
Token-Based Cloud Computing!

Secure Outsourcing of Data and Arbitrary Computations
with Lower Latency

Ahmad-Reza Sadeghi, Thomas Schneider, and Marcel Winandy

Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{ahmad.sadeghi,thomas.schneider,marcel.winandy}@trust.rub.de

Abstract. Secure outsourcing of computation to an untrusted (cloud)
service provider is becoming more and more important. Pure crypto-
graphic solutions based on fully homomorphic and verifiable encryption,
recently proposed, are promising but suffer from very high latency. Other
proposals perform the whole computation on tamper-proof hardware and
usually suffer from the the same problem. Trusted computing (TC) is
another promising approach that uses trusted software and hardware
components on computing platforms to provide useful mechanisms such
as attestation allowing the data owner to verify the integrity of the cloud
and its computation. However, on the one hand these solutions require
trust in hardware (CPU, trusted computing modules) that are under the
physical control of the cloud provider, and on the other hand they still
have to face the challenge of run-time attestation.

In this paper we focus on applications where the latency of the com-
putation should be minimized, i.e., the time from submitting the query
until receiving the outcome of the computation should be as small as
possible. To achieve this we show how to combine a trusted hardware
token (e.g., a cryptographic coprocessor or provided by the customer)
with Secure Function Evaluation (SFE) to compute arbitrary functions
on secret (encrypted) data where the computation leaks no information
and is verifiable. The token is used in the setup phase only whereas in the
time-critical online phase the cloud computes the encrypted function on
encrypted data using symmetric encryption primitives only and without
any interaction with other entities.

Keywords: Cloud Computing, Hardware Token, Outsourcing.

1 Introduction

Enterprises and other organizations often have to store and operate on a huge
amount of data. Cloud computing offers infrastructure and computational ser-
vices on demand for various customers on shared resources. Services that are of-
fered range from infrastructure services such as Amazon EC2 (computation) [1]

! Supported by EU FP7 projects CACE and UNIQUE, and ECRYPT II.

A. Acquisti, S.W. Smith, and A.-R. Sadeghi (Eds.): TRUST 2010, LNCS 6101, pp. 417–429, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

418 A.-R. Sadeghi, T. Schneider, and M. Winandy

or S3 (storage) [2], over platform services such as Google App Engine [13] or Mi-
crosoft’s database service SQL Azure [21], to software services such as outsourced
customer relationship management applications by Salesforce.com.

While sharing IT infrastructure in cloud computing is cost-efficient and pro-
vides more flexibility for the clients, it introduces security risks organizations
have to deal with in order to isolate their data from other cloud clients and
to fulfill confidentiality and integrity demands. Moreover, since the IT infras-
tructure is now under control of the cloud provider, the customer has not only
to trust the security mechanisms and configuration of the cloud provider, but
also the cloud provider itself. When data and computation is outsourced to the
cloud, prominent security risks are: malicious code that is running on the cloud
infrastructure could manipulate computation and force wrong results or steal
data; personnel of the cloud provider could misuse their capabilities and leak
data; and vulnerabilities in the shared resources could lead to data leakage or
manipulated computation [8]. In general, important requirements of cloud clients
are that their data is processed in a confidential way (confidentiality), and that
their data and computation was processed in the expected way and has not been
tampered with (integrity and verifiability).

Secure outsourcing of arbitrary computation and data storage is particularly
difficult to fulfill if a cloud client does not trust the cloud provider at all. There
are proposals for cryptographic methods which allow to perform specific com-
putations on encrypted data [3], or to securely and verifiably outsource stor-
age [18]. Arbitrary computation on confidential data can be achieved with fully
homomorphic encryption [12], in combination with garbled circuits [30] for ver-
ifiability [11]. While this cryptographic scheme can fulfill the aforementioned
requirements, it is currently not usable in practice due to its low efficiency as we
discuss later in §4.2.

