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ABSTRACT
Apple iOS is one of the most popular mobile operating sys-
tems. As its core security technology, iOS provides applica-
tion sandboxing but assigns a generic sandboxing profile to
every third-party application. However, recent attacks and
incidents with benign applications demonstrate that this de-
sign decision is vulnerable to crucial privacy and security
breaches, allowing applications (either benign or malicious)
to access contacts, photos, and device IDs. Moreover, the
dynamic character of iOS apps written in Objective-C ren-
ders the currently proposed static analysis tools less useful.

In this paper, we aim to address the open problem of
preventing (not only detecting) privacy leaks and simulta-
neously strengthening security against runtime attacks on
iOS. Compared to similar research work on the open An-
droid, realizing such a system for the closed-source iOS is
highly involved.

We present the design and implementation of PSiOS , a
tool that features a novel policy enforcement framework
for iOS. It provides fine-grained, application-specific, and
user/administrator defined sandboxing for each third-party
application without requiring access to the application source
code. Our reference implementation deploys control-flow
integrity based on the recently proposed MoCFI (Mobile
CFI) framework that only protects applications against run-
time attacks. We evaluated several popular iOS applications
(e.g., Facebook, WhatsApp) to demonstrate the efficiency
and effectiveness of PSiOS .

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security
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1. INTRODUCTION
Smartphones and tablet computers are becoming ubiq-

uitous, and the sales figures for both types of devices are
growing rapidly. Probably the most important factor be-
hind this popularity is the availability of a large number of
mobile applications, ranging from simple games over mes-
saging apps to office applications. Consumers can easily in-
stall these apps via so-called app stores and then use them.
Privacy and security concerns arise because an application
can also access personal/sensitive information on the device,
such as for example contact details, messages, location in-
formation, or private photos. Current mobile operating sys-
tems are following slightly different approaches to protect a
user’s personal information and we focus in this paper on the
closed-source Apple iOS since it is after Android the most
popular mobile OS on the market. Further, most security
extensions for smartphones target the open Android, while
security extensions for the closed iOS are rarely available.

iOS assigns a generic sandboxing profile to every third-
party application allowing access to contacts, location, pho-
tos, recent searches, and device information. This design
decision contradicts the least-privilege principle, and easily
allows an application (either benign or malicious) to access
sensitive information. Developers must adhere to certain
guidelines for their applications to be accepted in the Ap-
ple App Store [7]. According to these guidelines, apps must
ask for the user’s permission to read out sensitive data. In
the recent past, however, several (legitimate) apps were de-
tected that abused these privileges and for instance uploaded
the complete contact list to the app developers without the
user’s consent [26]. These incidents even lead to an investi-
gation of the US Congress regarding data collection practices
on mobile devices [21].

To mitigate this problem, one of the first approaches is
to detect privacy leaks in iOS apps by using static analysis,
as recently proposed by Egele et al. [14]. Their static anal-
ysis tool, called PiOS, generates the control-flow graph of
an application to identify code regions that potentially steal
sensitive information. PiOS focuses on a static analysis ap-
proach and we identified shortcomings of the actual analysis
phase which we detail in Section 8. Up to now, there is
no solid privacy framework for iOS that enables a user to
protect his personal information. Compared to Android, for
which such tools have been proposed [19, 24], our main chal-
lenges concern the proprietary, closed-source nature of iOS
as well the usage of the programming language Objective-C.
The latter significantly complicates the implementation due
to the highly dynamic nature (e.g., dynamic binding and



Objective-C class clusters). Moreover, while on Android all
applications access the main phone functionalities through
the Java Android API, iOS apps may use either Objective-
C, standard C/C++, or direct system calls to use the main
phone services. This raises a significant technical challenge,
since all possible access techniques have to be considered to
ensure accurate access control on privacy-related informa-
tion and operations.

Contribution.
In this paper, we aim to address the open problem of not

only detecting privacy leaks for iOS apps, but actually pre-
venting them. The key idea of our approach is to assign
specific sandboxing profiles to each application to enforce
a given fine-grained privacy policy. Such a profile may ei-
ther be defined by a user at installation time, or centrally
provided by a system administrator or an enterprise. Log-
ically, we generate a protection layer between applications
and the iOS Objective-C Runtime environment. Further, we
monitor applications at execution time and ensure that they
only perform actions that adhere to the given sandboxing
profiles. Our solution operates directly on the application
binary, and hence, neither requires recompilation nor access
to the source code, which enables enforcement of policies for
arbitrary applications.

We have implemented a fully-working and efficient proto-
type of our framework in a tool called PSiOS that is based
on MoCFI [11], a tool that enforces control-flow integrity
on iOS devices. PSiOS enables user-driven and fine-grained
application sandboxing: on the one hand, a user can dynami-
cally update sandboxing profiles, without the need to recom-
pile or reinstall the application. Hence, end-users can easily
revoke or assign privileges. On the other hand, our frame-
work enables very fine-grained policies in which the user or
system administrator can precisely specify which privileges
are assigned to an application. This is possible, since our
sandboxing profiles cover the entire Objective-C runtime
and allows argument validations for each API call. Since
our framework is based on a complete control-flow integrity
tool, we also prevent attackers from exploiting vulnerabili-
ties in the application code to hijack its assigned rights [20,
22]. We demonstrate that PSiOS effectively prevents pri-
vacy breaches by testing our tool with SpyPhone [23], an
iOS app specifically designed to steal sensitive information
from an iOS device. Furthermore, we successfully instru-
mented many real-world, complex applications like Face-
book or WhatsApp and performance measurements indicate
that the overhead introduced by our tool is reasonable.

Note that our approach differs from Apple’s recently in-
troduced entitlement keys (i.e., permissions). Specifically,
Apple provides 25 keys to confine the privileges of apps [6].
However, these keys are specified by the app developer or
directly by Apple. Hence, neither the end-user nor an en-
terprise can apply custom sandboxing policies to their apps.
Instead, one needs to rely on Apple to apply the appropriate
entitlements to each app, while malware writers will avoid to
confine their apps for obvious reasons. Moreover, as we will
elaborate in Section 2.2, these entitlements are enforced on
the basis of the built-in iOS sandboxing framework, which
(in contrast to PSiOS) cannot enforce fine-grained sandbox-
ing rules.

