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Abstract. Two-party Secure Function Evaluation (SFE) is a very useful
cryptographic tool which allows two parties to evaluate a function known
to both parties on their private (secret) inputs. Some applications with
sophisticated privacy needs require the function to be known only to one
party and kept private (hidden) from the other one. However, existing so-
lutions for SFE of private functions (PF-SFE) deploy Universal Circuits
(UC) and are still very inefficient in practice.

In this paper we bridge the gap between SFE and PF-SFE with SFE
of what we call semi-private functions (SPF-SFE), i.e., one function out
of a given class of functions is evaluated without revealing which one.

We present a general framework for SPF-SFE allowing a fine-grained
trade-off and tuning between SFE and PF-SFE covering both extremes.
In our framework, semi-private functions can be composed from several
privately programmable blocks (PPB) which can be programmed with
one function out of a class of functions. The framework allows efficient
and secure embedding of constants into the resulting circuit to improve
performance. To show practicability of the framework we have imple-
mented a compiler for SPF-SFE based on the Fairplay SFE framework.

SPF-SFE is sufficient for many practically relevant privacy-preserving
applications, such as privacy-preserving credit checking which can be im-
plemented with our framework and compiler as described in the paper.

Keywords: SFE of semi-private functions, Yao’s protocol, topology,
optimization, compiler, privacy.

1 Introduction

Two-party Secure Function Evaluation (SFE) is an important and wide area of
cryptographic research (see, e.g., [ISITOI3IITTI7IT12]). It allows two parties to
securely evaluate a common function on their private inputs without involving
a trusted third party. The function is represented as a boolean circuit and eval-
uated based on a garbled version of the circuit which is created by one party
(constructor Bob) and evaluated by the other party (evaluator Alice). Usually
SFE hides the intermediate results but - as the function is known to both parties
- not the structure (topology) of the function.
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In practice, however, a variety of business models require privacy properties
beyond the secrecy of parties’ input data to additionally keep the evaluated
function private. The underlying business motivations vary from commercial
incentives (e.g., protection of intellectual property) to pure security requirements
to reduce the probability of credential forgery or to make insider attacks obsolete.
Typical use cases are client-server applications where a user Alice inputs her
private data = (hidden to Bob), the server Bob inputs his private function f
(hidden to Alice), and the protocol outputs f(x) to both parties such that neither
party gain any information about the other party’s input. Prominent examples
are privacy-preserving trust negotiation schemes [3I6l4], credit checking [5], or
data classification using neural networks [16].

To allow SFE of a private function, called PF-SFE [§], a universal circuit (UC)
[I78I16] is evaluated that simulates the function, and entirely hides the structure
of their circuit representation. UCs require a huge overhead of O(klogk) [17],
O(klog® k) [8], respectively O(k?) [16] additional gates, where k is the number
of gates of the simulated circuit.

Fairplay [13], a state-of-the art implementation of SFE, can evaluate functions
consisting of millions of gates whereas in FairplayPF [§], a recent implementa-
tion for PF-SFE, functions are restricted to a few thousand gates only due to
the huge overhead for evaluating UC. Hence, a better trade-off between maximal
performance (SFE) and maximal privacy of the evaluated function (PF-SFE) is
desired. For many practically relevant applications (e.g., those mentioned above)
it is sufficient that functions are only partly private, what we call semi-private
functions (SPF). Basically, these applications reflect the following scenario: A
user Alice has private data x, and a service provider Bob has a semi-private func-
tion f € F as input, where F represents a given class of functions. At the end of
the protocol, Alice obtains f(x) but not which specific f was evaluated and Bob
obtains no information on x. This problem, called secure function evaluation
of semi-private functions (SPF-SFE), can be reduced to Yao’s protocol where
circuit’s topology is revealed to the evaluator but the functionality of the gates
is hidden. Evaluator sees the circuit topology but can only guess which function-
ality each part of the circuit might evaluate. We concentrate on relazed-security
model, i.e., security against malicious evaluator Alice and semi-honest (honest-
but-curious) constructor Bob. This model is widely used in current cryptographic
literature [I4J219] and well-justified in many practical applications where perfor-
mance is crucial and constructor Bob can be assumed to behave semi-honestly
by means of legal contracts or possible loss of reputation.