Another line of works tries to solve these problems by establishing trusted exe-
cution environments where the cloud client can verify the integrity of the software
and the configuration of the cloud provider’s hardware platform. This requires,
however, secure software such as secure hypervisors for policy enforcement and
attestation mechanisms for integrity verification. The use of trusted computing-
based remote attestation in the cloud scenario was recently discussed in [7].
Trusted Virtual Domains [5,6] are one approach that combines trusted comput-
ing, secure hypervisors, and policy enforcement of information flow within and
between domains of virtual machines. However, those approaches require trust
in a non-negligible amount of hardware (e.g., CPU, Trusted Platform Module
(TPM) [29]) which are under the physical control of the cloud provider. Ac-
cording to the specification of the Trusted Computing Group, the TPM is not
designed to protect against hardware attacks, but provides a shielded location
to protect keys. However, the TPM cannot perform arbitrary secure computa-
tions on data. It can protect cryptographic keys and perform only pre-defined
cryptographic operations like encryption, decryption, and signature creation. In
particular, if data should be encrypted it must be provided in plaintext to the
TPM, and if data should be decrypted it will be given in plaintext as output.

Token-Based Cloud Computing 419

Unfortunately, the TPM cannot be instructed to decrypt data internally, perform
computations on the data, and encrypt it again before returning the output. A
virtualized TPM [4] that is executed in software could be enhanced with addi-
tional functionality (see, e.g., [25]). However, such software running on the CPU
has access to unencrypted data at some point to compute on it. Hence, if the
cloud provider is malicious and uses specifically manipulated hardware, confi-
dentiality and verifiability cannot be guaranteed by using trusted computing.

A hardware token which is tamper-proof against physical attacks but can
perform arbitrary computations would enable the cloud client to perform con-
fidential and verifiable computation on the cloud provider’s site, given that the
client trust the manufacturer of the token that it does not leak any information
to the provider. For example, secure coprocessors [27,31] are tamper-proof ac-
tive programmable devices that are attached to an untrusted computer in order
to perform security-critical operations or to allow to establish a trusted channel
through untrusted networks and hardware devices to a trusted software program
running inside the secure coprocessor. This can be used to protect sensitive com-
putation from insider attacks at the cloud provider [17]. If cloud providers offer
such tokens produced by trustworthy third-party manufacturers, or offer inter-
faces to attach hardware tokens provided by clients to their infrastructure (and
by assuming hardware is really tamper-proof), cloud clients could perform their
sensitive computations inside those tokens. Data can be stored encrypted outside
the token in cloud storage while decryption keys are stored in shielded locations
of the trusted tokens.

The token based approach is reasonable because both, cryptographic copro-
cessors and standardized interfaces (e.g., smartcard readers or PCI extension
boards) exist that can be used for such tokens. Of course, for trust reasons, the
token vendor should not be the same as the cloud provider. However, the whole
security-critical computation takes place in the token. Hence, such computation
is not really outsourced to the cloud because the function is computed within
the token. Some applications, however, require fast replies to queries which can-
not be computed online within the tamper-proof token. For example, queries in
personal health records or payroll databases may occur not very frequently, but
need to be processed very fast while privacy of the data should be preserved.

In this paper, we focus on cloud application scenarios where private queries
to the outsourced data have to be processed and answered with low latency.

Our Contributions and Outline. First we introduce our model for secure
verifiable outsourcing of data and arbitrary computations thereon in §2.1. Cryp-
tographic primitives and preliminaries are given in §3. In §4 we present archi-
tectures to instantiate our model: The first architecture computes the function
within a tamper-proof hardware token (§4.1) and the second architecture is based
on fully homomorphic encryption (§4.2).

The main technical contribution of our paper is a third architecture (§4.3)
that combines the advantages of the previous architectures and overcomes their
respective disadvantages. Our solution deploys a resource constrained tamper-
proof hardware token in the setup pre-processing phase. Then, in the online

420 A.-R. Sadeghi, T. Schneider, and M. Winandy

phase only symmetric cryptographic operations are performed in parallel within
the cloud without further interaction with the token.

In particular, we adopt the embedded secure function evaluation protocol of
[16] to the large-scale cloud-computing scenario.

Finally, in §5 we compare the performance of all three proposed architec-
tures and show that our scheme allows secure verifiable outsourcing of data and
arbitrary computations thereon with low latency.