Independent from our research work on PSiOS , Apple has
very recently introduced privacy settings options (starting
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Figure 1: iOS Software Architecture

from iOS 6) where end-users can disable or enable access to
private information on an app-by-app basis [8]. We believe
that this new feature is a step in the right direction since
iOS devices suffer from lack of privacy protection. However,
we stress that our tool PSiOS does not only cover the same
access rules, but also features argument validation (e.g., to
allow access to a subset of private information), enables fine-
grained access control beyond access to private information
(e.g., any system call an application may invoke), and at the
same time prevents runtime attacks.

2. BACKGROUND AND PROBLEM
DESCRIPTION

In this section, we recall the basics of the iOS architec-
ture and describe why iOS sandboxing suffers from severe
security and privacy problems.

2.1 iOS Background
Apple devices such as iPhone, iPod touch, and iPad are

based on the iOS operating system that provides several
security features, e.g., mandatory code signing, data en-
cryption, or memory randomization. In particular, iOS en-
forces application sandboxing to isolate applications from
each other, i.e., an application cannot access files in another
application’s directory. Moreover, it constrains third-party
applications from accessing the underlying operating system
kernel.

Figure 1 shows an abstract representation of the iOS soft-
ware architecture. Note that the original iOS architecture
also includes a Media layer, which we did not include for
the sake of brevity. Basically, iOS features four software
layers that are relevant for our analysis: (1) an application
layer, (2) the so-called Cocoa Touch layer which mainly pro-
vides objects for the application display, (3) the Core Ser-
vices layer which provides frameworks to access main phone
facilities, and (4) the Core OS layer (the iOS kernel) that
provides basic OS facilities such as a system call wrapper,
device drivers, and the file-system.

Objective-C Runtime.
iOS applications and the main iOS system libraries are

implemented in the object-oriented language Objective-C.
Since iOS defers many decisions from compile-time to run-



time, a runtime system is required in order to use Objective-
C [4]. The Objective-C runtime is linked to every pro-
cess and interacts with the so-called Objective-C frame-
works. A framework is Apple’s notion for a directory con-
taining a shared library along with resources to support the
framework (e.g., images, header files). The Objective-C core
frameworks are provided in the Cocoa Touch and Core Ser-
vices layer, while iOS distinguishes between public and pri-
vate frameworks. The private frameworks are only accessi-
ble by system applications, while the public frameworks can
be accessed by every third-party application. Of particu-
lar interest are the frameworks located in the Core Services
layer as they provide access to main phone facilities (such
as Location, SMS, Calendar, Contacts, etc.).

2.2 Problem Description
iOS sandboxing is realized by a kernel module which has

been adopted from the TrustedBSD kernel. This module
mediates and validates every system call and its arguments
according to sandboxing profiles already pre-defined by Ap-
ple. As already mentioned, iOS assigns a generic sandboxing
profile to every third-party application which enables every
application to access the public frameworks and specifically
grants access to contacts, location, device information, call
history, keyboard cache, recent searches, e-mail account con-
figurations, and photos. Recently, several attacks were re-
ported where applications abused their privilege set to steal,
for instance, the user’s address book [26]. Moreover, when-
ever an application is exploited by a runtime attack, the
adversary can misuse the application’s privileges to steal
sensitive information as well [20, 22].

Note that iOS already supports sandboxing at the kernel-
level, but not within the Objective-C runtime. The design
decision taken by Apple leads to coarse-grained sandbox-
ing, because the Core OS layer misses the semantics of the
Objective-C runtime. Instead of enforcing access-control on
a specific API call, iOS has to enforce access-control based
on invoked system calls. Hence, it cannot provide a fine-
grained access control. In particular, the Core OS layer
cannot enforce access control on the main Objective-C con-
structs such as used classes, objects, variables, and methods,
which are extensively used by iOS applications and involve
a chain of diverse system calls, files, and memory structures.

Individual iOS sandboxing rules can be bound to mobile
apps using entitlements [6]. These entitlements assign cer-
tain rights to applications, which are in turn enforced by
the iOS sandbox described previously. Apple currently sup-
ports 25 different OS X entitlements for that purpose, of
which only a subset is available on iOS. However, the sys-
tem has a major drawback: entitlements are requested by
the developer and included in the digital signature of the ap-
plication by Apple’s app store. This means that they cannot
be changed afterwards by the end user since this would break
the entire signature.

3. HIGH-LEVEL IDEA
In this paper, we address the mentioned security and de-

sign weaknesses of the current iOS sandboxing realization
(see Section 2). In particular, we aim towards a framework
that allows access-control for the Objective-C runtime and
the enforcement of the least-privilege principle. Note that
realizing such a system for iOS is highly involved, since iOS
is closed-source. Hence, we cannot simply replace or ex-

tend existing modules as typically performed in recent An-
droid security research proposals, e.g., Kirin [16] or Taint-
Droid [15] to name a few.

The high-level idea of PSiOS (Privacy and Security for
iOS devices) is shown in Figure 2. In contrast to Apple’s
approach (where sandboxing profiles are generic and pre-
defined), PSiOS allows a different and user-defined sand-
boxing profile for each application. Basically, we add a new
module that operates between the Application and Cocoa
Touch Layer (see Section 2), which we call policy enforce-
ment component. As shown in Figure 2, this component
mediates every access request to the Objective-C runtime,
the frameworks, and the system call wrapper. It enforces
access control rules on each access request based on the user-
defined sandboxing profiles. Only when the policy has not
been violated, we forward the request to its original desti-
nation. Note that the current iOS system does not enforce
any access control mechanism to the Objective-C runtime
and frameworks. On the other hand, iOS already enforces
access control on system calls, but our approach allows an
individual enforcement policy for each iOS application.

To monitor if an application adheres to the given sand-
boxing profile, we instrument the application so that all ac-
cess requests are redirected to the policy enforcement. Al-
ternatively, one could directly extend the Objective-C run-
time and frameworks with dedicated interfaces that vali-
date whether the caller has the appropriate privileges (sim-
ilar to the Android permission system [18]). However, the
iOS Objective-C runtime and frameworks are closed-source.
Hence, extending them directly is infeasible.