While SPF-SFE based on Yao’s protocol has been proposed as building block
in many applications (e.g., [3I5I6/4U16]), we give the first unified theory for SPF-
SFE. Extending and improving previously known techniques we present a general
theoretical framework for SPF-SFE together with a language and tools to specify
and automatically generate SPF-SFE protocols for practical applications.

Related Work. The idea of constructing circuits for a special class of functions
and evaluating them efficiently with Yao’s protocol in the relaxed-security model
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respective building blocks oblivious gates/circuits where evaluator does not know
the function that each gate/circuit computes. However, they only mention the
existence of several useful topologies like binary trees, comparison circuits, or
universal circuits together with their asymptotic size, but do not give explicit
constructions. We extend their basic ideas into a generic framework and provide
a wide class of functional blocks, each with a concrete efficient implementation
(topology, programming, and exact size), that can be arbitrarily combined to
represent semi-private functions in many practical applications.

Existing frameworks for secure computation based on Yao’s protocol are the
Fairplay SFE system [13] with a proposed extension to the malicious model [12]
and another extension to private functions with UCs (PF-SFE), called Fair-
playPF [8]. The Fairplay compiler includes an optimizer that optimizes on the
basis of the high-level Secure Function Description Language (SFDL) using peek-
hole optimization, duplicate code removal, and dead code elimination. In contrast
to this, our proposed optimization algorithm for constant inputs optimizes on
the lower abstraction level of circuits and can also be applied to further optimize
the output of circuits generated with the Fairplay compiler.

Our Contribution and Outline. We propose a general framework together
with a compiler for efficient secure function evaluation of semi-private functions
(SPF-SFE) in the relaxed-security model.

In §lwe describe how common SFE can be extended with building blocks that
we call Privately Programmable Blocks (PPB) to allow practical secure evalua-
tion of semi-private functions (SPF-SFE). A privately programmable block (§4))
consists of a fixed topology of several programmable gates (with a small num-
ber of inputs) and can be programmed to evaluate different functions out of a
class of functions. The evaluator learns how the blocks are connected (topology)
but not with which of the functions of their corresponding class of functions
the blocks are programmed. Hence parts of the function are hidden from the
evaluator while the topology is still revealed. In §5l we show how to design ef-
ficient constructions for PPBs that also allow to securely incorporate private
constants into PPBs and give concrete constructions that are of special interest
for practical applications. In particular we present efficient PPB constructions
to compare two numbers and a number with a private constant. Other efficient
PPB constructions for arithmetic operations (add or subtract two numbers/a
number and a private constant, multiply a number with a private constant) and
boolean operations are given in the full version of this paper [I5]. Also switching
functions, e.g., permutation and selection blocks, as well as universal circuits
from [8] fit into this concept. The resulting SPF-SFE protocol is as efficient as
Yao’s SFE protocol while providing function privacy at the same time.

In §8 we present an optimization algorithm that incorporates constant inputs
into the circuit resulting in a circuit with less inputs and smaller size having a
topology which is independent of the values of the constant inputs. Besides the
well known propagation of constant inputs, our algorithm additionally eliminates
resulting gates with one input by incorporating them into surrounding gates
which results in smaller circuit size. The proposed optimization algorithm applies
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no cryptographic modification of circuits and hence is of independent interest.
This optimization can be used in combination with Yao’s SFE protocol in the
relaxed-security scenario where constant inputs might be public values known
to both parties as well as the inputs of circuit constructor Bob.

In order to allow usage of SPF-SFE in many practical applications we present
a general compiler framework for secure evaluation of semi-private functions,
called FairplaySPF, based on the well known Fairplay SFE system [13] as de-
scribed in §6l Our Secure Programmable Block Description Language (SPBDL)
allows to specify the topology of interconnected programmable blocks together
with their corresponding private programming. A compiler automatically com-
piles SPBDL descriptions to circuits described in Fairplay’s Secure Hardware
Description Language (SHDL). After incorporating Bob’s inputs into the cir-
cuit with the optimization algorithm presented in §8 the circuit can securely
be evaluated with the SPF-SFE protocol while hiding the programming. Also
a Universal Circuit (UC) that is evaluated in PF-SFE (cf. [§]) can be seen as
a PPB that is programmed with a private circuit (specified in SHDL). By in-
corporating UCs as programmable blocks into SPBDL, our framework becomes
a general purpose framework capable of expressing SFE, SPF-SFE, and PF-
SFE as well as arbitrary combinations of them where only sensitive parts of
the function’s structure are hidden as shown in the example in §7l This al-
lows a fine-grained trade-off between performance and privacy of the evaluated
function.

