wireless kiosk selling the first album from a new band. He took out his music
phone, connected the kiosk which was already visible in his music gallery appli-
cation, and with a few clicks downloaded a preview copy of the lead song in the
album. While on board the train, Timo listened to the song and liked it so much
that he listened to it once more. When he tried to listen a third time, the phone
told him that he had finished the free previews, but can buy a full license. He
bought the full license with a few more clicks and could listen to the song with
no constraints. When he got home, he transferred the song to his home stereo
system. When Anna visited Timo, he played the new song to her. She wanted
a copy of her own. Timo used the remote control of his stereo system to lend
a copy to Anna’s music phone for a week. Timo’s copy of the song remained
disabled for a week while Anna was enjoying the song.

This and other similar scenarios for trading and using digital goods in-
volve policies whose enforcement requires the enforcement mechanism to se-
curely maintain state information about past usage or environmental factors.
They can be enforced by using stateful licenses. Some e-business applications
already deploy such (mostly proprietary) stateful licences to sell certain digital
goods (online video, music tracks, software), for limited use (number of copies
or trials, etc.) [2, 17, 29].

However, managing and enforcing stateful licenses on open platforms is dif-
ficult. Open platforms are under the control of their owners, who can attack
and circumvent even sophisticated protection mechanisms by running exploits
and reconfiguring the underlying operating system. Existing enforcement mech-
anisms have been defeated in various ways [32, 33]. An attacker can easily record
the platform state (e.g., hard-disks) and revert the platform to this state at a
future point in time. This way he can reset a stateful license to a prior state
and consequently circumvent license conditions. This can be done for instance
by ordinary backup mechanisms or by applying software tools [9] that log all
storage modifications to easily revoke these modifications for reuse of a license.
Consequently, content providers tend to provide inflexible static licenses, which
prevent users from any kind of transfer of licenses, including moving to other
devices, lending or selling to other users. This approach is not tenable in the
long term because its restrictiveness prevents reasonable usage scenarios like the
above from being realized. Even honest users, frustrated at not being able to
do what they consider reasonable, will be tempted to circumvent the license
enforcement mechanisms.

Some systems attempt to augment open platforms with tamper-resistant
hardware devices such as dongles [7] or smartcards [4]. Others have used closed
systems [12] that consider only the providers needs The use of additional, ex-
ternal devices, however, cannot guarantee the integrity of the operating system
and a proper behavior of applications since manipulations of the operating sys-
tem or corresponding applications frequently allow users to bypass the security
mechanisms.
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Main Contribution: In this paper we present a security architecture and the cor-
responding reference implementation that enables secure enforcement of stateful
licenses on open computing platforms as well as secure license transfers among
platforms. Our proposed architecture allows for protecting the security objec-
tives of providers (license enforcement) and users (flexibility, fairer usage, and
privacy). Our main goal is to show the feasibility of the legal and fairer usage
allowing for transfer of licenses. To the best of our knowledge there currently
exists no solution that is capable of enforcing stateful licenses on open platforms
while providing security functionalities that allow to establish multilateral secu-
rity. We show how our architecture can efficiently be implemented using existing
virtualization and trusted computing technology.

1.1 Related Work

Shapiro and Vingralek [27] identified the replay problem in client platforms that
are completely under the control of the user. The authors proposed to manage
persistent states using external locker services or assumed a small amount of
secure memory and secure one-way counters realized by battery-backed SRAM
or special on-chip EEPROM/ROM functions. Tygar and Yee [37] elaborate on
enforcement of static and dynamic licenses without centralized servers. They
present a secure bootstrap process and protocols for sealing of data to a local
and remote platforms. The proposed architecture relies on a microkernel which is
running in a physical security partition provided by a secure coprocessor. This is
different to our approach which is based on a virtualization layer offering logical
security partitions (“compartments”).

Marchesini et al. [15] use OS hardening to create “software compartments”
which are isolated from each other and cannot be accessed by a “root spy”. Based
thereon, their design provides “compartmentalized attestation”, i.e. attestation
and binding of data to single compartments. Our approach does not employ OS
hardening techniques to secure a complex monolithic legacy OS. Instead we put
the legacy OS in a compartment which is then run on top of a virtualization
layer. The performance loss is minor and the overall security improves, since the
virtualization layer is much less complex than a monolithic OS kernel. Baek and
Smith [6] build on Marchesini’s work and implement a prototype for enforcing
QoS policies on open platforms.