Furthermore, the Objective-C runtime operates on the
same level as the application code and checks within the
runtime could thus easily be bypassed, either intentionally
by the application author or by a control-flow attack against
a software vulnerability. Our framework does not suffer from
this shortcoming since we have full control over the applica-
tion code. We also protect the application from being com-
promised by control-flow attacks (such as code injection [2]
and return-oriented programming [28]). Otherwise an ad-
versary could leverage such attack techniques to circumvent
our instrumentation points and the policy enforcement com-
ponent. To tackle this problem, we ensure the integrity of
the application’s execution flow by enforcing control-flow in-
tegrity (CFI) which is a general countermeasure to defeat
such attacks by validating if an application always follows
the application’s control-flow graph (CFG). Recently, we in-
troduced MoCFI (Mobile CFI) [11] which enforces CFI on
mobile devices, where iOS has been used for the proof-of-
concept implementation. We leverage MoCFI for our pro-
totype, but it is noteworthy to mention that in contrast to
MoCFI, we replace PiOS [14] with a novel Objective-C an-
alyzer, to tackle shortcomings of PiOS (see Section 8).

4. DESIGN OF PSIOS
In this section we introduce the design of PSiOS (Privacy

and Security for iOS devices) which enforces our high-level
idea presented in Section 3.

4.1 Architecture
The general architecture of PSiOS is depicted in Fig-

ure 3. Basically, our design can be divided into three distinct
phases: (1) static analysis (offline), (2) binary rewriting at
load-time, and (3) runtime CFI and policy enforcement at
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Figure 2: High-Level Idea of PSiOS

execution-time. While the static analysis phase needs to be
performed only once, the binary rewriting and runtime en-
forcement phase are performed whenever the application is
launched by the user.

The general workflow is as follows: First, we reverse-
engineer the application binary by using automated tools to
derive the application’s structure. In particular, we leverage
MoCFI [11] to derive the application’s control-flow graph
(CFG), which is required to extract all valid execution paths
(step 1). Further, we implemented a static Objective-C
analyzer that reuses techniques of existing tools such as
PiOS [14] and Objective-C helper scripts [13] to identify
used Objective-C classes and methods (step 2). Note that
we extended these tools to cover all calls to the system call
wrapper as well. When the application is launched by the
user, we first perform binary rewriting to integrate control-
flow checks into the binary (step 3).

Second, we leverage binary rewriting to insert checkpoints
into the application that will be reached whenever an appli-
cation aims to access the Objective-C runtime, the public
frameworks, or the system call wrapper (step 4).

At execution-time, we first use a novel runtime Objective-
C analyzer that tackles the incompleteness of the static anal-
ysis and retrieves important runtime information on Objec-
tive-C constructs (step 5). Afterwards, CFI ensures that the
control-flow of an application always follows the legitimate
paths of the CFG (step 6). Further, for all access requests to
the Objective-C environment and the system call wrapper,
our policy enforcement component validates if the request
adheres to the given policy rules (step 7). In the following,
we elaborate in more detail on the individual components
and phases.

Static Analysis.
Since iOS applications are encrypted by default, we first

obtain the decrypted version of an iOS binary by using a
technique called process dumping [14], which automatically
creates memory snapshots of the unencrypted code at run-
time. Afterwards, we use MoCFI to derive the CFG, i.e.,
to resolve the targets of indirect branches (e.g., indirect
calls/jumps, and function returns). In the original design
of MoCFI, PiOS [14] is used to resolve Objective-C calls.
However, as our experiments revealed, the static analysis
performed by PiOS is not always able to retrieve the used
Objective-C structures. Other existing approaches to parse
Mach-O Objective-C files [13] are outdated and only pro-

cess a subset of the required constructs. Hence, we devel-
oped a novel static Objective-C analyzer which is capable
of identifying all relevant Objective-C structures describing
classes, methods, and inheritance relationships. Further, our
tool provides a more fine-grained analysis than the existing
ones, since it completely parses the iOS Mach-O File Header
and accurately resolves all calls to the system call wrapper.
Moreover, note that the existing tools [14, 13] do not take
the dynamic nature of the Objective-C runtime environment
into account, which is necessary to enforce fine-grained pol-
icy enforcement and handle cases that cannot be resolved
statically. The CFG and the Objective-C information are
stored in separate configuration files.

Binary Rewriting and Runtime Enforcement.
To preserve the application signature, we perform binary

rewriting after the iOS application loader has verified the ap-
plication signature. For this PSiOS employs a rewriting en-
gine to patch all indirect branch instructions with a control-
flow check. Furthermore, PSiOS rewrites all access requests
to the Objective-C runtime to insert checkpoints. After the
binary rewriting, our runtime Objective-C analyzer requests
crucial runtime information on Objective-C constructs (such
as registered parent and child classes, and runtime addresses
of invoked methods) which cannot be derived in the static
analysis phase. Afterwards, the application starts executing
and whenever a checkpoint has been reached, PSiOS ensures
that the call follows a valid CFG path and adheres to the
given sandboxing profile. Our approach ensures that the ap-
plication cannot escape from the newly established sandbox,
which may occur by either directly calling the Objective-C
runtime or frameworks, or indirectly, by launching a runtime
attack.

Enforcement Policies.
PSiOS supports three different policy enforcement types:

Log, Exit, and Replace.
Each enforcement type can be used to achieve a different

objective. The Log option ensures that all policy violations
are recorded by the system. However, the application is al-
lowed to continue executing, but the system’s log file can
be inspected afterwards. This option is in particular use-
ful when applied in a learning phase (for instance in case
of enterprises) in order to help system administrators to
identify which Objective-C calls are performed and required
by the application. Hence, it facilitates the specification of
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sandboxing profiles. The Exit option is more restrictive,
because it immediately terminates the process whenever a
policy violation occurs. Due to usability reasons, we also in-
troduced the Replace option which allows the application to
continue executing, but PSiOS replaces the return values of
the Objective-C runtime with shadow data. For instance, if
the sandboxing profile prohibits access to the address book,
the return value will be either fake contacts or an empty data
set indicating to a user that a policy violation occurred.

Our policy enforcement can be used to achieve different
goals. For example, an end user can be enabled to spec-
ify which mobile app may access which privacy critical re-
sources. A graphical interface can then manage the assign-
ment of policies to applications in a user-friendly way, similar
to Android’s permission system [18]. Furthermore, policies
could also be deployed by a central instance (e.g. an enter-
prise) in a bring your own device environment. This allows
the company to mitigate the risk of sensitive corporate data
leakage (e-mails, text message, address book entries, etc.)
through insecure private applications. Our current proto-
type only provides the underlying framework for policy en-
forcement and does not come with a frontend. However, it
is straightforward to implement such a component in the
future, we focus on showing the feasibility of the approach.