Our framework and compiler can be applied (combining SPF-SFE and PF-
SFE) to implement and improve efficiency of several applications such as privacy-
preserving credit checking [5], blinded policy evaluation [3l6/4], or secure data
classification [16]. In §7]of this paper we concentrate on privacy-preserving credit
checking. Usually, before getting a loan from a bank a person has to reveal
a substantial amount of private information. This information has to satisfy
certain criteria that are defined by the bank. We show how SPF-SFE can be
used to securely evaluate the trustworthiness of a borrower while ensuring that
(i) the privacy of his input is preserved and (ii) nothing is revealed about the
criteria of the bank used for credit checking. Instead of using a UC for the whole
function as in PF-SFE we reveal the topology of the trivial part of the function
(e.g., comparing attributes with thresholds) and only hide the sensitive part in
a UC, which is much more efficient. The description of the function in SPBDL
can automatically be compiled into SHDL code with our compiler. This can be
obliviously evaluated in a one-round protocol.

2 Yao’s Protocol and Semi-private Functions

Yao’s Protocol. In the following, we concentrate on Yao’s protocol [1§| for
SFE. Yao’s protocol is often called garbled circuit protocol as a garbled version
of the (boolean) circuit representing the function is created by one party (con-
structor Bob) and evaluated by the other party (evaluator Alice) as described
in the following. For each wire of the circuit, Bob uses two random bit strings
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(garbled values) that are assigned to the corresponding values 0 and 1, respec-
tively. Note, that the garbled values do not reveal to which value they correspond
as they are chosen randomly. Bob sends only the garbled values corresponding
to his inputs (garbled inputs) to Alice. For Alice’s inputs, Bob uses 1-out-of-2
oblivious transfer (OT) to send Alice only the garbled values corresponding to
her inputs without Bob learning which strings she gets. Additionally, for each
gate G; of the circuit, Bob creates and sends to Alice a garbled table T; with
the following property: given garbled values for G;’s inputs, T; allows to recover
only the garbled value of the corresponding output of G; and nothing else. Af-
terwards, Alice uses the received garbled values of the input wires and garbled
tables T; to evaluate the garbled circuit gate by gate. The output wires of the
circuit are not garbled (or the mappings from garbled values to values 0 and 1
are published by Bob), thus Alice learns (only) the output of the circuit, but
no plain values of internal wires (only garbled values). Correctness and security
against semi-honest adversaries of Yao’s protocol are proven in [I0]. It is easy
to show that Yao’s protocol is even secure against malicious Alice, i.e. relaxed-
secure, as the only message Alice sends to Bob is within the OT protocol where
Alice is unable to cheat successfully if the OT protocol is secure against malicious
Alice [4, Appendix A]. An efficient OT protocol with relaxed-security is given
in [2].

Yao’s protocol is the kernel of existing implementations of SFE protocols
[13/12] which also extend it to be secure against malicious constructor Bob via
cut-and-choose, e.g., multiple circuits are garbled, correctness of some of them
is verified by revealing all garbled input values (called open), and the remaining
ones are evaluated. As justified in the introduction, we concentrate on the plain
Yao’s protocol (secure against semi-honest Bob and potentially malicious Alice)
where only one circuit is evaluated and no circuits are opened.

Yao’s Protocol for Semi-Private Functions. Observe, in Yao’s protocol the
garbled tables T; consist of symmetric encryptions of the garbled output value
using the corresponding garbled input values as keys. Alice can use these garbled
input values to decrypt exactly the one garbled output value corresponding to
these keys. All other garbled output values, i.e., entries of the garbled function
table remain hidden from Alice and hence she cannot determine the type of the
gate. The only information Alice learns about the function in Yao’s protocol is
the topology of the circuit, i.e., the way the different gates are connected and
how many inputs each gate has.