Publicly available documentation for common rights management systems
from Microsoft [18], Authentica [5], or, Apple [2] do not mention how they
resist replay attacks for their (proprietary) dynamic license implementations.
Moreover, most of these solutions are closed software and cannot be verified for
inherent security flaws. Some existing solutions affect the entire host security
or violate user privacy [22], while others could be broken [32, 33], and provide
license transfers only to some selected devices. This point clearly contradicts
the first sale concept: the licensor should be allowed to securely transfer legally
obtained digital content without permission or interaction of the licensee. Other
approaches [14, 20] use small-value or short-term sublicenses based on a single
source license to transfer rights. Since users of these systems always have full
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control over the platform storage, they can easily backup their (sub-)licenses and
restore them after expiration. In [26], the authors propose an operating system
extension that attests an integrity measurement (a SHA-1 digest over all exe-
cuted content) based on a cryptographic coprocessor. The proposed architecture
allows a content provider to remotely verify the integrity of software and data
of a client platform. However, this approach, reveals the user’s overall platform
configuration to the content provider, conflicting with the privacy principle of
least information. Also, the content provider will only attest the last platform
configuration given and is not able to predict future configuration. And even
if periodic attestation was compelled, a client could still apply replay attacks
between two measurements.

The Enforcer project [16] considers freshness by using the (non-volatile) data
integrity register (DIR) of the TCG (Trusted Computing Group) specification
version 1.1b [36]. Writing to a DIR requires owner authorization, reading can be
done by anyone. Since the platform owner can still backup and restore the DIR
storage, this is not secure against replay attacks.

2 System Model

2.1 Terms and Definitions

The main parties involved are providers (licensors) and users (licensees). We
consider a provider as the representative party for rights-holders whereas the
user represents consumers of digital content. These parties have only limited
trust in each other. As shown in Figure 1, the provider distributes digital content
(e.g., software, media files) together with the corresponding license, which defines
the usage-rights (e.g., copy, play, print) applicable to the content. The user
consumes content according to the license where the consumption is managed
by the underlying platform. We distinguish two types of licenses, immutable
static licenses and stateful licenses where the internal license state may change
when it is used. This allows for many use cases where content consumption is
somehow limited (e.g., n days or n times), or for transfer of licenses among
devices.

Furthermore, we define a compartment as a software component that is
logically isolated from other software components. Isolation means that these
components can communicate or access each others data only over specified
interfaces. The configuration of a compartment unambiguously describes the
compartment’s I/O behavior. We call the process of deriving the configuration
of a compartment measurement according to a well-defined metric. We distin-
guish secure and trusted communication channels between compartments. Secure
channels ensure confidentiality and integrity of the communicated data as well
as the authenticity of the endpoint compartment. A trusted channel is a secure
channel that is bound to the configuration of the endpoint. More concretely,
the channel additionally allows each endpoint compartment to (i) validate the
configuration of the other endpoint compartment and (ii) to bind data to the
configuration of the endpoint compartment such that solely and exclusively this
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compartment with this configuration can access the data. We define the Trusted
Computing Base (TCB) as the set of all system components whose failure would
allow to breach the security policy defined for the platform (e.g., as agreed by
the involved parties). Note that the main design goal is to minimize the TCB.

2.2 Architecture Overview

Figure 1 gives a general overview of our architecture. The Trusted Computing
Base (TCB) for our purpose (application) includes the following compartments:
the Trust Manager (TM), the Storage Manager (SM), the Compartment Man-
ager (CM), the Secure I/O (SO) compartment, and the DRM Controller (DC).
Note that these components are in general distributed since all compartments
communicate over trusted channels, and hence, there is no restriction on their
actual physical location. In the following we briefly describe the compartments
and core security properties of our architecture.
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Trusted ChannelStorage 

Manager

Trust Manager

Compartment 

Manager

Secure I/O
DRM

Controller

content, 

license content

compartment 

configuration

compartment 

configuration
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Fig. 1. System architecture.

Compartment Manager (CM) initializes and closes compartments as well as mea-
sures compartments’ configurations during initialization. Furthermore, CM en-
ables a mapping between temporary compartment identifiers1 and persistent
compartment configurations.

Trust Manager (TM) offers basic trusted computing services and a functionality
that can be used by other compartments to, e.g., establish trusted channels
between compartments.

Storage Manager (SM) provides persistent storage for other compartments while
preserving integrity, confidentiality, authenticity (by binding data to the com-
partment configuration and/or user secrets), and freshness of the stored data.
Since a complete tamper-resistant storage unit would be very costly and inflex-
ible, we used untrusted storage, i.e., a regular harddisk, with the help of TM.