2 Model for Secure Outsourcing of Data and Arbitrary
Computations

We consider the model shown in Fig. 1 that allows a client C to verifiably and
securely outsource a database D and computations thereon to an untrusted
(cloud) service provider S.

A client C (e.g., a company) wants to securely outsource data D and compu-
tation of a function f (represented as a boolean circuit) thereon to an untrusted
service provider S who offers access to (cloud) storage services and to (cloud)
computation services. Example applications include outsourcing of medical data,
log files or payrolls and computing arbitrary statistics or searches on the out-
sourced data. In addition, the evaluation of f can depend on a session-specific
private query xi of C resulting in the response yi = f(xi, D). However, S should
be prevented from learning or modifying D or xi (confidentiality and integrity)
or to compute f incorrectly (verifiability).1 Any cheating attempts of a mali-
cious S who tries to deviate from the protocol should be detected by C with
overwhelming probability where C outputs the special failure symbol ⊥.2

While this scenario can be easily solved for a restricted class of functions (e.g.,
private search of a keyword xi using searchable encryption [18]), we consider
the general case of arbitrary functions f . Due to the large size of D (e.g., a
database) and/or the computational complexity of f , it is not possible to securely
outsource D to S only and let C compute f after retrieving D from S. Instead,
the confidentiality and integrity of the outsourced data D has to be protected
while at the same time secure computations on D need to be performed at S
without interaction with C.

2.1 Tamper-Proof Hardware Token T

To improve the efficiency of the secure computation, our model additionally
allows that C uses a tamper-proof hardware token T , integrated into the infras-
tructure of S, that is capable of performing computations on behalf of C within a
shielded environment, i.e., must be guaranteed not to leak any information to S.
1 S might attempt to cheat to save storage or computing resources or simply manip-

ulate the result.
2 As detailed in [11] it is necessary that S does not learn whether C detected an error

or not to avoid that S can use this single bit of information to construct a decryption
or verification oracle.

Token-Based Cloud Computing 421

As T needs to be built tamper-proof and cost-effective, it will have a restricted
amount of memory only. In many cases the available memory within T will not
be sufficient to store D or intermediate values during evaluation of f . If needed,
T might resort to additional (slow) secure external memory (e.g., [10]).

The token T could be instantiated with a cryptographic coprocessor built
by a third-party manufacturer whom C trusts in a way that T does not leak
any information to S. A possible candidate would be the IBM Cryptographic
Coprocessor 4758 or its successor 4764 which is certified under FIPS PUB 140-
2 [27,15]. Such cryptographic coprocessors allow to generate secret keys internally
and securely transport them to C or to another token for migration purposes,
and authentication to verify that the intended software is executed within the
shielded environment. (For details on migrating a state (key) between two trusted
environments (cryptographic coprocessors) we refer to [4,25].) As such tokens
based on cryptographic coprocessors can be used for multiple users in parallel,
their costs amortize for service provider and users.

For extremely security critical applications where C does not want to trust
the manufacturer of cryptographic coprocessors offered by S, C can choose his
own hardware manufacturer to produce the tamper-proof hardware token T and
ship this to S for integration into his infrastructure. We note that this approach
is similar to “server hosting” which assumes outsourcing during long periods;
this somewhat contradicts the highly dynamic cloud computing paradigm where
service providers can be changed easily.

3 Preliminaries

In this section we introduce the cryptographic building blocks used in the archi-
tectures presented afterwards in §4.

3.1 Encryption and Authentication

Confidentiality and authenticity of messages can be guaranteed either symmet-
rically (using one key) or asymmetrically (using two keys).

The symmetric case can be instantiated with a combination of symmetric en-
cryption (e.g., AES [22]) and a message authentication code (e.g., AES-CMAC
[28] or HMAC [20]). These schemes use a respective symmetric key for encryp-
tion/authentication and the same key for decryption/verification.

Alternatively, public-key cryptography (e.g., RSA or elliptic curves) allows
usage of separate keys for encryption/authentication and other keys for decryp-
tion/verification. This could be used for example to construct an outsourced
database to which new entries can be appended by multiple parties without
using shared symmetric keys (cf. Fig. 1).

Notation. x̂ denotes authenticated and x encrypted and authenticated data x.