When Alice obtains a garbled circuit from Bob, she can guess from its topology
what functionality the circuit evaluates, e.g., chains of 3-input gates might be an
integer comparison circuit. This can be exploited constructively by Bob to keep
parts of the function private, we call this a semi-private function, as follows.
Bob composes his intended functionality from blocks with a fixed topology that
can evaluate different functionalities each, called privately programmable blocks
(PPBs) as explained in §8 The maximum amount of information Alice can gain
from the topology of a PPB is the set of functionalities the PPB might compute
but not the specific functionality chosen privately by Bob.
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From combining these two arguments follows that evaluation of a circuit,
composed out of several PPBs representing the semi-private function, with Yao’s
protocol is a secure protocol for SPF-SFE.

Additionally, (semi-honest) Bob can incorporate his input values into the cir-
cuit before garbling the circuit if they are already known at that time. In §8 we
give an algorithm for efficient optimization of circuits for Bob’s (constant) inputs
together with an example. The optimization only depends on the topology of the
original circuit but not on Bob’s input values and hence the optimized circuit
does not reveal more information on Bob’s input values than the original circuit.
After this optimization, Bob no longer needs to transfer the garbled values cor-
responding to his input values to Alice and also the size of the circuit is reduced
(resulting in less communication and computation).

3 Definitions and Preliminaries

Let « € [0,2°) be an unsigned /-bit integer value and = = (1, .., x¢), z; € {0,1}
its corresponding representation as bit vector, i.e., x = Zle 2;271. The length
of ¢ is |x| = ¢. We draw a (single) wire with one-bit value as —». As usual,

multi wire X with ¢-bit value z is drawn as = and consists of ¢ wires indexed
by X[i],i=1,..,¢ with values z;.

A gate G with degree d has d inputs and one output. It is the implementation
of a boolean function g : {0,1}% — {0,1}. As special case, a constant gate has
no inputs (d = 0) and outputs a constant value. The size of a gate GG, denoted
by |G|, is the number of function table entries needed to implement the gate,
namely |G| = 2. A gate with e > 0 outputs can easily be combined from e gates
with one output resulting in size e - 2%.

We consider acyclic circuits consisting of connected gates with arbitrary fan-
out, i.e., the output of each gate can be used as input to arbitrary many gates.
The size of a circuit, denoted by |C|, is the sum of the sizes of its gates. Note,
communication and computation complexity of efficient SFE protocols is linear
in the size of the circuit.

A block BY is a sub-circuit with v inputs inq, .., in,, and v outputs outy, .., out,,.
B! computes function fp : {0,1}* — {0,1}” mapping input values to output
values. Blocks consist of connected gates and other sub-blocks. Size of block B,
denoted by |B|, is the sum of the sizes of its sub-elements.

A programmable gate (PG) is a gate with an unspecified function table. Pro-
gramming it is done by providing a specific function table with 2¢ entries (one
entry for each input combination). The concept of PGs corresponds to a universal
circuit for simulating a single gate in Valiant’s UC construction [17]. As described
in the previous section, in SPF-SFE evaluator Alice is not able to extract the
corresponding function table (program) from PG. Analogously, a programmable
block (PB) is a block cousisting of programmable gates or programmable sub-
blocks. It is programmed by programming each of its sub-elements. As described
before, in SPF-SFE evaluator Alice is unable to extract the program from PB.
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4 Privately Programmable Blocks

In this section we present the concept of Privately Programmable Blocks (PPB)
for constructing semi-private functions. Using our efficient PPB constructions
given in §5] with the SPF-SFE protocol of §2] allows to preserve the privacy of
the function while the protocol remains as efficient as SFE protocol.

Definition 1. A Privately Programmable Block (PPB) is a programmable block
which can be programmed to compute any function f of a given class of functions
F (e.g., F = {ADD,SUB}) with a corresponding program p; (e.g., f = ADD).
We write PPB' for a PPB which is programmed to compute f:

Vf e F¥(iny,..,in,) € {0,1}*: PPB (iny, ..,in,) = f(ing, .., iny).

