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Return-Oriented Programming without Returns on ARM∗

Lucas Davi, Alexandra Dmitrienko†, Ahmad-Reza Sadeghi, Marcel Winandy

Abstract

In this paper we present a novel and general memory-related attack method on ARM-based
computing platforms. Our attack deploys the principles of return-oriented programming (ROP),
however, in contrast to conventional ROP, it exploits jumps instead of returns, and hence it can not
be detected by return address checkers. Although a similar attack has been recently proposed for
Intel x86, it was unclear if the attack technique can be deployed to ARM-based computing platforms
as well. Developing a jump-based attack on ARM is more involved, because ARM is based on a RSIC
architecture which differs in many aspects from Intel’s x86 architecture. Nevertheless, we show a
Turing-complete attack that can induce arbitrary change of behavior in running programs without
requiring code injection. As proof of concept, we instantiate our attack method on the Android
platform.

1 Introduction

Approximately 172 million smartphones were sold in 2009, from which Google Android and Apple iPhone
were the fastest growing ones [19]. Smartphone platforms that use ARM processors, e.g., Apple iPhone
and Google Android, have become very popular in the last two decades. Principally, ARM processors
follow the RISC design principles. In 2009 ARM announced the 10 billionth mobile processor [5].

The wide deployment of smartphones makes them also attractive targets for attacks. For instance,
attacks appeared that apply code injection via exploiting memory related vulnerabilities [21]. A typical
approach to prevent code injection attacks is W ⊕X [29], which marks a memory page either writable
(W) or executable (X). However, recent software attacks on smartphones [24, 23] bypass W ⊕ X by
applying the principles of return-oriented programming (ROP) [33]. ROP attacks do not require code
injection, but invoke the execution of so-called gadgets, sequences of instructions, that already reside in
the program’s memory space. Generally, ROP is shown to be Turing-complete and can be applied on
a number of architectures: Intel x86 [33], SPARC [7], ARM [26], iPhone [23, 24], Atmel AVR [16], Z80
voting machines [9], and PowerPC [27]. However, ROP attacks are based on function epilogue sequences
(e.g., return instructions) and can be defeated by return address checkers [11, 17, 20, 12, 14, 34]. These
tools hold valid copies of return addresses in a dedicated memory area and enforce a return address check
for each executed return instruction.

Recently, Checkoway and Shacham [10] introduced a new ROP attack for Intel x86 that needs no
return instructions at all. Instruction sequences are instead chained together by indirect jump instruc-
tions. This attack cannot be detected in the same way as conventional ROP attacks since there is no
definite convention regarding the target of an indirect jump. While a return instruction must redirect
execution back to the calling function, an indirect jump is allowed to transfer control to any function
available in the program’s address space. Inspired by the approach in [10], in this paper we present a
jump-oriented attack method targeting ARM computing platforms. Our attack uses ARM’s indirect call
instruction Branch-Link-Exchange (BLX). Hence, we call our attack BLX-Attack. We instantiate our
attack on an Android 2.0 device allowing us to launch the terminal application.

Contribution. We present a jump-based attack method on ARM platforms that bypasses return ad-
dress checkers and allows to change program behavior without code injection. Although in principle we
∗Part of this technical report will appear at the 17th ACM Conference on Computer and Communications Security

(CCS 2010) [8]
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adopt the jump attack presented in [10], developing such an attack on an ARM platform is not straight-
forward and more involved: This is because an attacker is not able to invoke unintended1 sequences due
to memory alignment enforced by ARM that reduces the code base dramatically. Nevertheless, we show
that our attack method is Turing-complete. Moreover, our attack does not rely on BYOPJ (Bring your
own pop jump) paradigm which is a strong assumption made in [10]. We mount our BLX-Attack on a
Google Android 2.0 device. Our concrete attack launches a shell to the adversary.

Outline. After providing background on the ARM architecture and presenting our adversary model
and assumptions in Section 2, we give an overview of our BLX-Attack in Section 3, and explain the
technical details of our gadget set in Section 4. We show how our BLX-Attack can be mounted on
an Android device in Section 5 and elaborate on related work in Section 6. We conclude the paper in
Section 7.

2 Background and Assumptions

In this section we briefly describe the ARM architecture and present our adversary model and assump-
tions.

2.1 ARM/THUMB Instruction Set

ARM is a 32-bit processor and features 16 general-purpose registers r0 to r15 as depicted in Table 1.
All these registers can be accessed/changed directly. In contrast to the Intel x86 architecture, even the
program counter pc can be accessed directly. Additionally, ARM processors feature a current program
status register (cpsr), which holds the current state of the system. It contains condition flags, interrupt
enable flags, and the current mode.

Register Purpose
r0 - r3 Used for function arguments
r4 - r11 Used for local variables (must be preserved)
r12 Scratch register
r13 (sp) Stack pointer
r14 (lr) Link register (holds the return address)
r15 (pc) Program counter
cpsr Control program status register

Table 1: The ARM Registers

Although ARM has a 32-bit RISC architecture, it also provides a 16-bit instruction set, called
THUMB. The THUMB instruction set is a subset of the ARM instruction set and is in particular
suitable for embedded systems which often suffer from greater memory restrictions as PCs. Moreover,
THUMB code provides better performance than ARM for systems shipped with a 16-bit memory. If
instructions have to be fetched from a 16-bit memory, then it will take two cycles to fetch an ARM
instruction, whereas only one cycle is needed to fetch a Thumb instruction. In particular, the libraries
libc.so and libwebcore.so which we use as the code base for our BLX-Attack contain mainly THUMB
instructions.