3.2 Fully Homomorphic Encryption

Fully homomorphic encryption is semantically secure public-key encryption that
additionally allows computing an arbitrary function on encrypted data using

422 A.-R. Sadeghi, T. Schneider, and M. Winandy

Service Provider S

Token T

Computation
Cloud

Storage Cloud

outsourced
data D

Client C
private query xi

yi =

{
f(xi, D)

⊥

confidentiality

verifiability

latency

Properties

& integrity {

Fig. 1. Model for Secure Outsourcing of Data and Computation

the public-key only, i.e., given a ciphertext !x", a function f and the public-key
pk, it is possible to compute !y" = EVALpk(f, !x") = !f(x)". Constructing a
homomorphic encryption scheme with polynomial overhead was a longstanding
open problem. Recently, there are several proposals starting with [12] and sub-
sequent extensions and improvements of [9,26]. Still, all these schemes employ
computationally expensive public-key operations for each gate of the evaluated
function and hence are capable of evaluating only very small functions on to-
day’s hardware. Recent implementation results of [26] show that even for small
parameters where the multiplicative depth of the evaluated circuit is d = 2.5,
i.e., at most two multiplications, encrypting a single bit takes 3.7s on 2.4GHz
Intel Core2 (6600) CPU.

Notation. We write !x" for homomorphically encrypted data x.

3.3 Garbled Circuit (GC)

The most efficient method for secure computation of arbitrary functions known
today is based on Yao’s garbled circuits (GC) [30]. Compared to fully homo-
morphic encryption, GCs are highly efficient as they are based on symmetric
cryptographic primitives only but require helper information to evaluate non-
XOR gates as described below.

The main idea of GCs as shown in Fig. 2 is that the constructor generates
an encrypted version of the function f (represented as boolean circuit), called
garbled circuit f̃ . For this, he assigns to each wire Wi of f two randomly chosen
garbled values w̃0

i , w̃1
i that correspond to the respective values 0 and 1. Note that

w̃j
i does not reveal any information about its plain value j as both keys look ran-

dom. Then, for each gate of f , the constructor creates helper information in form
of a garbled table T̃i that allows to decrypt only the output key from the gate’s
input keys (details below). The garbled circuit f̃ consists of the garbled tables
of all gates. Later, the evaluator obtains the garbled values x̃ corresponding to
the inputs x of the function and evaluates the garbled circuit f̃ by evaluating
the garbled gates one-by-one using their garbled tables. Finally, evaluator obtains

Token-Based Cloud Computing 423

the corresponding garbled output values ỹ which allow the constructor to decrypt
them into the corresponding plain output y = f(x).

Notation. We write x̃ for the garbled value corresponding to x and f̃ for the
garbled circuit of function f . Evaluation of f̃ on garbled input x̃ is written as
ỹ = f̃(x̃).

Security and Verifiability of GCs. GCs are secure even against malicious evalu-
ator (cf. [14]) and demonstration of valid output keys implicitly proves that the
computation was performed correctly (cf. [11]). A fundamental property of GCs
is that they can be evaluated only once, i.e., for each evaluation a new GC must
be generated.

constructor

y = f(x) verify and decrypt

function f

gate Gi

W1W2

W3

∧

garbled circuit f̃

garbled table T̃i

w̃1 w̃2

w̃3

∧

create GC

evaluator

f̃

ỹ = f̃(x̃)

evaluate GCx̃

Fig. 2. Overview of Garbled Circuits

Efficient GC construction. The efficient GC construction of [19] provides “free
XOR” gates, i.e., XOR gates have no garbled table and negligible cost for eval-
uation. For each 2-input non-XOR gate the garbled table has size 4t bits, where
t is the symmetric security parameter; its creation requires 4 invocations of a
cryptographic hash function (e.g., SHA-256 [23]) and 1 invocation for evaluation.
The construction is provably secure in the random-oracle model.

Efficient creation of GCs in hardware. As shown in [16], GCs can be generated
within a low-cost tamper-proof hardware token. The token requires only a con-
stant amount of memory (independent of the size of the evaluated function) and
performs only symmetric cryptographic operations (SHA-256 and AES). Gen-
eration of the GC for the aforementioned AES functionality took 84ms on a
66MHz FPGA neglecting the delay for communicating with the token [16].