As explained in §2] before, in SPF-SFE the function to be evaluated is composed
of several PPBs. Evaluator Alice learns how the PPBs are connected (topol-
ogy), but the programming of the PPBs remains to be private information of
constructor Bob (that’s why PPBs are called privately programmable). Alice
can infer from the topology of a PPB at most the class of possible functional-
ities F but not the specific functionality f chosen by Bob. Hence, from Alice’s
point of view the PPB can compute any functionality from F and the amount
of information hidden inside the PPB is log, || bits. For a semi-private func-
tion which is composed from programmable blocks PPB, .., PPB,, the program
of each PPB can be combined with any programming of the other PPBs and
hence the maximum (as some combinations might not make sense depending on
the application) amount of information hidden in the semi-private function is
logy (| F1| .. | Fnl) = Yoi; log, | F;| bits. Clearly, if this is not large enough (i.e.,
if the number of PPBs n or number of possible functionalities of PPBs |F;| is
small), Alice might guess the correct function with high probability or probe the
system via exhaustive search which must be prohibited by other means.

Universal Circuits (UC) indeed are special PPBs that can be programmed
to compute an arbitrary function. UC} is capable of simulating any function
corresponding to a circuit with up to k gates with two inputs each. UCs provide
full privacy of the evaluated function as the topology is hidden entirely. How-
ever, they cause a huge overhead by increasing the size of the evaluated circuit
by O(klogk) [I7], O(klog® k) [8], or O(k?) [16] additional gates which is often
intolerable in practice. Evaluating a UC' programmed with a private function
known by constructor Bob with a SFE protocol is called Secure Evaluation of
Private Functions (PF-SFE). By combining the PPBs presented in this paper
with UCs, users can find a fine-grained trade-off between efficient PPB construc-
tions for semi-private functions (SPF-SFE) and less efficient UC constructions
for completely private functions (PF-SFE) as explained in §7

Simple PPB Counstruction. A straight-forward implementation of a PPB
for a class of n arbitrary functionalities F = {f1, fo, .., fn} can directly be de-
rived from the definition of PPBs in Definition [I] as shown in Fig. Each
functionality f; is computed by a circuit C; and a n : 1 multiplexer (MUX) is
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n

1~ U

PPBsimple in
— U
PPBeff'rciem
Py -1+ MUX | L {c]
v v
out out
(a) Simple PPB construction (b) Efficient PPB construction

Fig. 1. PPB constructions

programmed to select the intended output. The MU X block can be constructed
from v parallel selection blocks ST (as defined in [§]) for each of the v outputs
that can be programmed to select any of their n inputs as outputs.

If the program p; is known by Bob beforehand it can directly be incorporated
into the circuit as described in §8 After optimization, each of the v selection
blocks consists of a chain of n — 1 programmable 2-input gates which can be
programmed to select either their left or right input as output each [8]. The size
of this simple PPB construction is |[PPB*"™P¢| = 4v(n — 1) + I, |Ci].

Efficient PPB Constructions. Efficient PPB constructions can be obtained
by choosing special classes of functionalities having circuits with the same (or at
least a similar) topology. This allows to re-use (parts of) the same circuit C' for
the different functionalities f; as shown in Fig. For instance, the topology of
an adder is the same as that of a subtractor and hence for 7 = {ADD, SUB} the
same topology can be used. Based on the intended functionality f € F, the sub-
elements of C are programmed differently while the topology is the same. This
efficient PPB construction has size | PPBeFicient| — |C| ~ |Cy| < |PPB™'|.

When a private constant c is incorporated into a PPB, the value of the con-
stant can not be extracted from PPB’s topology and hence is hidden from Alice
in the SPF-SFE protocol, e.g., circuits to add/subtract an input with a s-bit
constant ¢ have the same topology. To simplify notation, we parametrize the
class of possible functionalities with parameter ¢ and write F. = {fi., .., fnc}
for F = {file=0, -, file=2s—1, fale=0, - fole=2s 1, -, [nle=0s -+, fule=2s—1}, €.&.,
F. ={ADD,.,SUB.} in the example given above. The amount of information
hidden inside a PPB is

logs | F| = loga | Fe| + |c| = logy(n) + s bits. (1)

5 Practical Efficient PPB Constructions

In this section we show how to construct several efficient PPBs that are useful in
practical applications (cf. §7)). All these building blocks are already implemented
in our framework for practical SPF-SFE described in §6 In the following we
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present two efficient PPB constructions for arithmetic operations: compare two
numbers and a number with a private constant. Other efficient PPB construc-
tions for arithmetic operations (add or subtract two numbers/a number and a
private constant, multiply a number with a private constant) and boolean opera-
tions are given in the full version of this paper [15]. Our SPF-SFE framework also
provides PPBs for Switching Functions (i.e., permutation and selection blocks)
and Universal Clircuits for which we refer to the definitions, descriptions, and
constructions in [8]. A list of efficient PPB constructions provided for implemen-
tation in our framework is given in the full version of this paper [15].