Secure I/O (SO) renders (e.g., displays, plays, prints) content while preventing
content leakage into untrusted compartments. Thus SO incorporates all func-
tionality required for rendering a certain content, e.g., all corresponding drivers,

1 A compartment identifier unambiguously identifies a compartment during runtime.
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rendering engines, and decoders. Moreover, access control in our architecture
allows SO to communicate only with devices essential for the rendering process.

DRM Controller (DC) is a compartment that enforces the policy according to
a given license attached to digital content. DC enforces security policies locally,
e.g., it uses trusted channels to decide whether a certain SO is trusted for ren-
dering the content.2 DC interprets the license and initiates content rendering.
Moreover, DC is the core component for license transfers (cf. Section 2.3). Avail-
able content and licenses are internally indexed by DC while the index, content
and licenses are persistently stored using the Storage Manager SM.

Trusted Channels as mentioned in Section 2.1, allow the involved communication
end-points (compartments) to validate the configuration of the other endpoint
for integrity and consequently allow determining the trustworthiness (as spec-
ified by the underlying security policy). The data sent over a trusted channel
is exclusively bound to the configuration of the endpoint compartment as mea-
sured by the CM. In contrast to other approaches such as [26], which report
the whole platform configuration, our architecture provides trusted channels be-
tween single compartments reducing the amount of information disclosed about
the platform (privacy aspects).3 Trusted channels can be established using the
functionality offered by the Trust Manager TM. Note, we call trusted channels
between compartments running on the same platform as local trusted channels.

Strong Isolation means runtime isolation of compartments as well as data isola-
tion in persistent storage. Runtime isolation is provided by the underlying vir-
tualization layer (cf. Section 3.1), and the isolation of compartments’ persistent
state is provided by the Storage Manager (SM).

2.3 Usage and Transfer of Licenses

In the following, we define the basic mechanisms for secure license usage and
license transfers. For this we assume the following to be given, and explain
in Section 3 how they are implemented: (i) strong compartment isolation (cf.
Section 3.1), (ii) the proper initialization of the TCB (cf. Section 3.2), and (iii)
the availability of trusted channels with freshness detection (cf. Section 3.3).

On startup, DC loads its actual content/license index iDC from the Storage
Manager SM using a (local) trusted channel. To provision licenses the provider
establishes a trusted channel to DC. Over this channel the content and licenses
are sent to DC and locally stored by SM. For using (stateful) licenses the user
invokes DC, which loads the corresponding license, checks if all conditions for
the corresponding usage-rights are fulfilled, and opens a (local) trusted channel
to the secure I/O compartment SO. On the execution of the usage-right, DC

2 DC’s decision is based on either a approved configuration described in the license or
on the platform security policy associated with the actual TCB configuration.

3 Further advantages of our approach are scalability and flexibility: it need not to
verify the integrity of all compartments executed on the platform and the integrity
verification remains valid even if the user installs or modifies other compartments
since the verification is independent of other compartments running in parallel.
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updates the state of the license, synchronizes its internal state iDC with the one
stored by SM, decrypts the corresponding content, and invokes SO to securely
render it. For transferring stateful licenses from a source controller DCs to a
destination controller DCd the following steps are be taken:

1. The user requests DCs to transfer a license L to DCd. DCs uses TM to estab-
lish a fresh trusted channel to DCd to send the license (and corr. content).

2. TM establishes a trusted channel with freshness detection to DCd allowing
DCs to verify that the configuration of DCd is conforming to the security
policy of L. Note that DCd does not need the equivalent verification for DCs

since the overall security architecture protects and enforces any license once
accepted into any DCs, regardless of the source of the license.4

3. Once the decision to transfer L to DCd is made, DCs invalidates L locally
while synchronizing its internal state iDC with SM where the identity of DCd

(e.g., a public key) is stored together with the license identity to handle
possible further requests from DCd (e.g., when the channel was disconnected
for some reason). Note that freshness detection (cf. Section 3.3) will ensure
that DCd will accept L only once.

4. DCs sends L (and corr. content) to DCd over the fresh trusted channel. To
handle transmission failures, DCs allows retransmissions requests to DCd.

The procedure for lending a license is similar to a license transfer: if the
license allows lending DCs generates a license for DCd valid for the loan period,
and updates the state of its own license so that it remains disabled during the
loan period. This assumes the availability of secure time.

2.4 Security Objectives

We consider the following security objectives of users and providers.

(O1) License integrity: Unauthorized alteration of licenses must be infeasible. This
is required by both provider and user.