Efficient evaluation of GCs in software. The implementation results of [24] show
that GCs can be evaluated efficiently on today’s hardware. Evaluation of the GC
for the reasonably large AES functionality (22, 546 XOR and 11, 334 non-XOR
gates) took 2s on an Intel Core 2 Duo with 3.0GHz and 4GB RAM [24].

424 A.-R. Sadeghi, T. Schneider, and M. Winandy

4 Architectures for Secure Outsourcing of Data and
Arbitrary Computation

In this section we present several architectures for our model of §2.

4.1 Token Computes

A first approach, also used in [17], is to let the token T compute f as shown in
Fig. 3. For this, C and T share symmetric keys for encryption and verification.
The encrypted and authenticated database D and the authenticated function
f̂ is stored within the storage cloud of service provider S. In the online phase,
C sends the encrypted and authenticated query xi to T and the storage cloud
provides D and f̂ one-by-one. T decrypts and verifies these inputs and evaluates
yi = f(xi, D) using secure external memory. If T detects any inconsistencies,
it continues evaluation substituting the inconsistent value with a random value,
and finally sets yi to the failure symbol ⊥. Finally, T sends the authenticated and
encrypted response yi back to C who decrypts, verifies and obtains the output yi.

Storage CloudToken T
Client C Service Provider S

xi

f̂ , D

xi f̂ , D

yi = f(xi, D)
yi

decrypt+verify

Fig. 3. Architecture: Token Computes [17]

Performance. In this approach, the latency of the online phase, i.e., the time from
sending the query xi to receiving the response yi, depends on the performance
of T (in particular on the performance of secure external memory) and cannot
be improved by using the computation cloud services offered by S.

4.2 Cloud Computes

The approach of [11] shown in Fig. 4 does not require a trusted HW token but
combines garbled circuits for verifiability with fully homomorphic encryption for
confidentiality of the outsourced data and computations. The main idea is to
evaluate the same garbled circuit f̃ under fully homomorphic encryption and
use the resulting homomorphically encrypted garbled output values to verify
that the computation was performed correctly:

During setup, C generates a garbled circuit f̃ and encrypts its garbled tables
with the fully homomorphic encryption scheme resulting in !f̃" which is sent to S
and stored in the storage cloud. To outsource the database D, the corresponding
garbled values D̃ are encrypted with the fully homomorphic encryption scheme
and !D̃" is stored in S’s storage cloud as well.

Token-Based Cloud Computing 425

In the online phase, C sends the homomorphically encrypted garbled query
!x̃i" to S who evaluates the homomorphically encrypted garbled circuit !f̃" on
!x̃i" and !D̃" using the homomorphic properties of the fully homomorphic en-
cryption scheme. As result, S obtains !ỹi" = !f̃(x̃i, D̃)" and sends this back to
C. After decryption, C obtains ỹi and can verify whether the computation was
performed correctly. Otherwise, C outputs the failure symbol ⊥.

Client C Service Provider S
xi

!x̃i"

!ỹi"

Storage CloudComputation Cloud

!f̃", !D̃"
!f̃", !D̃"

!ỹi" = !f̃"(!x̃i", !D̃")

Fig. 4. Architecture: Cloud Computes [11]

Performance. The advantage of this approach is that it does not require any
trusted hardware and hence can be computed in parallel in the computation
cloud. However, the performance of today’s fully homomorphic encryption
schemes (in addition to the overhead caused by evaluating a garbled circuit
under fully homomorphic encryption) is not sufficient that this approach can be
used for practical applications in the near future (see §3.2).

4.3 Token Sets Up and Cloud Computes

Our approach combines a tamper-proof hardware token T used in the setup
phase only with efficient computations performed in parallel in the computation
cloud as shown in Fig. 5. The basic idea is that T generates a garbled circuit
during the setup phase and in the time-critical online phase the garbled circuit
is evaluated in parallel by the computation cloud.