Function Calls. According to the ARM Architecture Procedure Call Standard (AAPCS) [6], function
calls can be performed either through a BL or through a BLX instruction. The BL instruction performs
a branch with link operation, i.e., enforces a branch to the specified routine by writing the destination
address to the program counter pc, and by writing the return address to the link register lr. The BLX
instruction additionally allows interworking between ARM and THUMB code. Further, only the BLX
instruction allows indirect function calls (i.e., the target address of the branch is hold in a register). Note

1Jumping to the middle of a valid instruction on Intel x86 results in a new instruction stream unintended by the
programmer. This is possible on x86 because of unaligned memory access and variable-length instructions.
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that, in practice, not all function calls follow the AAPCS calling convention: Instead of transferring the
return address to lr, the ARM C compiler may enforce the return address to be pushed onto the stack
and afterwards performs a direct branch to the function through a B or BX instruction.

Arguments to a function are provided in the registers r0 to r3. If a function requires more than four
arguments then these must be passed on the stack. Additionally, the output values of a function are
returned via these registers. Registers r4 to r8, r10, and r11 are used for holding local variables of the
called function whereas THUMB code only uses r4 to r8. According to the AAPCS, a function must
preserve registers r4 to r8, r10, r11, and sp.

A function return is completed by writing the return address to the program counter pc. For this,
the ARM architecture provides no dedicated return instruction. Instead, any instruction that is able to
write to the program counter can be applied as return instruction. For instance, one common return
instruction is the BX lr instruction that branches to the address stored in the link register lr. Further,
it is also possible to use the LDM (load multiple) instruction that loads the return address from the stack.

2.2 Assumptions and Adversary Model

We define a strong adversary model. For our attack we assume the availability of standard protection
mechanisms against code injection and return address corruption attacks. Later (in Section 5) we show
that even under the presence of such protection schemes, our BLX-Attack can be mounted on an ARM-
based Google Android device.

1. We assume that the target platform may enforce the W ⊕X security model. Thus an adversary
cannot use well-known code injection attacks. This is reasonable because the ARM architecture
provides the XN bit (i.e., similar to Intel’s non-executable bit) which allows the enforcement of
W ⊕ X. The new generations of Apple’s smartphone iPhone make use of the XN bit for each
memory page. Although Android currently does not entirely use the XN bit, thus allowing code
injection attacks, we assume a stronger Android architecture can be used in the future (enabling
W ⊕X by default).

2. We assume that the target platform may use countermeasures to defend/detect conventional ROP
attacks, e.g., by using [14, 11, 17]. We believe that return-address checkers that were implemented
for the Intel x86 architecture can be adopted to ARM architectures and the ARM C compiler.

3. We assume that the target platform provides an application with some bug allowing to instantiate
a heap overflow attack. The reason for instantiating our attack by means of a heap overflow is
that we want to avoid the use of any return instruction, so that our attack circumvents return
address checkers. This is reasonable since heap overflow attacks are the standard attack technique
of today’s adversaries [30].

3 Overview of BLX-Attack Method

In this section we present the high-level idea of our BLX-Attack method. First, we describe the main
aspects of the ARM BLX instruction and how this instruction can be exploited for our attack. Then, we
present the general design of the BLX-Attack such as the memory layout and the main attack steps.

3.1 Attack Components

The BLX instruction stands for Branch-Link-Exchange and is usually used for indirect function calls. A
branch is enforced to jump to an address stored in a particular register, while the return address is loaded
to a specific register (the link register lr), and (if necessary) an instruction set exchange (from ARM to
THUMB and vice versa) can be enforced. In the following we will show how indirect branch instructions
(such as BLX) can be exploited for our attack.

The principle of the BLX-Attack method is depicted in Figure 1. It shows an abstract view of a
program’s memory. The adversary cannot inject own malicious code due to enabled W ⊕X protection
(see Assumption 1 in Section 2.2). However, an adversary is still able to use existing code of the target
program and its libraries. Therefore, the adversary corrupts the control structure (CS) section so that
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Figure 1: A general Jump/BLX-Attack on ARM

program execution transfers to a specific piece of code in a linked library (lib). Usually control structures
(such as return and jump addresses) are located on the stack or on the heap. The instruction sequence
of the linked library is executed until a jump instruction has been reached which redirects the execution
to the next sequence of instructions by using a trampoline. The trampoline is also part of the linked
libraries and is responsible for loading the address of the next instruction sequence from the control
structure (CS) section.

In contrast to a conventional ROP attack (see, e.g., [33]), our BLX-Attack does not use the return
instruction as a connector for the instruction sequences. The idea for using indirect jumps rather than
returns was first described by Shacham in 2007 [33]. However, a Turing-complete gadget set and a thor-
ough attack design that allows chaining of multiple instruction sequences and gadgets was not presented
before 2010 by Checkoway and Shacham [10]. The ARM gadget compiler introduced by Kornau [26]
includes instruction sequences ending in a so-called “free branch“ (such as BLX). However, the gadgets
presented in [26] are basically terminated by function epilogue instructions. Further, the chaining of gad-
gets is always performed through function epilogue sequences, which will allow return address checkers
to detect the attack. To the best of our knowledge, our attack method is the first attack on ARM that is
solely based on indirect jumps. Moreover, we show that our gadget set is Turing-complete. Nevertheless,
Kornau’s compiler can be used to facilitate the work of finding gadgets by automatically identifying
sequences ending in a BLX instruction.

The jump-based attack presented in [10] targets Intel x86 and cannot be applied straightforward
to ARM-based systems. ARM is a RISC architecture where in contrast to Intel x86 no unintended
instruction sequences can be invoked.2 Thus, developing such an attack for ARM is more involved
because the code base is much smaller compared to Intel x86. Moreover, the attack in [10] assumes
the presence of a pop-jump sequence (used as trampoline). However, for the typical libraries used on
ARM such a trampoline sequence does not exist. This assumption is called “Bring Your Own Pop Jump
(BYOPJ)”. Typical libraries on ARM do not include pop-jump sequences3, but we show how to design
a Turing-complete attack method for ARM platforms without using the BYOPJ paradigm.