Note that providing complete policies is tedious work.
Many tasks can be achieved by using different APIs. For
instance, files can be accessed by using a variety of func-
tion calls (e.g., through Objective-C, the C standard lib,
etc.). Identifying all functions that can be used to access
a privacy critical ressource takes considerable effort, but is
possible nevertheless.

4.2 Format of Sandboxing Profiles
The sandboxing profile consists of blacklisted Objective-C

and API Calls, while each policy rule follows the following
XML-based format:

<r u l e type=”objc ” c l a s s=”<classname>”
s e l e c t o r=”<s e l e c t o r>” mode=”log | e x i t | r ep l a c e ”>

<arg number=”<arg number>” type=
” in t | s t r i n g | . . . ” operator=”=|!|<|>|<=|>=”
value=”<argument value>”/>

<arg . . . />
</ ru l e>
<r u l e type=”api ” func t i on=”<functionname>”

mode=”log | e x i t | r ep l a c e ”>
<arg . . . />
. . .

</ ru l e>

The first attributes of an Objective-C rule refer to the
class and selector (i.e., the Objective-C method name). If
the policy targets an API call, the API call name is stored
in the function field and the type is set to api. The mode

field indicates the enforcement type. The number field of
an arg mode indicates the argument number and the type

field identifies the argument’s type, e.g., int refers to an in-
teger. The operator indicates the compare method (=, !, <
,>,>=, <=) and the value field holds the compare value.
For better understanding, consider the following Objective-
C message:

[ NSUserDefaults valueForKey :@”
SBFormattedPhoneNumber ”]

This Objective-C message initializes a new instance of the
NSUserDefaults class and uses the valueForKey: selector
(i.e., method) with the argument SBFormattedPhoneNumber

to retrieve the device’s phone number. Note that this call
can be invoked by every application. Hence, a policy rule to
strictly deny this Objective-C message would look as follows:

<r u l e type=”objc ” c l a s s=”NSUserDefaults ”
s e l e c t o r=”valueForKey: ” mode=”ex i t ” />

This rule is always triggered if the class and selector are
set to NSUserDefaults and valueForKey:. If only those
messages that use the SBFormattedPhoneNumber as method
argument should be denied, the rule has to be changed as
follows:

<r u l e type=”objc ” c l a s s=”NSUserDefaults ”
s e l e c t o r=”valueForKey: ” mode=”ex i t ”>
<arg number=”1 ” type=” s t r i n g ” operator=”=”

value=”SBFormattedPhoneNumber ”/>
</ ru l e>

This allows us to define fine-grained policy rules on each
Objective-C method and API call. Moreover, the argument
validation of our policy language supports logical operations
such as AND and OR.

5. BACKGROUND ON OBJECTIVE-C AND
CHALLENGES

In this section, we briefly recall the basics of the Objective-
C runtime and elaborate on the challenges to be tackled
when implementing PSiOS . Further, we describe why exist-
ing static tools [14, 13] miss important information that is
only available at runtime.



In general, Objective-C is an object-oriented, dynamically
typed language, and mainly operates on objects. In partic-
ular, Objective-C provides three basic constructs for encap-
sulating data with methods: metaclasses, classes, and ob-
jects. Objects are instances of classes, whereby classes are
instantiated from their metaclasses, and metaclasses are in-
stantiated from their root’s metaclass. Further, every class
can have an arbitrary amount of child classes.

Messaging.
A distinct feature of Objective-C is its messaging engine.

Instead of calling a method directly, applications send a mes-
sage to the Objective-C runtime, which deploys a dynamic
message dispatcher to interpret the message. The generic
syntax of an Objective-C message is as follows:

[ ob j e c t method : arg 1 param name1 : arg 2 . . . param
nameN−1:argN ]

It consists of the target object (usually called receiver)
and the method name along with its parameter names and
argument values. In particular, the method name and the
parameter names form the so-called Objective-C selector.
The Objective-C runtime interprets these messages and for-
wards them to the receiving objects which execute the de-
sired methods.

For better understanding, consider the example Objective-
C message used in Section 4.2, where valueForKey: forms
the selector of the message:

[ NSUserDefaults valueForKey :@”
SBFormattedPhoneNumber ”]

The selector is unique to the runtime system and is used
to derive a unique identifier of type SEL (a compiled se-
lector) that is registered by the runtime system. However,
since each object can implement its own version of a method,
the same selector might refer to different implementations.
Thus, the Objective-C runtime determines the appropriate
method implementation based on the class of the receiver
at runtime. This technique is referred to as dynamic bind-
ing and is realized by compiling every Objective-C mes-
sage into a default call to the Objective-C runtime messag-
ing function objc_msgSend, which has the following format:
objc msgSend(receiver, selector, arg1, arg2, . . . )

Challenge: Due to dynamic binding, a compiled iOS bi-
nary will consists of a high number of calls to the generic
dispatcher function objc_msgSend. Hence, straight-forward
disassembling (as performed by IDA Pro) will only output a
number of calls to the dispatcher function rather than pro-
viding the real target object and method. Although existing
tools [14, 13] partly address this problem, they cannot de-
termine the actual implementation of the method since the
same selector might reference different implementations.

Class Clusters.
Objective-C class clusters allow the grouping of related

or dependent objects under a single public abstract super-
class. A typical example is the Objective-C class cluster
for numbers: while the Number class is the public abstract
superclass of the cluster, the Integer or Float classes are
private subclasses of the Number class. Hence, the private
subclasses are not visible to the developer, who only uses the
public Number class to instantiate a new number. In turn,
the Number class will itself perform the correct instantiation
of the respective integer or float.

Challenge: The challenge in this context is that private
subclasses are not visible at static analysis time, and hence,
existing static tools [14, 13] can neither identify malicious
behavior through these classes nor provide accurate control-
flow information with regard to the control-flow graph.