(O2) License enforcement : The license can only be used according to the usage-
rights prescribed by the license and to the security policy defining require-
ments on DC.

(O3) Freshness : Replay of licenses must be infeasible. Received and retrieved data
is the last one sent or stored even in the case of a platform re-installation.

(O4) Privacy: Usage or transfer of licenses must not violate privacy policies. This
concerns in particular the least information policy such that components not
under full control of the user shall be able to collect, store, and reveal user’s
private information only to the extent required for license enforcement.

The system is not limited to a specific set of license issuers, and is capable
of enforcing the terms of any license accepted by the user. Requirements like
license issuance and unforgeability is considered out of the scope of this paper.
Distributed authorship proofs and rights management (e.g., as in [1]) can still
effectively be built based on our architecture.

4 As fallback solution, e.g., in case of a broken DC or a dishonest provider, DCd may
also verify the validity of DCs.
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3 Reference Implementation

3.1 Overview

Our implementation primarily relies on a small security kernel, virtualization
technology, and trusted computing technology. The security kernel, located as
a control instance between the hardware and the application layer, implements
elementary security properties like trusted channels and strong isolation between
processes. Virtualization technology enables reutilization of legacy operating sys-
tems and existing applications whereas TC technology serves as root of trust.
In our architecture a compartment maps to a running application or operat-
ing system, whereas a compartment configuration maps to a hash value of the
software binary including all initialization information. The architecture of our
implementation is shown in Figure 2 whose layers we describe below.
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Conventional Hardware
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Controller
Application

TPM 1.2
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Fig. 2. Security architecture.

Hardware Layer. The hardware layer consists of commercial off-the-shelf PC
hardware enhanced with trusted computing technology as defined by the Trusted
Computing Group (TCG) [35]. TCG has published several specification for ex-
tending the common computing platforms with cryptographic and security fea-
tures in hardware and software. The main TCG specification is Trusted Platform
Module (TPM) [36], which is currently implemented as dedicated cost-effective
crypto chip mounted on mainboards of computing devices5. Many vendors al-
ready ship their platforms with TPMs (mainly laptop PCs and servers) providing
the following features: A hardware-based random number generator (RNG), a
cryptographic engine for encryption and signing (RSA) as well as a cryptographic
hash function (SHA-1, HMAC), read-only memory (ROM) for firmware and cer-
tificates, volatile memory (RAM), non-volatile memory (EEPROM) for internal

5 TPMs are assumed tamper-evident and will only provide a limited protection against
hardware based attacks, due to the trade-off between costs and tamper protection.
Nevertheless, at least rudimentary tamper precautions and tampering-detection sen-
sors are included in the design and manufacturing process.
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keys, monotonic counter values and authorization secrets, and optionally, sen-
sors for tampering detection. Security critical operations (e.g., key generation
and decryption) are performed on-chip and security critical information (e.g.,
secret keys) never leave the TPM unencrypted. The TPM’s most important
keys were the endorsement key EK , an asymmetric key that uniquely identifies
each TPM; and the Storage Root Key SRK , an asymmetric key used to encrypt
all other keys created by the TPM. Note that neither EK nor SRK can be read-
out from the TPM. The TPM provides further a set of registers called Platform
Configuration Registers (PCR) that can be used to store hash values.6 During
system startup, a chain of trust is established by cryptographically hashing each
boot stage before execution. These hash values are also called measurements (in
the TCG terminology) and are stored in PCRs. The set of PCR values provides
is an evidence for the system’s state after boot. This state is called the platform
configuration. Based on this PCR set, among others, the two functions sealing
resp. binding can be provided to relate data to a platform configuration, sealing
additionally relating the data to the specific TPM instance using the TPM’s
endorsement key EK .

Virtualization Layer. The main task of the virtualization layer is to provide an
abstraction of the underlying hardware, e.g., CPU, interrupts, devices, and to of-
fer an appropriate management interface. Moreover, this layer enforces an access
control policy based on these resources. The current implementation is based on
microkernels7 of the L4-family [13]. It implements hardware abstractions such
as threads and logical address spaces as well as inter-process communication.
Device drivers and other essential operating system services, such as process
management and memory management, run in isolated user-mode processes. In
our implementation, we kept the interfaces between layers generic to support
also other virtualization technologies (e.g., Xen [25]). However, we decided to
employ a L4-microkernel that allows for isolation between processes without the
need to create a full OS instance in every compartment in contrast to Xen.