Reasons for Using BLX. The BLX instruction is not a part of a function epilogue. Hence, an attack
based on BLX instructions cannot be detected by return address checkers. We assume the presence of such
return address protection mechanisms (see Assumption 2 in Section 2.2). Moreover, in contrast to Intel’s
x86 indirect call instruction, the BLX instruction does not impact values on the stack (or generally on
the memory), which makes the BLX instruction very suitable for our attack. However, since the program
counter pc can be accessed as a general purpose register, any instruction which uses the program counter

2Theoretically it is also possible to identify unintended instruction sequences on ARM, when ARM (32 bit) and THUMB
(16 bit) code is mixed. Nevertheless, the code base for useful sequences on ARM is still smaller than on Intel x86, because
on ARM an instruction is either 2 or 4 Byte long, whereas an x86 instruction ranges from 1 to 12 Bytes. Note that our
gadget set is only derived from intended instruction sequences.

3Sometimes such a sequence can be found in a function epilogue. However, these sequences can be protected by return
address checkers.
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pc as a destination register could be used for our attack. Th reason why we selected the BLX instruction
is because most of the instruction sequences we identified in our code base end with BLX.

For extraction of a Turing-complete gadget set we inspected libc.so and libwebcore.so libraries of
an Android 2.0 platform. Android’s libc version is very compact, hence, we included Android’s Web
Browser library libwebcore.so to enlarge the code base. Both of the libraries (by default) are linked into
the memory space of an application to fixed addresses (i.e., no ASLR4 is used).

3.2 Attack Method Design

Memory Layout. Figure 2 depicts the memory layout and the steps of our BLX-Attack. The memory
area under control of the adversary contains jump addresses and arguments which are clearly separated
from each other. The injection of the jump addresses and arguments is accomplished by means of a heap
overflow (see Assumption 3 in Section 2.2) as we will discuss in more detail in Section 5. Each jump
address points to a specific instruction sequence whereas each sequence ends with a BLX instruction in
order to allow chaining of multiple sequences. We misuse the stack pointer sp as a pointer to arguments
and need a second register (denoted with RJA) as a pointer to jump addresses. We use the stack pointer
because many sequences we identified in our code base contain load/store operations where sp is used as
base register. However, in contrast to [10] our attack does not force the adversary to control the stack
pointer. Instead any register (RSP ) can be used as pointer to arguments and data.

The order of jump addresses and arguments highly depends on the instruction sequences found on
a platform. For instance, if the instruction sequence which updates RJA adds a positive constant then
jump addresses have to go from lower to higher memory addresses. In Figure 2 jump addresses go from
lower to higher memory addresses and arguments are ordered vice versa. Of course, if jump addresses
are not separated from arguments then one register could be saved. This is actually the preferred way
proposed by Checkoway and Shacham [10]. However, on Intel x86, arguments are mainly loaded by a POP
instruction from the stack which directly updates the stack pointer. Unfortunately, the typical libraries
we examined load arguments without updating the stack pointer. That is the reason why we use RJA

as pointer to jump addresses which is updated after each instruction sequence.

BLX-Attack Steps. Our attack method consists mainly of three parts: (i) setup, (ii) update-load-
branch (ULB) sequence, and (iii) gadgets which consist of several instruction sequences. First, the
adversary injects jump addresses and arguments to process’s memory space. By subverting the control-
flow, the adversary is able to initialize several registers. We refer to this process as a setup (step 1).

4Address Space Layout Randomization
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We explain in Section 5 details of the setup. The setup initializes three registers: RJA, RULB and
RSP . RJA and RSP are used as a pointer to jump addresses and arguments. Register RULB is loaded
with the address of our ULB sequence (see below). Finally, the last action of our setup phase is to
redirect execution to sequence 1 (steps 2 and 3 in Figure 2). After sequence 1 completes its task, the
BLX instruction (located at the end of the sequence) redirects execution to our trampoline, called ULB
sequence (step 4). The ULB sequence is responsible for updating register RJA, loading the address of
the sequence 2, and for enforcing the branch to sequence 2 (step 5 and 6). Thus, our ULB sequence is
the connector for all sequences of instructions.

4 Gadget Set

In this section we present the (Turing-complete) gadget set for our BLX-Attack. The gadgets range
from simple gadgets that load a value into a register up to sophisticated gadgets that enforce conditional
branching.

4.1 Details of Setup and ULB Sequence

First, we describe the details of our setup and the ULB sequence. Since, our concrete BLX-Attack
directly initializes register r4 to r15 by exploiting a setjmp buffer overflow vulnerability on the heap,
we assume for the moment that the adversary can directly initialize these registers. We will describe in
Section 5 in more details how this can be achieved.

In Section 3 we introduced the registers RJA, RULB , and RSP as the fundamental basis for our attack.
The allocation of these registers highly depends on the identified instruction sequences in our code base
and involves technical challenges because these registers must be preserved during the execution of the
gadget chain. For our code base we decided (as depicted in Figure 2) for the following allocation: RJA =
r6, RULB = r3, and RSP = sp. Further, we use following sequences for the setup and the ULB sequence:

LDR r3 , [ sp , # 0 ] ; BLX r3 /∗ Setup sequence ∗/
ADDS r6 ,#4; LDR r5 , [ r6 ,#124 ] ; BLX r5 /∗ ULB sequence ∗/

We use r3 for RULB because most of the sequences in our code base end with a BLX r3 instruction. Our
setup sequence initializes r3 (i.e., RULB ) by loading the address of the ULB sequence from the stack
through a LDR (load register) instruction into r3. We describe the role of the LDR instruction in more
detail in Section 4.2. Note, since our adversary is able to directly initialize r4 to r15 by the setjmp
vulnerability, we require no additional setup sequences for RJA and RSP . Otherwise, we had to find
setup sequences that allow us to initialize all relevant registers by load instructions.