6. IMPLEMENTATION
We implemented the design of PSiOS (see Figure 3) in a

prototype that supports iOS version 4.3.2, 4.3.3, 5.0.1, and
5.1.1. The static Objective-C analyzer is realized as a new
Python module for the reverse-engineering tool IDA Pro 6.x.
For rewriting the application binary and enforcing CFI, we
base our implementation on our MoCFI framework [11].
However, we need to extend MoCFI to introduce the pol-
icy enforcement and the runtime Objective-C analyzer. In
particular, the latter component enables runtime analysis of
Objective-C constructs to tackle the challenges mentioned
in Section 5. The entire runtime tools are realized as one
shared iOS library that is developed in the Objective-C++
language. Since Apple prohibits any user from installing a
new shared library, we had to jailbreak our test devices to
inject our library to every iOS application and to enable bi-
nary rewriting at runtime, as discussed in Section 7.4. In the
following, we present selected implementation details of the
core components of the PSiOS framework, while we refer
to [11] for the implementation details of MoCFI.

6.1 Static Objective-C Analyzer
Basically, the static Objective-C analyzer performs binary

analysis of an iOS application to identify all implemented
and referenced Objective-C classes and selectors. For this we
reuse techniques from existing tools such as PiOS [14] and
Objective-C scripts [13]. However, we extend the existing
tools to resolve all direct calls to the system call wrapper.
Note that static analysis of iOS binaries is a challenging
task because most internals have not been documented, and
required high reverse-engineering efforts on our side.

Analysis of iOS File Header.
In the first step, our analyzer parses the entire iOS file

header (Mach-O) header, which is necessary to locate all
code and data sections and to identify important side in-
formation on used Objective-C constructs and the binding
information referenced at runtime by the iOS linker. For
this, we examine the so-called load commands included in
the iOS Mach-O header [3]. For the sake of completeness,
the load commands inspected by PSiOS are listed in Table 2
in Appendix A. Of particular interest are the LC_DYLD_INFO

and the LC_DYLD_INFO_ONLY load commands as they pro-
vide binding information that is used at load-time by the
iOS loader to resolve API calls and Objective-C classes.

Objective-C Classes and Selectors.
After analyzing the iOS header, we identify all Objective-

C classes and selectors used by the application. This in-
cludes new Objective-C classes the developer implemented
himself and classes that have been already pre-defined by
the Objective-C runtime. In particular, we reuse the exist-
ing tools [14, 13] to record for each call to the objc_msgSend

dispatcher function the referenced Objective-C class and se-
lector.



API Calls.
Direct API calls to the public frameworks and the system

call wrapper can be resolved similarly to imported Objective-
C constructs since the symbol section (__lazy_symbol) holds
4-byte addresses which identify API calls used in the code.
Backtracking the references to the symbol section reveals
that each address is referenced by an address in the section
__symbolstub11. The addresses of the __symbolstub1 sec-
tion are then used throughout the code to invoke API calls,
which allows us to identify the location and type of all API
calls.

6.2 Objective-C Runtime Analyzer
Our novel Objective-C runtime analyzer tackles the in-

completeness of the static analysis phase. In particular,
it starts its operation after the iOS loader has loaded the
application into memory. The basic information our ana-
lyzer derives are the runtime addresses of all selectors and
the missing parent and child classes (which are necessary to
support class clustering).

First, we retrieve the runtime addresses of the used se-
lectors by referencing the __objc_selrefs section. How-
ever, the selectors can be only available as textual strings
(rather than runtime addresses). To tackle this problem, we
use the string representation of the selector and issue the
Objective-C Call NSSelectorFromString to retrieve the se-
lector’s runtime address. In particular, we create a hashmap
objcHashmap that stores all selector runtime addresses.

Afterwards, we add all Objective-C classes to the ob-
jcHashmap by using their runtime addresses. We retrieve
the runtime addresses from the __objc_classrefs section
and in case only the class name has been derived at static
analysis time, we use the objc_getClass function to re-
trieve the corresponding runtime address. Note that we
complete this step by requesting all registered classes from
the Objective-C runtime. This comprises all parent and
child classes which allows us to support class clustering and
tackles the challenge mentioned in Section 5.

6.3 Policy Enforcement
The policy enforcement is the core component of PSiOS

as it enforces access control on each Objective-C message
and direct call to the system call wrapper.

To initialize the policy enforcement we first use the API
call name (derived from the static tools) and leverage the
dynamic iOS loader to retrieve the runtime address for each
API call. Afterwards, we open and read the sandboxing pro-
file file of the application. Since each rule in the sandboxing
profile targets a particular Objective-C selector, class, and
API call, we validate which of these constructs are actually
used by the application. This can be determined by com-
paring the constructs of the sandboxing profile to the ob-
jcHashmap and the derived API calls. Only for those rules
that are relevant for the application, we add the class, selec-
tor, API call name, and the policy rule to a second hashmap,
we refer to as polHashmap.

At runtime we enforce a policy check whenever a function
call to the Objective-C runtime, the public frameworks, or
the system call wrapper occurs. First, MoCFI validates that

1Note that the exact section name might differ. However,
our implementation does not depend on the section name,
instead it uses the __lazy_symbol section to locate a __sym-
bolstub1 like section.

control-flow integrity is preserved for the call. Afterwards,
our policy enforcement checks if the call adheres to the given
sandboxing profile.

For all Objective-C messages invoked at runtime, our pol-
icy enforcement looks up the class and the selector of the in-
volved message in the polHashmap. When the polHashmap
contains a rule for this message we validate whether the
rule matches the message and (if specified) validate the ar-
guments of the message with regard to a policy violation.
If a rule completely matches the invoked Objective-C mes-
sage, then a policy violation has occurred. Based on the
enforcement option we either log the violation, terminate
the program, or return shadow data (see also Section 4.1).
The same policy enforcement is applied to every API call
invoked at runtime, while the difference is that we look up
the API call name in the polHashmap rather than the class
and selector.

While the implementation of the Log and Exit enforce-
ment option are straightforward (i.e., log the violation in
a file, or terminate the program), it is involved to realize
the Replace option for Objective-C messages. In particu-
lar, we achieve this by replacing the method implementation
at runtime. For this, we request a pointer to the indicated
method by contacting the Objective-C runtime. Afterwards,
we force the Objective-C runtime to replace the method’s
implementation with the implementation of a novel and al-
ready prepared method that simply returns an empty or
arbitrary data structure. Note that we roll back the original
method implementation after the shadow data has been re-
turned to ensure a new validation when the same Objective-
C message but with a different argument set is invoked.

7. EVALUATION
In this section, we analyze the effectiveness and efficiency

of PSiOS by using the SpyPhone application [23] as proof-
of-concept since it demonstrates which private data can be
accessed by every iOS application. Afterwards, we apply
PSiOS to several popular iOS applications (e.g., Facebook
and WhatsApp). Finally, we measure the performance over-
head induced by PSiOS and compare it to the native run-
time execution of applications.