In detail, our architecture consists of the following three phases:
During System Initialization, client C and the tamper-proof hardware token

T agree on a symmetric (long-term) key k (cf. §2.1). Additionally, C provides
S with the authenticated function f̂ (represented as boolean circuit) and the
authenticated and encrypted data D who stores them in the storage cloud.

In the Setup Phase, T generates for protocol invocation i an internal session
key ki derived from the key k and i. Using ki, T generates a garbled circuit f̃i

from the function f̂ and a corresponding garbled re-encryption D̃i of the database
D which are stored in the storage cloud: According to the construction of [16], the
GC can be generated gate-by-gate using a constant amount of memory only. For
each gate of f̂ , S provides T with the description of the gate. T uses the session
key ki to derive the gate’s garbled input values and the garbled output value
and returns the corresponding garbled table to S. In parallel, T accumulates
a hash of the gates requested for so far (e.g., by successively updating hi =

426 A.-R. Sadeghi, T. Schneider, and M. Winandy

H(hi−1||Gi) where H is a cryptographic hash function and Gi is the description
of the i-th gate) which is finally used to verify authenticity of f̂ (see [16] for
details). Similarly, T can convert the authenticated and encrypted database D
into its garbled equivalent D̃i using constant memory only: For each element
d in D, T decrypts and verifies d and uses the session key ki to derive the
corresponding garbled value d̃i of D̃i. Finally, T provides S with an encrypted
and authenticated OK message OKi that contains the session id and whether
the verification of f̂ and all elements in D were successful (OKi = 〈i,#〉) or not
(OKi = 〈i,⊥〉).

In the Online Phase, C derives the session key ki and uses this to create the
garbled query x̃i which is sent to S. Now, the computation cloud evaluates the
pre-computed garbled circuit f̃i in parallel using the garbled query and the pre-
computed garbled data D̃i as inputs. The resulting garbled output ỹi is sent back
to C together with the OK message OKi. Finally, C verifies that both phases have
been performed correctly, i.e., OKi for the setup phase (OKi = 〈i,#〉) and valid
garbled output keys ỹi for the online phase.

Storage Cloud

f̂ , D
f̃i, D̃i,OKi f̃i, D̃i,OKi

f̃i, D̃i,OKi

f̂ , D

Client C Service Provider S
k, xi Token T

create GC,
re-encrypt D

x̃i

ỹi,OKi

Computation Cloud

ỹi = f̃i(x̃i, D̃i)

Setup
Phase

Online
Phase

k

Fig. 5. Our Architecture: Token Sets Up and Cloud Computes

Performance. Our entire architecture is based solely on symmetric cryptographic
primitives and hence is very efficient. When T has access to a hardware accel-
erator for GC creation (i.e., hardware accelerators for AES and SHA-256), the
performance of the setup phase depends mostly on the speed of the interface
between the token T and the storage cloud [16]. The size of f̃i and D̃i is ap-
proximately t times larger than the size of f̂ and D, where t is a symmetric
security parameter (e.g., t = 128). To evaluate the GC in the online phase, one
invocation of SHA-256 is needed for each non-XOR gate while XOR gates are
“free” as described in §3.3. GC evaluation can be easily parallelized for many
practical functions that usually perform the same operations independently on
every entry of the database, e.g., computing statistics or complex search queries.

Extensions. Our architecture can be naturally extended in several ways: To
further speed up the setup phase, multiple tokens can be used, that in parallel

Token-Based Cloud Computing 427

Table 1. Complexity Comparison

Architecture T Computes Cloud Computes T Sets Up and
(§4.1) (§4.2) Cloud Computes (§4.3)

Computation by C O(|xi| + |yi|) O(|xi| + |yi|) O(|xi| + |yi|)
Communication C ↔ S O(|xi| + |yi|) O(|xi| + |yi|) O(|xi| + |yi|)
Storage in Cloud O(|f | + |D|) O(|f | + |D|) O(|f | + |D|)
Computation by T O(|f |) (Online) none O(|f |) (Setup)
Computation by Cloud none O(|f |) (Online) O(|f |) (Online)

Online Latency T evaluates f Cloud evaluates !f̃" Cloud evaluates f̃

create garbled circuits and re-encrypt the database for multiple or even the
same session. The function and the database can be updated dynamically when
an additional monotonic revision number is used. Such updates can even be
performed by multiple clients Ci by using public key encryption and signatures
as described in §3.1.