The ULB sequence acts as connector for all executed instruction sequences by (i) updating RJA after
each sequence and (ii) transferring control to the subsequent instruction sequence. Since registers r0 to
r3 are often used as destination registers before a BLX instruction, we decided to use r6 as RJA register.
The ULB sequence first increases register r6 by 4 Bytes (Update), then loads the next jump address (by
an offset of 124 Bytes to r6) in r5 (Load), and finally branches to the loaded address (Branch). However,
this sequence does not directly use RJA as branch destination register, rather it uses for this r5. Thus,
we must take into account that the content of r5 is overwritten after each ULB sequence.

One technical problem we have to address is that most of our sequences use the pre-indexed addressing
mode, which means that sp does not change its value after it is used as base register in a load operation.
It would be desirable to directly load sp, but unfortunately, we have no such load operation in the
sequences of our code base. Hence, we use the following sequence to update sp:

SUB sp ,#12; ADDS r0 , r4 ,#0; BLX r3 /∗ Updating sp ∗/

This sequence decreases the value of the stack pointer by 12 Bytes and as a side-effect overwrites the
value of register r0 with the content stored in r4. To preserve register r0, its value could be stored to
memory or moved to a free register before.

4.2 Technical Details of Gadgets

The crucial part of our BLX-Attack is to build a Turing-complete gadget set allowing an adversary to
generate arbitrary program behavior. Generally, gadgets consist of several instruction sequences, whereas
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for our purposes the instruction sequences have to end in a BLX instruction to redirect execution to our
ULB sequence. Thus, useful instruction sequences must be first extracted form libraries linked to an
application. Previous work [7, 22, 26] has shown how to automate the identification of gadgets.

A Turing-complete gadget set for a BLX-Attack should at least consists of gadgets for (i) memory
operations (load/store), (ii) data processing (data moving and arithmetic/logical operations), (iii)
control-flow (conditional/unconditional branching), and (iv) system and function calls. We could
construct all these gadgets using the sequences in our code base, namely the libraries libwebcore.so and
libc.so of an Android 2.0 device. In the following, we will present the technical details for all classes of
gadgets.

4.2.1 Memory Operations.

Memory operation gadgets are needed for loading and storing values from and to memory. Due to the
RISC architecture of ARM processors load and store operations are only permitted through dedicated
load and store instructions. The ARM instruction set offers for this two instructions, LDR and STR.5

A general-purpose register can be loaded through an LDR instruction. Storing a register to memory is
performed through the STR instruction. For instance, to load a word from the stack (with NULL Bytes
offset) to r1, the following sequence could be used:

LDR r1 , [ sp , #0 ] ; BLX r3

Loading an immediate. Typically, memory operations also include a gadget that loads an immediate
value into a general-purpose register. For instance, to load NULL into register r2 the following sequence
could be used:

MOVS r2 ,#0; BLX r3

This sequence uses the MOVS instruction to move the immediate value NULL to r2.

Storing to memory. For a store operation we need at least two registers, one holding the word to be
stored and one holding the target address. Figure 3 depicts our store gadget which stores the contents of
several registers (r1, r3, and r4) to a memory address pointed to by r2. Sequence 1 consists of two load
instructions. The first one loads the target address for the store operation to register r2. The target
address is located in the argument memory space at [sp,#4]. Unfortunately, the second load instruction
overwrites register r3 (RULB ). To preserve RULB , the address stored at [sp,#0] must be the address of
our ULB sequence. Afterwards, sequence 2 stores the register contents of r1, r3, and r4 to the memory
area pointed to by r2. However, sequence 2 once again overwrites register r3. Hence, the address of our
ULB sequence must also be placed at address [sp,#8].

4.2.2 Data Processing

Data processing gadgets include gadgets for moving data among registers, logical (AND, OR, NOT,
EOR), and arithmetic (ADD, SUB, MUL, DIV) operations. Basically, data processing gadgets need first
memory load gadgets to initialize the source registers. Afterwards the desired operation is performed on
the source registers.

Data movement gadgets. THUMB compiled code uses for data movement the arithmetic add in-
struction ADDS6. For this, the ADDS instruction uses the immediate NULL as second operand:

ADDS r0 , r1 ,#0; ADDS r1 , r4 ,#0; BLX r3
ADDS r5 , r1 ,#0; ADDS r7 , r2 ,#0; BLX r3

For instance, the first sequence moves r0 to r1 and r4 to r1.
5Despite these two instructions, ARM provides the LDM and STM instructions for a multiple load and store operation.
6An add instruction with the “S” suffix updates also the CPSR flag register.
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Arithmetic gadgets. The ADD gadget can be also realized with the arithmetic add instruction ADDS
as follows:

ADDS r0 , r0 , r2 ; BLX r3

This sequence adds the contents of register r0 and r2 and stores the result in register r0.
Our SUB gadget is based on the arithmetic sub instruction SUBS as depicted in Figure 4. This

gadget subtracts r0 from r4. Sequences 1 and 2 load the first operand into r4 through r0, whereas the
conditional branch in sequence 2 will be never taken, because r3 holds the address of the ULB sequence
(which does not equal NULL). Afterwards, sequence 3 loads r0 with the second operand. The fourth
sequence loads the address where the result will be stored into register r2. Finally, the last sequence
performs the subtraction and stores the result at memory position sp,#32 and in register r1.

CMP r3,#0
MOV r4,r0
BEQ 212b0
BLX r3

LDR r2,[sp,#12]
BLX r3

Sequence 4

Result (r1)

sp

1.Operand

sp,#28

2.Operand

sp,#32

+(#4)

SUBS r1,r4,r0
STR r1,[r2,#4]
ADDS r0,r5,#0
LDR r1,[sp,#32]
BLX r3

Sequence 1

LDR r0,[sp,#4]
BLX r3

Sequence 2

Sequence 5

BLX r3
LDR r0,[sp,#16]

Sequence 3

Figure 4: The Subtract Gadget

9



The remaining MUL and DIV gadgets can be realized by invoking the ADD and SUB gadget in a
loop.