7.1 SpyPhone
SpyPhone is an open-source proof-of-concept application

that demonstrates which data can be collected by iOS third-
party applications. As SpyPhone is able to retrieve a signif-
icant amount of private and sensitive data about the user
and the device, we thoroughly analyzed how this is achieved
and how the data harvesting can be prevented using PSiOS .
The data collected by SpyPhone includes, amongst others:

• e-mail account information, including server addresses,
user names,

• information on WLANs the device was connected to,

• phone data, such as phone number, UUID, ICCID,
IMSI, and call history,

• location data from the weather and the map app,

• history logs from Safari and Youtube,

• personal photos including tagged GPS information,

• address book entries,

• keyboard cache.



Hence, we have analyzed how SpyPhone collects this data
and created policy rules that prevent the requested access.
As enforcement type we used the Replace option meaning
that PSiOS returns shadow data for each access request.

Basically, SpyPhone retrieves Wi-Fi configurations, loca-
tion, call histories, and e-mail account information by ac-
cessing property lists that are stored as XML files on any
iOS device at the Core OS layer (see Figure 1 in Section 2).
For instance, the information about a user’s email accounts
is retrieved from the file com.apple.accountsettings.plist. In
general, access to these files can be denied by restricting the
Objective-C dictionaryWithContentsOfFile method of the
NSDictionary class, which is used to parse the XML file into
an Objective-C data structure. For each file, we defined one
rule that restricts the first parameter of the method, namely
the filename.

SpyPhone also accesses sensitive information by calling
appropriate Objective-C methods at the Core Services Layer
(see Figure 1 in Section 2). For instance, this applies to
the user’s address book or when requesting device informa-
tion (e.g., the user’s phone number). In particular, the ad-
dress book is used to store private phone numbers, email
addresses, and home addresses. We specified policy rules
that prohibit SpyPhone from using these Objective-C meth-
ods (e.g., ABAddressBookCopyArrayOfAllPeople to access
the user’s address book).

Table 1 shows an excerpt of our policy rules to prevent
SpyPhone from accessing private user information. For the
sake of completeness the entire sandboxing profile (including
all policy rules) for SpyPhone is shown in Appendix B.

7.2 Applying PSiOS to iOS Apps
To demonstrate the effectiveness of our approach, we ap-

plied PSiOS to a number of popular iOS applications such
as Facebook, WhatsApp, ImageCrop, BatteryLife, Flash-
light, ImageCrop, InstaGram, MusicDownloader, MyVideo,
NewYork (Game), Quickscan, LinPack, Satellite TV and
the Audi App. For each app we defined a specific sand-
boxing profile that prevents the app from accessing private
user information. In particular, PSiOS successfully prevents
access to the address book (for Quickscan, Facebook, and
Whatsapp), to personal photos (for ImageCrop and Insta-
Gram), and to the iOS universal unique identifier, short
UUID (for Quickscan, BatterLife, Flashlight, MusicDown-
loader, MyVideo, NewYork, and Audi). As the other ap-
plications did not contain any privacy related calls we suc-
cessfully applied proof of concept enforcement rules to them
(access to the file system for LinPack and an URL request
for Satellite TV).

7.3 Performance
We conducted a variety of performance tests to assess the

practical usability of PSiOS . In particular, we performed
runtime measurements based on the iOS gensystek bench-
mark app by using two configurations: (1) PSiOS without
policy enforcement, but with CFI checks enabled, and (2)
PSiOS with policy enforcement. For the latter configura-
tion, we applied several policies on Objective-C selectors
(such as NSString and NSBundle) which frequently trigger
a policy validation for each of the individual benchmarks.
The results of our measurements are shown in Figure 4.

Compared to native execution of the individual bench-
marks, PSiOS (with policy enforcement enabled) only adds
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Figure 4: Performance Overhead Measurements
with iOS Gensystek App

a negligible overhead ranging from 0.18% to 8%. However,
the RAM speed read/write benchmarks induces a significant
slowdown of approximately factor 4. Nevertheless, this slow-
down is not directly caused by PSiOS ’s policy enforcement
rather by the CFI checks, which are intensively issued for
this particular benchmark.

In addition, we measured the overhead of the policy en-
forcement based on the SpyPhone rule set presented in Sec-
tion 7.1 using the Instruments application [5]. Figure 5
shows the measured time for native execution, execution
with PSiOS but without policy enforcement, and execu-
tion with PSiOS and policy enforcement. Compared to
native execution, the load-time overhead of PSiOS is only
0.2s. At runtime, the performance overhead for validating an
Objective-C message or API call is in the worst-case 0.1s,
while sometimes PSiOS speeds up the execution. This is
due to the fact that we apply the Replace enforcement op-
tion, which returns shadow data rather than invoking the
desired Objective-C call. One of the most called API func-
tions (2163 of 2813 branches and seven percent of the over-
all execution time) is caused by the Objective-C dispatcher
function objc_msgSend.

In general, the performance overhead is not noticeable for
an end-user, because PSiOS enforces access control at the
Objective-C layer. Moreover, PSiOS applies policy enforce-
ment on the main application binary, while the iOS system
libraries and Objective-C frameworks execute without being
instrumented by PSiOS . Since Apple prohibits developers
from using own shared libraries, an adversary cannot deploy
own shared libraries to circumvent PSiOS .

7.4 Jailbreak Issues
The runtime components of PSiOS are completely imple-

mented in one shared library. We opted for this implemen-
tation approach, because it enables a system-centric sand-
boxing solution, and allows every iOS app to immediately
benefit from our tools. To install and push our PSiOS li-
brary on an iOS device, we require a jailbreak of the device,
since Apple is closed-source and strictly prohibits any instal-
lation of a new shared library. For PSiOS , we only require a
jailbreak for setting a single environment variable, installing
a shared library, and allowing our library to rewrite the ap-
plication code during load-time. Setting the variable as well
as installing and signing our library can be easily done by
Apple for future iOS releases. Further, for binary rewriting
our library only needs to be assigned the dynamic code sign-
ing entitlement which allows an application generate code
just-in-time.