5 Conclusion

Summary. We discussed a model and several possible architectures for outsourc-
ing data and arbitrary computations that provide confidentiality, integrity, and
verifiability. The first architecture is based on a tamper-proof hardware token,
the second on evaluation of a garbled circuit under fully homomorphic encryp-
tion, and the third is a combination of both approaches.

Comparison. We conclude the paper with a qualitative performance comparison
of the proposed architectures and leave a prototype implementation for their
quantitative performance comparison as future work.

As summarized in Table 1, the asymptotic complexity of the presented archi-
tectures is the same: the client C performs work linear in the size of the inputs
xi and the outputs yi, the storage cloud stores data linear in the size of the eval-
uated function f and the outsourced data D and the computation performed by
the token T respectively the computation cloud is linear in the size of f . Hence,
all three schemes are equally efficient from a complexity-theoretical point of view.

However, the online latency, i.e., the time between C submitting the encrypted
query xi to the service provider S until obtaining the result yi differs substan-
tially in practice.

For the token-based architecture of §4.1, the online latency depends on the
performance of the token T that evaluates f and hence is hard to parallelize and
might become a bottleneck in particular when f is large and T must resort to
secure external memory in the storage cloud.

The homomorphic encryption-based architecture of §4.2 does not use a token
and hence can exploit the parallelism offered by the computation cloud. How-
ever, this architecture is not ready for deployment in practical applications yet,
as fully homomorphic encryption schemes are not yet sufficiently fast enough for

428 A.-R. Sadeghi, T. Schneider, and M. Winandy

evaluating a large functionality such as a garbled circuit under fully homomor-
phic encryption.

Our proposed architecture of §4.3 achieves low online latency by combining
both approaches: T is used in the setup phase only to generate a garbled cir-
cuit and re-encrypt the database. In the online phase, the garbled circuit f̃ is
evaluated in parallel by the computation cloud.

Acknowledgements. We thank the anonymous reviewers of the Workshop on
Trust in the Cloud held as part of TRUST 2010 for their helpful comments.

References

1. Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2
2. Amazon Simple Storage Service (S3), http://aws.amazon.com/s3
3. Atallah, M.J., Pantazopoulos, K.N., Rice, J.R., Spafford, E.H.: Secure outsourcing

of scientific computations. Advances in Computers 54, 216–272 (2001)
4. Berger, S., Caceres, R., Goldman, K.A., Perez, R., Sailer, R., Doorn, L.v.: vTPM:

Virtualizing the Trusted Platform Module. In: USENIX Security Symposium
(USENIX 2006), pp. 305–320. USENIX Association (2006)

5. Bussani, A., Griffin, J.L., Jasen, B., Julisch, K., Karjoth, G., Maruyama, H., Naka-
mura, M., Perez, R., Schunter, M., Tanner, A., Van Doorn, L., Herreweghen, E.V.,
Waidner, M., Yoshihama, S.: Trusted Virtual Domains: Secure Foundations for
Business and IT Services. Technical Report Research Report RC23792, IBM Re-
search (November 2005)

6. Cabuk, S., Dalton, C.I., Eriksson, K., Kuhlmann, D., Ramasamy, H.G.V., Ra-
munno, G., Sadeghi, A.-R., Schunter, M., Stüble, C.: Towards automated security
policy enforcement in multi-tenant virtual data centers. Journal of Computer Se-
curity 18, 89–121 (2010)

7. Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Masuoka, R., Molina,
J.: Controlling data in the cloud: outsourcing computation without outsourcing
control. In: ACM Workshop on Cloud Computing Security (CCSW 2009), pp. 85–
90. ACM, New York (2009)

8. Cloud Security Alliance (CSA). Top threats to cloud computing, version 1.0 (March
2010),
http://www.cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf

9. Dijk, M.v., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic en-
cryption over the integers. Cryptology ePrint Archive, Report 2009/616 (2009),
http://eprint.iacr.org; To appear at EUROCRYPT 2010