Logical gadgets. As an example for a logical operation gadget we present the AND gadget. Generally,
logical and arithmetic operation gadgets must first load the operands into source registers. Afterwards the
desired logical/arithmetic operation is performed on the loaded registers. Our AND gadget is depicted in
Figure 5. Sequences 1 and 2 are responsible for loading the first operand into register r7. This is achieved

LDR r2,[sp,#4]

LDR r1,[sp,#16]

sp

1.Operand (r7)

2.Operand (r1)

BLX r3

BLX r3

Sequence 3

Sequence 1

ANDS r7,r1
BLX r3

ADDS r7,r2
BLX r3

Sequence 2

Sequence 4

Figure 5: The AND Gadget

by loading the first operand into r2 and by moving the content of r2 to r7. Afterwards, sequence 3 loads
the second operand into register r1 and sequence 4 performs the AND operation on register r1 and r7,
whereas the result is stored into register r7.

One important logical gadget to mention is the NOT gadget that computes the two’s complement of
a specific value. We realize the NOT gadget (based on the ideas presented in [10]) by subtracting the
source register from (-1). The AND and NOT gadget can be combined to a NAND gadget. All other
logical operations (such as OR, EOR) can be emulated through our NAND gadget.

Similar, the negate gadget can be simulated through a SUB gadget by subtracting the source register
from NULL.

Shift gadgets. Although shift gadgets are not always included in Turing-complete gadget sets (e.g.,
[33]), we show how these can be realized by the ASRS (arithmetic right shift) and LSRS (logical left shift)
instructions, as follows:

ASRS r0 , r0 ,#1; ADDS r0 , r2 , r0 ; BLX r3
LSLS r2 , r2 ,#2; ADDS r2 , r1 , r2 ; BLX r3

For instance, the first sequence performs an arithmetic right shift on r0 by one bit. To preserve the result
of the shift operation, r2 has to be loaded with NULL (e.g., by the load immediate gadget explained in
Section 4.2.1). Otherwise, the second instruction would overwrite r0 by adding r2 to r0.

4.2.3 Control-Flow

In contrast to ordinary programs, branching in the context of our BLX-Attack implicates changing the
RJA (r6) register rather than the instruction pointer. The unconditional branching gadget can be realized
by adding an offset to register RJA, or by directly loading RJA with a new value:

LDR r6 , [ sp ,#24 ] ; BLX r7
ADDS r6 ,#140; BLX r4

The first sequence loads r6 with a new value from the stack and the second sequence adds 140 Bytes
to the current value of r6. However, both sequences do not terminate in a BLX r3 instruction. Hence,
before these sequences can be used, the address of our ULB sequence has to be loaded into r7 and r4.
This can be achieved by load and data movement gadgets.
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Our conditional branching gadget is based on the ideas presented in [33]: We compare two values
and depending on the result, RJA is either changed by an unconditional branch gadget or remains as
before. To realize this gadget, we need a compare operation. Although ARM provides a dedicated CMP
instruction, we identified no appropriate sequence in our code base containing this instruction. However,
we can emulate the compare operation by our SUB gadget. The SUBS instruction in our SUB gadget
will set the carry flag (C Flag) in the cpsr register if the result of the subtraction is positive or NULL.
The updated carry bit is afterwards added to the constant 0xFFFFFFFF, hence the result will be either
NULL or 0xFFFFFFFF. Finally, the result of the last operation must be ANDed with the desired branch
offset. The result of this last operation will be either NULL (C Flag was set) or the offset (C Flag was
not set), which is finally added to RJA.

4.2.4 System and Function Calls

System calls are highly important for runtime attacks. Basically, system calls are needed to invoke
special services of the operating system (like opening a file, executing a new program, etc.). For instance,
conventional code injection attacks use the execve system call to launch a shell by invoking the program
/bin/sh. System calls can be implemented as functions in libc. Thus, a program only needs to invoke
the appropriate function for the system call. A common alternative to this scheme consists of passing
arguments in registers and in storing the system call number in a dedicated register (e.g., on ARM r7,
and on Intel %eax). The system call is then invoked through a software interrupt (e.g., on ARM SVC 0x0
(Supervisor Call), and on Intel int 0x80).

The libc version of Google Android implements system calls by transferring the system call number
to r7. Therefore all system call functions only differ in the MOVS r7,#SYS_NR instruction. For instance
the execve function looks as follows:

PUSH { r4 , r7 } ;
MOV r7 ,#11; 0xb
SVC 0x00000000
POP { r4 , r7 }
MOVS r0 , r0
BXPL l r

Since we could not identify a SVC 0x0 instruction in our inspected libraries, we can only invoke a system
call by calling the appropriate library function. On the other hand, this allows us to use the system
call gadget also for function calls. Our system/function call gadget is depicted in Figure 6. We have to
take into account that the BLX instruction loads the return address into the link register lr. Since the
BXPL lr (located at the end of the execve function) redirects execution back to the value stored in the
link register, we have to ensure that lr points at that time to a valid instruction sequence. However,
when the BLX instruction is invoked, lr will be automatically loaded with the address of [pc,#2] (for
Thumb compiled code). Hence, we use an instruction sequence with two BLX instructions (sequence 1).
The arguments for the system call must be initialized by load gadgets (not depicted in Figure 6). Usually,

BLX r7
ADDS r1,r0,#0
ADDS r0,r5,#0
BLX r4

Sequence 1

PUSH r7

PUSH r4

Address ULB

sp

PUSH {r4,r7}
MOV r7,#11
SVC 0x00000000
POP {r4,r7}
MOVS r0,r0
BXPL lr

System Call (execve)

2.