Trusted Software Layer. The trusted software layer, based on the PERSEUS
security architecture [19], uses the functionality offered by the virtualization
layer to provide security functionalities on a more abstract level. It provides
elementary security properties such as trusted channels, platform policy control
and compartment isolation. These realize security critical services independent
of and protected from application layer compartments. The main services of the
trusted software are described in Section 2.2.

Application Layer. On top of the security kernel, several instances of legacy op-
erating systems (here Linux) as well as security-critical applications (here the
DRM controller and Secure I/O) are executed in strongly isolated compart-
ments. Unauthorized communication between compartments and unauthorized

6 The hardware ensures that the value of a PCR can only be extended as follows:
PCRi+1 ← hash[PCRi|x], with the previous register value PCRi, the new register
value PCRi+1, and the input value x (e.g., again a hash value).

7 A microkernel is an OS kernel that minimizes the amount of code running in privi-
leged processor mode [21].
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I/O access is prevented. The proposed architecture offers an efficient migration
of existing legacy operating systems. We are currently running a para-virtualized
Linux [11]. The legacy operating system provides all operating system services
that are not security-critical and offers users a common environment and a large
set of existing applications. If a mandatory security policy requires isolation be-
tween applications of the legacy OS, they can be executed by parallel instances
of the legacy operating system.

In our reference implementation8, DC manages, based on XrML, license inter-
preting and license transfers for several audio formats. Using a Linux multimedia
library [10], our SO implementation provides the corresponding audio rendering
and play-back.

3.2 Verifiable Initialization

For verifiable bootstrapping of the Trusted Computing Base (TCB), a TCG-
enabled BIOS, called the Core Root of Trust for Measurement (CRTM), mea-
sures the the Master Boot Record (MBR), before passing control to it. A secure
chain of measurements is then established: Before a program code is executed it is
measured by a previously (measured and executed) component. For this purpose,
we have modified the GRUB bootloader (cf. www.prosec.rub.de/tgrub.html)
to measure the integrity of the TCB. The measurement results are securely
stored in the PCRs of the TPM. All further compartments, applications and
legacy OS instances are then subsequently loaded, measured, and executed by
the Compartment Manager CM.

3.3 Trust Manager and Trusted Channels

Our Trust Manager (TM) implementation is based on the open-source TCG
software stack [34]. Trusted channels can be established online or offline. The
former requires a direct connection between user and provider whereas the latter
does not. Examples are the online purchase of content and licenses at a provider
website or obtaining content offline via DVD or as indirect copy by a third party.

Figure 3 gives a description of the protocol for establishing a trusted channel.
The protocol can be decomposed into two major phases, namely issuing and
verifying a target certificate, and establishing a secret key whose usage is bound
to the configuration of the endpoint compartment and the underlying TCB.

If a remote compartment RC requests a trusted channel to a local compart-
ment LC, LC passes this request to TM. TM maps LC’s compartment identi-
fier to its compartment configuration comp conf LC using CM. TM then uses,
by the means of TPM CreateWrapKey[], the TPM to create a binding key pair
(PKBIND ,SKBIND ) where usage of SKBIND is restricted to the current TCB
configuration TCB conf measured during initialization (cf. Section 3.2). The
TPM then returns PKBIND and the SRK -encrypted9 secret part ESKBIND .

8 Most of the corresponding source code is available at www.emscb.org.
9 The Storage Root Key (SRK) is a non-migratable key contained in the TPM as the

root key for protected storage.
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Fig. 3. Protocol for establishing a trusted channel.

Then TM invokes the TPM to certify PKBIND and hence to certify comp conf LC

and TCB conf using an Attestation Identity Key (AIK)10. We denote the re-
sult by certBIND := TPM CertifyKey[PKBIND , comp conf LC]. Finally, TM re-
turns certBIND together with PKBIND and ESKBIND to LC. LC then stores
ESKBIND using SM and sends (certBIND , PKBIND ) to RC. RC verifies certBIND

and then the configurations (TCB conf , comp conf LC) by comparing them with
reference values (conforming to its security policy). If positive, RC generates a
secret key sk and encrypts it using PKBIND . The result is denoted by esk :=
Tspi Data Bind[PKBIND , sk ]11 and sent back to LC. Upon receipt of esk , LC loads
ESKBIND from SM and requests TM to unbind sk . For this, TM again requests
CM for mapping LC’s compartment identifier to comp conf LC. Having success-
fully verified that comp conf LC matches the configuration denoted in certBIND ,
TM requests the TPM to unbind sk . The TPM first compares the actual PCR
values to those SKBIND was restricted to, before returning sk to TM. Finally,
TM passes sk to LC that can now decrypt the data d (license and content) re-
ceived from RC. For online trusted channels, sk is used as session key to establish
a secure channel inside a subsequent server-authenticated TLS connection be-

10 An AIK is a special, non-migratable, anonymized key that has been attested to come
from a TCG conform platform.

11 Tspi Data Bind[] is a TCG software stack function that does not require any TPM
hardware (functionality).
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tween RC and LC12 whereas for offline trusted channels sk is used for encryption
of data before being transferred using a indirect connection between RC and LC.