10. Garay, J.A., Kolesnikov, V., McLellan, R.: MAC precomputation with applications
to secure memory. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.)
ISC 2009. LNCS, vol. 5735, pp. 427–442. Springer, Heidelberg (2009)

11. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Out-
sourcing computation to untrusted workers. Cryptology ePrint Archive, Report
2009/547 (2009), http://eprint.iacr.org

12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM Sympo-
sium on Theory of Computing (STOC 2009), pp. 169–178. ACM, New York (2009)

13. Google App Engine, https://appengine.google.com
14. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.

(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

http://aws.amazon.com/ec2
http://aws.amazon.com/s3
http://www.cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
http://eprint.iacr.org
http://eprint.iacr.org
https://appengine.google.com

Token-Based Cloud Computing 429

15. IBM. IBM Cryptocards, http://www-03.ibm.com/security/cryptocards/
16. Järvinen, K., Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Embedded SFE: Of-

floading server and network using hardware tokens. In: Financial Cryptography
and Data Security (FC 2010), January 25-28. LNCS, Springer, Heidelberg (2010)

17. Jiang, S., Smith, S., Minami, K.: Securing web servers against insider attack. In:
Proceedings of the 17th Annual Computer Security Applications Conference, AC-
SAC (2001)

18. Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Workshop on Real-Life
Cryptographic Protocols and Standardization (RLCPS 2010) - co-located with
Financial Cryptography, January 2010, LNCS. Springer, Heidelberg (to appear
2010)

19. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

20. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-hashing for message au-
thentication. RFC 2104 (Informational) (February 1997),
http://tools.ietf.org/html/rfc2104

21. Microsoft SQL Azure, http://www.microsoft.com/windowsazure
22. NIST, U.S. National Institute of Standards and Technology. Federal information

processing standards (FIPS 197). Advanced Encryption Standard (AES) (Novem-
ber 2001), http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

23. NIST, U.S. National Institute of Standards and Technology. Federal information
processing standards (FIPS 180-2). Announcing the Secure Hash Standard (August
2002), http://csrc.nist.gov/publications/fips/fips180-2/fips-180-2.pdf

24. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

25. Sadeghi, A.-R., Stüble, C., Winandy, M.: Property-based TPM virtualization. In:
Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222,
pp. 1–16. Springer, Heidelberg (2008)

26. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: PKC 2010. LNCS. Springer, Heidelberg (2010); Cryp-
tology ePrint Archive, Report 2009/571, http://eprint.iacr.org

27. Smith, S.W., Weingart, S.: Building a high-performance, programmable secure
coprocessor. Computer Networks 31(8), 831–860 (1999); Special Issue on Computer
Network Security

28. Song, J.H., Poovendran, R., Lee, J., Iwata, T.: The AES-CMAC Algorithm. RFC
4493 (Informational) (June 2006), http://tools.ietf.org/html/rfc4493

29. Trusted Computing Group (TCG). TPM main specification. Main specification,
Trusted Computing Group (May 2009), http://www.trustedcomputinggroup.org

30. Yao, A.C.: How to generate and exchange secrets. In: IEEE Symposium on Founda-
tions of Computer Science (FOCS 1986), pp. 162–167. IEEE, Los Alamitos (1986)

31. Yee, B.S.: Using Secure Coprocessors. PhD thesis, School of Computer Science,
Carnegie Mellon University, CMU-CS-94-149 (May 1994)

http://www-03.ibm.com/security/cryptocards/
http://tools.ietf.org/html/rfc2104
http://www.microsoft.com/windowsazure
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips-180-2.pdf
http://eprint.iacr.org
http://tools.ietf.org/html/rfc4493
http://www.trustedcomputinggroup.org

	Token-Based Cloud Computing
	Introduction
	Model for Secure Outsourcing of Data and Arbitrary Computations
	Tamper-Proof Hardware Token T

	Preliminaries
	Encryption and Authentication
	Fully Homomorphic Encryption
	Garbled Circuit (GC)

	Architectures for Secure Outsourcing of Data and Arbitrary Computation
	Token Computes
	Cloud Computes
	Token Sets Up and Cloud Computes

	Conclusion