LDR r3,[sp,#0]
BLX r3

Sequence 2
ADDS r6,#4
LDR r5,[r6,#124]
BLX r5

Update−Load−Branch (ULB)

1.

3.
4.

Figure 6: The System Call Gadget

registers r0-r3 hold arguments for a system call. If a system call expects an argument in r3, then our
RULB will be overwritten. Thus, we must temporarily change the RULB to a different register if r3 is
used as argument.
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First, sequence 1 invokes the system call function (step 1), whereas the address of the system call
function is stored in r7. After the system call returns, the BXPL lr7 instruction redirects execution
back to sequence 1 (step 2). Afterwards, sequence 1 performs two data movement instructions and then
redirects execution to sequence 2 (step 3). This sequence re-initializes our RULB register r3 with the
address of the ULB sequence. Finally, sequence 2 redirects execution to the ULB sequence which loads
the next jump address (step 4).

As can be seen in Figure 6, the system call function pushes two values onto the stack. Since we
separated arguments from jump addresses, push instructions are not as dangerous as they are in the
original ROP attack8 [33]. However, a push instruction could overwrite arguments pointed to by the
stack pointer. If this is the case the adversary has to use store and load gadgets to backup the two
arguments and to restore them after the system call returns.

5 Launching BLX-Attack on Google Android

In this section we provide background information on Google Android and present an instantiation of
our BLX-Attack on Android 2.0 device.

5.1 Background on Google Android

Android is an open source operating system for mobile devices which includes a customized Linux kernel,
middleware framework and core applications. It is used in modern Google smartphones such as Motorola
Droid and a number of devices from the HTC manufacturer (HTC Droid Eris, HTC Imagio, HTC Hero
and many others). Currently, Google is also planning an Android-based Tablet PC [1].

The Android platform is based on a Linux kernel, which provides low-level services to the rest of
the system such as networking, storage, memory and processing. A middleware layer consists of native
C/C++ libraries, an optimized Java virtual machine called Dalvik Virtual Machine (DVM), and core
libraries written in Java. The DVM executes binaries of applications from upper layers.

Android applications are written in Java, but can also access C/C++ libraries via the Java Native
Interface (JNI). Application developers may use JNI to incorporate own C/C++ libraries into their
applications. Moreover, many C libraries are mapped by default to fixed memory addresses in the
program memory space. This provides a large C/C++ code base that we exploit for our attack.

5.2 Attack Instantiation

We provide details of BLX-Attack instantiation mounted on a device emulator hosting Android OS 2.0.
Our attack follows a classical attack scenario, we use several gadgets to launch a shell terminal to the
adversary. Android shell terminal is a part of the DevTool application, which is included by default in
the Android emulator image.

Note that we are also able to launch our attack on a real device. Particularly, we succeeded to run the
attack on Dev Phone 2 running the latest available version of Android for this device, namely Android
OS 1.6. However, Android image flashed into the phone differs from the image of the emulator in that it
has no DevTool application installed by default. Thus, the attack on a real device requires that a shell
terminal application such as DevTool or AndroidTerm9 is installed by a user on the device.

Attack Workflow The general workflow of our BLX-Attack is depicted in Figure 7. First, the adver-
sary has to disassemble the libraries used by the device. Afterwards useful instruction sequences ending
in a BLX instruction must be identified to allow the gadget creation. The adversary then exploits the
vulnerability of the targeted application and invokes the gadget chain to launch the BLX-Attack.

7The condition flag PL means that the branch will be only taken if the N flag in the cpsr register is not set. The N flag
will be set if r0 holds a negative value. This will be only the case if an error occurred during the system call.

8In the original ROP attack return addresses and arguments are both located on the stack. Hence, a push instruction
may overwrite a return address.

9http://code.google.com/p/androidterm/

12



2

3

4

Disassemble

Libraries

Combine Sequences

to Gadgets

Exploit

Vulnerabilty

Invoke

Gadgets

1a

1b
Find

Vulnerabilty

Search for

Useful Sequences

Figure 7: General Workflow of our BLX-Attack

Vulnerable Application. Our vulnerable application is a standard Java application using the JNI to
include C/C++ code. Due to the inclusion of C/C++ libraries, the security guarantees provided by the
Java programming language do not hold any longer. In particular, Tan and Croft [35] identified various
vulnerabilities in native code of the JDK (Java Development Kit).

The included C/C++ code is shown in the listing below and is mainly based on the example presented
in [10]. The application suffers from a setjmp vulnerability. Generally, setjmp and longjmp are system
calls which allow non-local control transfers. For this setjmp creates a special data structure (referred
to as jmp_buf). The register values from r4 to r15 are stored in jmp_buf once setjmp has been invoked.
When longjmp is called, registers r4 to r15 are restored to the values stored in the jmp_buf structure.
If the adversary is able to overwrite the jmp_buf structure before longjmp is called, then he is able to
transfer control to code of his choice without corrupting a single return address.

1 struct f oo
2 {
3 char bu f f e r [ 2 0 0 ] ;
4 jmp buf jb ;
5 } ;
6 j i n t Java com example he l l o jn i He l l oJn i doMapFi l e ( JNIEnv∗ env , j o b j e c t t h i z )
7 {
8 // A binary f i l e i s opened ( not depic ted )
9 . . .

10 struct f oo ∗ f = mal loc ( s izeof ∗ f ) ;
11 i = setjmp ( f−>jb ) ;
12 i f ( i !=0) return 0 ;
13 f g e t s ( f−>buf f e r , sb . s t s i z e , s F i l e ) ;
14 longjmp ( f−>jb , 2 ) ;
15 }

In Line 13 the fgets function inserts data provided by a file called (binary) into a buffer (located in the
structure foo) without checking the bounds of the buffer. The structure foo also contains the jmp_buf
structure. If the binary is larger than 200 Bytes it will overwrite the contents of the adjacent jmp_buf
structure.