Information Policy Rule
Wi-Fi <rule type="objc" class="NSDictionary"

selector="dictionaryWithContentsOfFile:" mode="replace">
<arg number="1" type="string" operator="="
value="/Library/Preferences/SystemConfiguration/com.apple.wifi.plist"/>
</rule>

Call history <rule type="objc" class="NSDictionary"
selector="dictionaryWithContentsOfFile:" mode="replace">
<arg number="1" type="string" operator="="
value="/var/mobile/Library/Preferences/com.apple.mobilephone.plist"/>
</rule>

Phone number <rule type="objc" class="NSUserDefaults" selector="valueForKey:" mode="replace">
<arg number="1" type="string" operator="=" value="SBFormattedPhoneNumber"/>
</rule>

Address book <rule type="api" function="ABAddressBookCopyArrayOfAllPeople" mode="replace" />

Table 1: An excerpt of the policy rules we applied to SpyPhone
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Figure 5: Runtime comparison chart.

Note that many similar approaches targeting Android (for
example TaintDroid and AppFence) require the rooting of an
Android-powered device as well. Moreover, PSiOS does not
necessarily require a jailbreak. For instance, PSiOS could
be provided as a static rewriting tool that Apple applies
to all app binaries before releasing them on the App Store.
The static analysis (which requires IDA Pro at the moment)
could be incorporated using cloud services. Further, app
developers could run PSiOS before submitting their appli-
cations to the App Store. Both approaches are compatible
to Apple’s signature scheme, since PSiOS rewrites the app
before it is signed by Apple. We are currently working on
the implementation of this approach.

8. RELATED WORK
In this section, we elaborate on related work in the area

of mobile security and application sandboxing.

Research on iOS.
The closest work to our framework is PiOS [14] which is

a static analysis tool to detect privacy leaks of iOS appli-
cations. PiOS generates an application’s control-flow graph
by backtracking all Objective-C calls and by reconstruct-
ing the class inheritance relationships. However, PiOS suf-
fers from some shortcomings: First, its analysis does not
cover embedded metaclasses (i.e., root classes of Objective-
C classes), which frequently occur in iOS applications. Sec-
ond, it does not support class clusters (see Section 5). Third,
it mainly uses a backtracking of ARM processor registers to
determine used classes and selectors. However, as our ex-
periments have shown this approach often fails to resolve
the used class. In contrast, PSiOS tackles this problem

by including the Objective-C sections in its analysis and
by retrieving runtime information. To summarize, PiOS is
constrained in its analysis because it fails to cover the full
picture of the Objective-C runtime, particularly when an ad-
versary deploys obfuscation techniques to circumvent static
analysis tools.

Our recent work on iOS has focused on detection of run-
time attacks against mobile devices. In particular, our pre-
vious work MoCFI [11] enforces control-flow integrity (CFI)
on iOS devices running on ARM processors, while CFI [1]
has been originally proposed for desktop PCs. However,
MoCFI focuses on runtime attacks rather than application
sandboxing. Nevertheless, PSiOS leverages MoCFI to en-
sure that our policy enforcement cannot be circumvented
by a control-flow attack (see also Section 3).

MobileSubstrate [25] is a framework for jailbroken iOS de-
vices that provides run-time patching of existing programs.
To this end, application code can be rewritten to install
hooks for Objective-C message handlers and C/C++ func-
tions. The rewriting engine works similar to our approach,
however, MobileSubstrate merely provides hooking support.
Further, it does not provide protection against runtime at-
tacks which means that a policy framework that is built on
top of it could be undermined by runtime attacks.

Research on Android.
In the last years Android has been an appealing subject

of research. Kirin [16] is an extended application installer
that checks application’s permission combinations according
to a given policy. Apex [24] goes a step further and allows



end-users to choose permissions at install-time.2 However,
since iOS is closed-source, these approaches are not feasible
on iOS.

TaintDroid [15] is a framework to detect data leakage at-
tacks on Android. It uses dynamic taint analysis and warns
the user whenever sensitive data leaves the device at a taint
sink (e.g., the network interface). The AppFence [19] frame-
work builds upon TaintDroid and enables fine-grained pri-
vacy rules, and enables the return of shadow data when a
policy rule has been violated. However, TaintDroid does
not fully cover native code, and could be subverted by run-
time attacks. Moreover, it is directly implemented into
Android’s Java virtual machine (Dalvik). Since iOS use
Objective-C rather than the interpreted Java language, it
remains open how such a system could be integrated in iOS.
Further, in parallel to our work, several security extensions
have been proposed to enable fine-grained sandboxing rules
(Aurasium [30]) or fine-grained privacy controls [10], but on
Android, while we focus on iOS.

Finally, there are several works on Android that tackle
privilege escalation attacks at application-level [17, 12, 9].
These attacks are based on the observation that two appli-
cations merge their permissions (either directly or indirectly)
resulting in a larger sandbox. However, inter-app commu-
nication is still an exceptional event on iOS. Nevertheless,
in our future work we aim to investigate the feasibility and
detection of privilege escalation attacks on iOS with PSiOS .

Application Sandboxing Techniques.
Application sandboxing has its origins in the field of soft-

ware fault isolation (SFI) [29]. The basic idea of SFI is to iso-
late code and data of an untrusted module in a separate fault
domain. Afterwards, the untrusted module is instrumented
to ensure that the code cannot jump or reference data be-
yond its fault domain. In particular, NativeClient [31, 27]
builds upon SFI and enables a sandboxed environment for
native code plugins in web browsers. Our iOS policy frame-
work is closely related to these works. In particular, we
enable SFI for iOS applications, by instrumenting all calls
to the Objective-C runtime. However, note that the existing
works either focus on entirely different computing platforms
or are incompatible to Objective-C.

9. CONCLUSION
In this paper, we introduced PSiOS , a novel policy en-

forcement framework for the closed-source mobile operat-
ing system iOS. PSiOS provides fine-grained, application-
specific, and user-driven sandboxing for third-party applica-
tions without requiring access to source code. We presented
the design decisions behind the framework and discussed
in detail the improvements to prior work in this area. We
implemented a fully working prototype of PSiOS and also
illustrated technical details of the implementation. In an em-
pirical evaluation, we demonstrated that PSiOS effectively
prevents privacy breaches by testing our reference imple-
mentation with SpyPhone [23], a tool specifically designed
to steal data from an iOS device. The runtime overhead in-
troduced by our tool is reasonable and we demonstrated that
even complex applications can be instrumented by PSiOS .
In our future work, we aim to provide PSiOS as a static

2Note that the standard Android system follows the all-or-
nothing principle.

rewriter that can be leveraged by app developers and App
Store manufactures to allow fine-grained application sand-
boxing without requiring users to jailbreak their device.
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APPENDIX
A. LOAD COMMANDS

Our static Objective-C analyzer parses every load com-
mand included in the Mach-O file header and in particular
inspects the load commands listed in Table 2.