Freshness extension. To tackle replay attacks we extend our trusted channels
with freshness. In case of an online trusted channel, freshness can be mutually
provided by the underlying TLS handshake protocol by binding the TLS channel
to LC (channel binding). This can be done in various ways, e.g., by including
certBIND in regular TLS certificates [31]. In case of offline trusted channels (or
without TLS) this can be provided by a slight protocol extension and/or mea-
sures at LC. Here different approaches are possible. A simple approach is to
require LC to memorize all licenses it has received (i.e., even expired ones) to
easily detect license replays. Eventually, this may amount to a huge license list,
and one solution is to update (PKBIND ,SKBIND ) from time to time. Another
solution is to let LC also send a nonce N together with (certBIND , PKBIND ).
In the last protocol step, RC encrypts N together with corresponding data d ,
so that LC can verify N (and thus freshness) of d and delete N after decryp-
tion. An alternative solution to nonces is to let LC create a different public key
pair (PK L,SKL) for each license, store SKL in SM, and send (PKL, certBIND ,
PKBIND ) to RC. Then RC encrypts data d as before using sk , but encrypts sk
with PKL and PKBIND , i.e., esk := Tspi Data Bind[PKBIND , encrypt PKL[sk ]],
and sends both quantities to LC. LC now can detect replays of already known
licenses by identifying PKL. Recall that there is a unique relation between PKL

and a license. Once a license has been expired or transferred, SKL can be deleted.
In all scenarios, all secret keys and freshness verification information is persis-
tently stored in trusted storage managed by SM (cf. Section 3.4). All solutions
can defeat replays even if the platform is completely re-installed since in this case
also all keys and freshness information (contained in SM) are deleted making the
the corresponding licenses and content inaccessible.

We have implemented this protocol on TPMs of some major vendors (cf.
[24] for more details). The TPM computation dominates the overall computa-
tion time. Hence, depending on the efficiency requirements of the underlying
application, we have forseen a service (e.g., as part of the TM) that performs
the related TPM tasks in software (e.g., generating binding keys). This service
is clearly a part of the TCB and is included in the measurements during the
verifiable initialization. In this case the trust assumptions of the TCB become
stronger since the secret binding key is now in software and not in the TPM
security module.

3.4 Storage Manager

The main interfaces of Storage Manager SM (cf. Figure 4) are the trusted chan-
nels load[] and store[] for loading/storing data for requesting compartments, and
plain channels read[] and write[] for reading/writing data from/to an untrusted
storage compartment (e.g., a hard disk drive) to persistently write respectively

12 Alternatively, PKBIND directly can be integrated into the TLS handshake, e.g., to
encrypt RC’s pre-master-secret.
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read data. Internally, SM maintains an index iSM for metadata of all managed
data objects. The main entries in this index are: the configuration comp conf of
the requesting compartment, the data object identifier dID, its freshness detec-
tion information f , possible further access restrictions rest (e.g., user id, group
id or date of expiry), a monotonic counter cSM verifying the freshness of iSM, and
a sealed kSM used to seal iSM to SM’s configuration.

Storage Manager

Freshness

Integrity

Confidentiality

Trusted Channel

e := encrypt[d||i ]

e := read[dID]
dID :=write[e]

Plain Channel

d||i := decrypt[e]

i := hash[d ] A/R := verify[d, i ]

Untrusted Storage

d := load[dID ]dID := store[d, rest ]

f := memorize[d ] A/R := verify[d, f ]

Compartment

cmp_conf dID f rest

CP_0 ID_325 0x29... fresh

CP_1 ID_563 0x10... UID = 2

cSM

kSM

iSM

Fig. 4. Implementation of SM.