However, our experiments showed that Android enables heap protection for setjmp by storing a fixed
canary directly after the local buffer and lets the jmp_buf structure start 52 Bytes after that canary.
The canary is hard-coded into libc.so and thus it is device and process independent. Hence, for an attack
we have to take into account the value of the canary and 52 Bytes space between the canary and the
jmp_buf structure.

System Call. In order to mount our BLX-Attack against the vulnerable program, our gadget chain
invokes the system libc function with the following argument:

am s t a r t −a android . i n t e n t . a c t i on .MAIN −c android . i n t e n t . category .TEST
−n com . android . term / . Term

This command invokes the Activity Manager application which in turn starts the terminal application.

Used Gadgets. All used gadgets used in our BLX-Attack on Android are shown in Figure 8. To
invoke the system function, we (i) initialize register r6 and sp by means of the setjmp heap overflow;
(ii) load r3 with the address of our ULB sequence (sequence 1); (iii) load the address of the interpreter
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command in r0 (sequence 2); (iv) finally invoke the libc system function (sequence 3). The corresponding
malicious exploit payload is included into the Appendix of this paper.

Address ULB

system()

LDR r3,[sp,#0]
BLX r3

sp

Update−Load−Branch (ULB)

Sequence 1
ADDS r0,r4,#0
BLX r3

Sequence 2

LDR r5,[r6,#124]
ADDS r6,#4

BLX r5

Sequence 3

am s

tart

Term

Figure 8: The Gadget Chain of our BLX-Attack on Android

6 Related Work

Return-Oriented Programming. ROP attacks have been adopted to several architectures. Shacham
introduced the attack for Intel x86 architectures [33]. The attack was in particular based on the so-called
unintended instruction sequences which can be invoked on Intel due to variable-length instructions and
unaligned memory access. Subsequent work demonstrated that ROP can be also mounted on RISC and
Harvard architectures [7, 16] that enforce memory alignment. Further, Lidner [27] showed that ROP
attacks can be mounted on PowerPC architectures (e.g., routers). A Turing-complete gadget set and a
gadget compiler for ARM platforms was introduced by Kornau [26]. As real-world example, Shacham
et al. showed that ROP can be used to attack the z80 voting machines [9]. Hund et al. [22] presented
a return-oriented rootkit for the Windows operating system that bypasses kernel integrity protections.
Further, Bruschi et al. [31] were able to bypass address space layout randomization (ASLR) by a ROP
attack that exploits the Global Offset Table (GOT). Iozzo and Miller showed that ROP principles can
be used to attack Apple’s ARM based smartphone iPhone [23]. Moreover, Iozzo et al. even used ROP
to steal the entire SMS database [24] of an iPhone device. Recent attacks on Acrobat products such as
the Acrobat Reader libtiff exploit [25] and the 0-day Flash exploit [4] load and execute malicious code by
means of ROP. Finally, Zovi [13] provides an overview of practical return-oriented programming attacks.

Return-Oriented Programming without Returns. All conventional ROP attacks described so far
are based on return instructions and thus can be generally defeated by return address checkers. These
tools or compiler extensions ensure the integrity of return addresses, which are corrupted through the
conventional ROP attack. [36, 11] are implemented as a compiler extension, [20, 12] use a probe-based
instrumentation framework that rewrites the binary before execution starts, and ROPdefender [14] and
TRUSS (Transparent Runtime Shadow Stack) [34] utilizes jit-based instrumentation.

However, a recent attack [10] has been proposed which uses the principles of ROP but does not
need the return instruction. Instead, the attack uses indirect jump instructions. The attack is based on
the “Bring your own pop jump (BYOPJ)” paradigm which assumes the presence of a special pop-jump
sequence. Further, the attack highly uses unintended instruction sequences, which cannot be formed
on ARM architectures. We showed in Section 3 and 4 that a similar attack can be also mounted on
ARM platforms through the BLX instruction without assuming the presence of a pop-jump sequence.
It is noteworthy to mention, that the ARM gadget compiler presented by Kornau [26] also includes
instruction sequences ending in a so-called “free branch“ (such as BLX). However, the gadgets presented
in [26] are basically terminated by function epilogue instructions. Further, the chaining of gadgets is
always performed through function epilogue sequences, which will allow return address checkers to detect
the attack. To the best of our knowledge, we are the first presenting an attack method on ARM that is
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solely based on the indirect subroutine instruction BLX and thus can not be detected by above mentioned
return address checkers.

Control-Flow Integrity. The well-known concept of control-flow integrity [2] implemented in XFI [3]
might rule out any attack subverting the control-flow of a program: XFI extracts a control-flow graph
(CFG) for the target program and checks on each indirect jump/call and return instruction if the target
address follows a valid path in the CFG. However, XFI needs specific debugging information stored in
Windows PDB files. Moreover, XFI relies on the Vulcan framework which is not publicly available.
Finally, it remains open if XFI can be adapted to ARM platforms in order to prevent our BLX-Attack.

Attacks on Android. Several attacks on Android were published on recent years. Typically, they
make use of malicious applications and do no rely on runtime exploits (as ROP or code injection attacks
do). First proof-of-concept attack examples were introduced by Enck et al. [15]. Attacks result in
making unprivileged calls and in forging text messages or location information. All of them are launched
by malicious programs.

Schmidt et al. [32] demonstrated how to create malware for the Android platform. They propose
to include a malicious binary camouflaged as a resource file into a Java application, whereas the Java
application provides some useful functionalities. Once the Java application has been installed and started
by the user, the malicious resource file is renamed into the appropriate binary. After permissions rights
of the binary are changed to “executable“, the binary will be executed and performs some malicious
actions such as rebooting the device.