Load command Purpose
LC_SEGMENT Defines code and data segments,

while each segment contains of
a set of sections

LC_SYMTAB Specifies the symbol table
LC_DYLD_INFO and
LC_DYLD_INFO_ONLY Define binding information

Table 2: Relevant Mach-O Load Commands

B. SANDBOXING PROFILE FOR SPYPHONE
<r u l e type=”api ” func t i on=”

ABAddressBookCopyArrayOfAllPeople: ” mode=”
r ep l a c e ” />

<r u l e type=”objc ” c l a s s=”NSDictionary ”
s e l e c t o r=”dic t ionaryWithContentsOfFi l e : ” mode=

”r ep l a c e ”>
<arg number=”1 ” type=” s t r i n g ” operator=”=” value=

”/Library / Pre f e r ence s / SystemConf igurat ion /
com . apple . w i f i . p l i s t ”/>

</ ru l e>
<r u l e type=”objc ” c l a s s=”NSDictionary ”

s e l e c t o r=”dic t ionaryWithContentsOfFi l e : ” mode=
”r ep l a c e ”>

<arg number=”1 ” type=” s t r i n g ” operator=”=” value=
”/var /mobile / Library / Pre f e r ence s /com . apple .
a c coun t s e t t i ng s . p l i s t ”/>

</ ru l e>
<r u l e type=”objc ” c l a s s=”NSDictionary ”

s e l e c t o r=”dic t ionaryWithContentsOfFi l e : ” mode=
”r ep l a c e ”>

<arg number=”1 ” type=” s t r i n g ” operator=”=” value=
”/var /mobile / Library / Pre f e r ence s /com . apple .
a c coun t s e t t i ng s . p l i s t ”/>

</ ru l e>
<r u l e type=”objc ” c l a s s=”NSDictionary ”

s e l e c t o r=”dic t ionaryWithContentsOfFi l e : ” mode=
”r ep l a c e ”>

<arg number=”1 ” type=” s t r i n g ” operator=”=” value=
”/var /mobile / Library / Pre f e r ence s /com . apple .
commcenter . p l i s t ”/>

</ ru l e>
<r u l e type=”objc ” c l a s s=”NSDictionary ”

s e l e c t o r=”dic t ionaryWithContentsOfFi l e : ” mode=
”r ep l a c e ”>

<arg number=”1 ” type=” s t r i n g ” operator=”=” value=
”/var /mobile / Library / Pre f e r ence s /com . apple .
mobilephone . s e t t i n g s . p l i s t ”/>

</ ru l e>
<r u l e type=”objc ” c l a s s=”NSDictionary ”

s e l e c t o r=”dic t ionaryWithContentsOfFi l e : ” mode=
”r ep l a c e ”>



<arg number=”1 ” type=” s t r i n g ” operator=”=” value=
”/var /mobile / Library / Pre f e r ence s /com . apple .
mobilephone . p l i s t ”/>

</ ru l e>
<r u l e type=”objc ” c l a s s=”NSDictionary ”

s e l e c t o r=”dic t ionaryWithContentsOfFi l e : ” mode=
”r ep l a c e ”>

<arg number=”1 ” type=” s t r i n g ” operator=”=” value=
”/var /mobile / Library / Pre f e r ence s /com . apple .
Maps . p l i s t ”/>

</ ru l e>
<r u l e type=”objc ” c l a s s=”NSDictionary ”

s e l e c t o r=”dic t ionaryWithContentsOfFi l e : ” mode=
”r ep l a c e ”>

<arg number=”1 ” type=” s t r i n g ” operator=”=” value=
”/var /mobile / Library / Pre f e r ence s /com . apple .
p r e f e r e n c e s . datet ime . p l i s t ”/>

</ ru l e>
<r u l e type=”objc ” c l a s s=”NSDictionary ”

s e l e c t o r=”dic t ionaryWithContentsOfFi l e : ” mode=
”r ep l a c e ”>

<arg number=”1 ” type=” s t r i n g ” operator=”=” value=
”/var /mobile / Library / Pre f e r ence s /com . apple .
weather . p l i s t ”/>

</ ru l e>
<r u l e type=”objc ” c l a s s=”NSDictionary ”

s e l e c t o r=”dic t ionaryWithContentsOfFi l e : ” mode=
”r ep l a c e ”>

<arg number=”1 ” type=” s t r i n g ” operator=”=” value=
”/var /mobile / Library / Pre f e r ence s /com . apple .
mob i l e s a f a r i . p l i s t ”/>

</ ru l e>
<r u l e type=”objc ” c l a s s=”NSDictionary ”

s e l e c t o r=”dic t ionaryWithContentsOfFi l e : ” mode=
”r ep l a c e ”>

<arg number=”1 ” type=” s t r i n g ” operator=”=” value=
”/var /mobile / Library / Pre f e r ence s /com . apple .
youtube . p l i s t ”/>

</ ru l e>
<r u l e type=”objc ” c l a s s=”UIDevice ” s e l e c t o r=”

un i q u e I d e n t i f i e r : ”
mode=”r ep l a c e ” />

<r u l e type=”objc ” c l a s s=”NSUserDefaults ” s e l e c t o r=
”valueForKey: ”

mode=”r ep l a c e ”>
<arg number=”1 ” type=” s t r i n g ” operator=”=” value=

”SBFormattedPhoneNumber ”/>
</ ru l e>
<r u l e type=”objc ” c l a s s=”NSFileManager ” s e l e c t o r=”

directoryContentsAtPath: ” mode=”r ep l a c e ”>
<arg number=”1 ” type=” s t r i n g ” operator=”=” value=

”/var /mobile / Library /Keyboard/ ”/>
</ ru l e>
<r u l e type=”objc ” c l a s s=”NSFileManager ” s e l e c t o r=”

enumeratorAtPath: ”
mode=”r ep l a c e ”>

<arg number=”1 ” type=” s t r i n g ” operator=”=” value=
”/var /mobile /Media/DCIM”/>

</ ru l e>

Listing 1: Full rule set for SpyPhone