To ensure freshness of the metadata the index iSM itself, SM manages an
internal software counter cSM that is incremented synchronously with a TPM
1.213 monotonic hardware counter cTPM each time SM updates its index14. A
mismatch means outdated data which will be handled according to the underly-
ing security policy. In order to employ TPM’s monotonic counters, SM has to be
initialized correctly. Figure 5 depicts the steps needed for the first initialization
of SM on a new platform together with the initialization necessary for instance
after rebooting the platform. At initial setup SM uses the TPM to create its in-
ternal cryptographic key kSM, which is sealed to the current TCB configuration.
To enable freshness detection and thus trusted storage, SM creates a monotonic
counter cTPM with a label c label for identification and an authentication c auth
(e.g., a randomly chosen secret password). The initial setup finishes with the
generation of iSM and the sealed key ekSM and writing iSM (that includes cSM,
c label and c auth) encrypted on untrusted storage using kSM.

After a platform reboot, SM reads the ekSM from the untrusted storage and
asks the TPM to unseal ekSM to its internal key kSM. The TPM is able to unseal
kSM if the platform has the same configuration as it had at the sealing process,

13 TPM version 1.1b cannot be used for fresh storage [24].
14 As specified in [36] version 1.2, a TPM supports monotonic counters with an incre-

ment rate of at least once every 5 seconds other at least 7 years.
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thus preventing a modified SM to access kSM. Then SM uses kSM to decrypt iSM

and verifies freshness of iSM by comparing the decrypted counter value cSM of
iSM with the actual counter value of the corresponding hardware counter cTPM.

Untrusted 

Storage
Trust Manager

TM / TPM

ekSM-ID := write[ekSM]

Storage Manager

SM

TPM_GetRandom[]

kSM

TPM_ReadCounter[c_label]

rnd

TPM_Seal[kSM]

ekSM

read[ekSM-ID]

TPM_UnSeal[ekSM]

iSM := decrypt_kSM[read[iSM-ID]]

cTPM

iSM-ID := write[encrypt_kSM[iSM]]

cTPM

kSM:=derive[rnd]

verify[iSM, cTPM]

iSM:= create[cTPM]

TPM_CreateCounter[c_label, c_auth]

Fig. 5. SM initialization.

Comp. Manager

CM

Storage Manager

SM

store[d, rest]

Compartment

X

comp_idX

comp_confx

Untrusted Storage

Trust Manager

TM / TPM

dID := write[encrypt_kSM[d]]

iSM-ID := write[encrypt_kSM[iSM]]

dID

update-index[comp_confx, d, rest]

increment-counter[iSM]

TPM_IncrementCounter[c_label, c_auth]

Fig. 6. SM’s store protocol.

Compartment Manager

CM
Storage Manager

SM
load[dID]

Compartment

X
comp_idX

comp_confx

Untrusted Storage

d := decrypt_kSM[read[dID]]

d
verify[d, comp_confx]

Fig. 7. SM’s load protocol.

Figure 6 depicts the protocol steps required to bind a compartment’s data ob-
ject (e.g., iDC) persistently to its actual configuration. After the mapping of com-
partment identifier to the actual compartment configuration (e.g., comp conf DC)
using CM, SM updates iSM with the corresponding metadata as well as the incre-
mented software counter cSM to enable freshness detection for iSM. SM encrypts
both the data object and the updated index iSM using kSM and writes them to
untrusted storage. Finally, SM synchronizes its software counter cSM with the
TPM’s monotonic hardware counter cTPM (using c label and c auth) and returns
the data object identifier.

Figure 7 depicts the protocol steps required to load a compartment’s data
object. Again after a mapping of compartment identifier to the actual compart-
ment configuration using CM, SM reads the requested data object from untrusted
storage and decrypts it using kSM. Before returning d to the corresponding com-
partment, SM verifies all existing access restrictions (e.g., freshness, or a certain
user id) given on store via rest based on the corresponding metadata in iSM and
verifies that the requesting compartment has the same configuration as used on
store.
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4 Security Considerations

In this section we sketch the security aspects of our implementation. First we
consider the core security properties (verifiable initialization, strong isolation,
trusted channels, trusted storage) provided by our implementation. Based on
these properties we consider the individual security objectives (cf. Section 2.4).

Verifiable Initialization. It ensures that the TCB bootstrap is measured and
securely stored in the TPM (cf. Section 3.2). Other compartments can then
use TPM functionality to securely query the actual TCB configuration. Note
that subsequent modifications at runtime are not reflected by the initialization
measurements. However, a TCB configuration that would allow arbitrary alter-
nation/patches of core security components cannot be considered as trustworthy.