Vennon [37] studies existing Android malware and presents three known examples: Two spyware
applications which collect information about the user and a single phishing application which targets
user’s credentials. Spyware programs typically need to be installed on the phone by an attacker, for
instance, the role of the attacker can be played by a spouse wishing to spy on his/her partner. Phishing
program requires to be downloaded and installed on the phone by a user, who is misleaded by a false
application description.

Mulliner [28] presents an SMS injection framework which is shown to be deployable on iPhone,
Android and Windows Mobile. It acts as man-in-the middle between the modem and the telephony
stack and is able to inject forged SMS messages into the application layer. The SMS injection framework
requires manual installation and thus requires physical access of the adversary to the phone. However,
this framework is shown to be useful for vulnerability analysis of SMS implementations. For instance,
several exploitable bugs were discovered for Android, one of it can be used to kick the Android device
from the phone network by means of specially crafted SMS.

The last mentioned attack example with a crafted SMS seems to exploit memory-related vulnerability
in SMS implementation of Android. As any memory-related vulnerability, it can be used for runtime
compromise. All other mentioned above attack examples make use of malware or Trojans and thus can
be mitigated by application signing and developer reputation mechanisms employed by Android.

Attacks on ARM. The following publications consider runtime attacks on ARM, but these attacks
can be instantiated on the Android platform as well. The work in [18] shows how to construct ARM
shellcode. Further, Younan et. al [38] introduce filter-resistant code injection attacks for ARM. The
injected code only consists of letters and digits which can bypass possibly applied filtering methods.
It is also shown that the subset of ARM machine code programs that consist only of alphanumerical
characters is Turing complete. As any code injection attacks, this attack method can not be applied
to platforms that enforce W ⊕ X. As Android does not currently enforce W ⊕ X protection, it is an
appropriate target for such a code injection attack technique.

7 Conclusion

In this paper, we present a general attack on ARM computing platforms, which is based on the principles
of return-oriented programming (ROP), but in contrast to conventional ROP does not use return or
function epilogue sequences. Instead, our attack chains together instruction sequences from existing
libraries by means of the indirect subroutine call instruction BLX (Branch-Link-Exchange). As our attack
does not make use of returns, it cannot be detected by return address checkers such as ROPdefender [14],
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TRUSS [34], StackGhost [17], RAD [11], or [20, 12]. We show that our BLX-Attack method is Turing-
complete allowing the adversary to run an arbitrary computation.

As a proof of concept we mounted our BLX-attack on Android 2.0 platform. Our attack exploits a
buffer overflow vulnerability on the heap and launches a shell to the adversary. As we focused primarily
on an attack method, rather than on automating the process for identifying gadgets and constructing
attack payloads, for the concrete attack example we utilized a gadget chain consisting of three gadgets
and performing a single function call. However, previous works [7, 22, 26] have proposed high-level
compilers to identify gadgets from given binaries and to construct attack payloads automatically. We
believe that our attack method can be integrated into these compilers in order to automatically generate
gadgets and attack payloads.
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A Exploit Details

The listing below shows the malicious input which exploits the vulnerable program and launches a
terminal to the adversary. As can be seen from the listing, our malicious input contains NULL Bytes.
However, the fgets function of our vulnerable program (see Section 5) reads also NULL Bytes and only
terminates if the EOF sign has been reached. On the left side (in the first column) are shown the memory
addresses of the setjmp buffer on the heap. The next six columns show the memory words stored in the
setjmp buffer after the adversary injects the attack payload, and the corresponding ASCII code is shown
on the right side (in the last column).

The first argument 0xaa137287 (which is the address of our ULB sequence) is at address 0x11de30.
Jump addresses pointing to our instruction sequences start from 0x11de44, and the system command is
located at 0x11de70. The location of the jmp_buf data structure (i.e., the setjmp buffer) is at 0x11df30,
which is 52 Bytes away from the canary 0x4278f501 located at Byte 0x11def8. jmp_buf starts with the
address of r4 that we initialize with 0x11de70. This address is afterwards moved to r0 by sequence 2
(see Figure 8). At address 0x11df38 is located the start address of r6. Finally, the last two words are
the new address of the stack pointer sp (0x11de30) and the start address (0xafe13f13) of the sequence 1
(see Figure 8) that will be loaded into the program counter pc.
0011DE30 87 72 13 AA 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 13 41 01 AA . r . .AAAAAAAAAAAAAAAA.A . .
0011DE48 FD 2E E1 AF 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 . . . .AAAAAAAAAAAAAAAAAAAA
0011DE60 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 61 6D 20 73 74 61 72 74 AAAAAAAAAAAAAAAAam s t a r t
0011DE78 20 2D 61 20 61 6E 64 72 6F 69 64 2E 69 6E 74 65 6E 74 2E 61 63 74 69 6F −a android . i n t en t . a c t i o
0011DE90 6E 2E 4D 41 49 4E 20 2D 63 20 61 6E 64 72 6F 69 64 2E 69 6E 74 65 6E 74 n .MAIN −c android . i n t en t
0011DEA8 2E 63 61 74 65 67 6F 72 79 2E 54 45 53 54 20 2D 6E 20 63 6F 6D 2E 61 6E . category .TEST −n com . an
0011DEC0 64 72 6F 69 64 2E 74 65 72 6D 2F 2E 54 65 72 6D 00 00 00 00 41 41 41 41 dro id . term / .Term . . . .AAAA
0011DED8 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAAAAAAAAAA
0011DEF0 41 41 41 41 41 41 41 41 01 F5 78 42 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAA. .xBAAAAAAAAAAAA
0011DF08 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 AAAAAAAAAAAAAAAAAAAAAAAA
0011DF20 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 70 DE 11 00 41 41 41 41 AAAAAAAAAAAAAAAAp. . .AAAA
0011DF38 C4 DD 11 00 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 . . . .AAAAAAAAAAAAAAAAAAAA
0011DF50 41 41 41 41 30 DE 11 00 13 3F E1 AF AAAA0 . . . . ? . .
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