Strong Isolation. Runtime isolation is provided by the small virtualization layer
that implements only logical address spaces, inter-process communication and an
appropriate interface to enforce an access control management for the underlying
hardware. Device drivers and other essential operating system services, such
as process management and memory management, run in isolated user-mode
processes. Thus, the amount of code running in privileged (“ring 0”) processor
mode, is small15 and can, in contrast to monolithic operating system kernels16

such as Linux or MS Windows, be easier validated for correctness.
Moreover, a failure in one of these services cannot directly affect the other

services, especially the code running in privileged mode. Thus, malicious device
drivers cannot compromise core operating system services as they are all exe-
cuted in user-mode. Isolation in persistent storage is provided by our Storage
Manager (SM) implementation and the usage of trusted channels.

Trusted Channels. The establishment of a trusted channel is described detailed
in Section 3.3. The inter-process communication provided by the virtualization
layer enables secure channels between local compartments. Secure channels be-
tween local and remote compartments can be provided either by using the secret
key sk to establish a secret channel inside a tunnel created by standard security
protocols such as TLS [8] (online trusted channel) or by using sk to encrypt con-
tent at RC before sending it indirectly (e.g., via DVD or CD-ROM ) to LC (offline
trusted channel). As mentioned in Section 3.3 trusted channel enables access to
data only by an authorized compartment (trustworthy configuration). The con-
figuration of a compartment and the underlying TCB are securely measured
during the initialization (cf. Section 3.2). Replay attacks on trusted channels
can be defeated using one of the freshness solutions described in Section 3.3.

Trusted Storage. SM provides integrity, authenticity, confidentiality and freshness
of data as described in Section 3.4. The integrity and confidentiality are achieved
by using standard cryptographic mechanisms whereas monotonic hardware coun-
ters are used for freshness detection. We have improved common approaches

15 A microkernel-based approach can be realized with around 50.000 SLOC [28].
16 The sources lines of code (SLOC), e.g., for Windows XP are around 40 million and

around 6 million for a regular Linux 2.6 kernel [30].
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while taking advantage of the strong isolation capability of our architecture that
prevents the exposure of cryptographic secrets to unauthorized or malicious pro-
cesses. Our SM enables compartments to persistently bind their local state to
their actual configuration. The verifiable initialization (cf. Section 3.2) verifies
whether the TCB components booted are trustworthy, i.e., conform to the un-
derlying security policy.

Given these properties we sketch the analysis of the security objectives. Li-
cense integrity (O1): Trusted channels ensure that only mutually trusted com-
partments can modify a license, whereas strong isolation and trusted storage
prevent unauthorized alteration of licenses at runtime and while persistently
stored. License enforcement (O2): License and content are sent only to a local
compartment whose configuration matches that of DC. Further, the isolation
property prevents any other malicious code from accessing the content or mod-
ifying the license. Freshness (O3): The freshness extension (cf. Section 3.3) and
SM ensure that any data loaded is the last one stored. Privacy (O4): The prop-
erties of our architecture such as isolation and binding and the fact that security
policy defined by the platform owner restricts the I/O behavior of every appli-
cation imply that even if third party applications, like DC, can locally enforce
their own security policy, they cannot bypass the defined overall security pol-
icy. In particular, the information revealed to third parties (content providers)
is restricted following the least privilege policy, e.g., only the configuration of
the TCB and DC essential for transferring licenses are revealed. However, if it is
required not to reveal the TCB configuration a possible extension to our archi-
tecture would be to add property-based attestation service [23] to TM and CM

to hide both the (binary) configuration of the TCB and DC.

5 Summary

In this paper, we introduced the design, the realization and implementation of
an open security architecture that is capable to enforce stateful licences on open
platforms. Particularly, it allows the transfer of stateful licences, while preventing
replay attacks. We have shown how to implement this security architecture by
means of virtualization technology, an (open source) security kernel, trusted
computing functionality, and a legacy operating system (currently Linux).

The building blocks needed for stateful licenses can also enable offline su-
perdistribution [3]. For example, in our motivating scenario, Timo could gener-
ate a new license for Anna’s device. The DRM controller will record this fact
in its stateful license until Timo pays for the new copy. Allowing copies to be
made while still retaining the ability for proper metering and reporting of new
copies will enable rapid legal spread of popular content. We plan to describe this
extension more fully in a forthcoming paper.

Finally, copyright itself is a strongly debated topic. In course of time, the
world may develop alternative business models that do not require protection of
copyright in its current form. However, the type of platform security described
is also useful in many other applications like copy-protected ticketing, and elec-

16



tronic money. In fact, the same techniques that are used to protect the interests
of a third party from a malicious device owner can also help protect the device
owner from a thief who stole the device.
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