For each PPB we give the Interface specifying the functionality of the block, its
number of inputs and outputs, and the different possibilities for programming
Fe.. The Implementation describes the topology of the corresponding efficient
PPB construction, how to program it, and its size. The inputs are called =, y
and the potential private constant is called ¢, where |z| = m, |y| = n, and
|e| = s. To simplify presentation we assume w.l.o.g. m = n, respectively m = s
in the following descriptions. The other cases can easily be derived from these by
padding the shorter input with zeros and optimizing constant inputs afterwards
as described in §8 Recall, evaluator Alice can neither extract the chosen function
fe € Fe, nor the value of the possibly embedded private constant ¢ € {0,1}%,
from the topology of any PPB. The amount of information hidden inside the
PPB is given by equation ().

The main idea underlying efficient PPB constructions is to combine func-
tionalities that have structurally equivalent recursive definitions that directly
translate into programmable gates of equivalent topologies. E.g., comparison if
two m-bit numbers x, y of bitlength m are less or equal is defined recursively as

(2 <y) & (@n < g) V(@ = v A (@100 21) < @m0 m)) - (2)

Whether two numbers are greater or equal is defined recursively as

(x>y) & ((Im > Ym) V (@m = ym) A (@m—1,-21) = Ym-1,-51)))  (3)

which is structurally equivalent and translates into the same topology (Fig.[2(b)).

5.1 PPB:COMP - Compare Two Numbers

Interface (Fig. |2(a)]). PPBcoump implements z = f(z,y) = x > y, where
< € {<,>=,<,>,#} and |z| = 1. The corresponding class of functions is
F={L,G,E,LE,GE,NE}.

Implementation (Fig. . Topology of PPBcomp consists of a chain of
m programmable gates PG; (full comparers) with input bits z;, y;, and carry-in
t;—1 and output carry-out t;. The output of PPBcoyp is z = t,, and the first
carry tg = 1 can be directly incorporated into PG;. The carry t¢; propagates
whether for the i least significant bits z«; = 2 mod 2¢ and y; = y mod 2° the
corresponding relation is fulfilled (¢; = 1) or not (¢, = 0). In the following we
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Tm Ym T2 Y2 1 Y
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Il PG, L2 pa, | pe,
{L,G,E,LE,GE, NE} l
! !
(a) Interface (b) Topology

Fig. 2. PPB:COMP

describe the programming for the cases =, <, and >; the corresponding cases #,
>, and < can be easily derived from this by negating output t,, in PG,,. In case
f = E, PG, is programmed to compute t; = (z; = y; )N (@< = y<i) = (25 = yi)A
t;—1. Analogously, in case f = LE, PG; computes t; = (z; < y;)V[(x; = yi)Ati—1]
and in case f = GE, PG, computes t; = (z; > y;) V[(x; = yi) Ati—1]. Note, these
function table entries correspond exactly to the recursive definitions in equation
@) and (@). This block has size |PPBcomp| = (m — 1) - 23 + 2% = 8m — 4.

5.2 PPB:COMPc - Compare Number with Private Constant

Interface (Fig. [3(a)). PPBcomp. implements z = f.(z) = x > ¢, where
€ {<, > =,<,>, #}, cis a private constant hidden inside PPB, and |z| = 1.
The corresponding class of functions is F. = {L., G, E., LE.,GE., NE_}.

Implementation (Fig. [3(b)). Topology of PPBcoump. is exactly the same
as that of PPBcooyp described in the previous section, however, each pro-
grammable gate PG; has no input for y; which is replaced by the internal con-
stant ¢;. The programming is the same as for PPB ¢opmp with constant ¢; instead
of input y;. This block has size |PPB compe| = (m — 1) - 22 + 21 = 4m — 2.

xr

/1"’” x x T
m 2 1
COMP, ¢ + + ¢
Il pG,,| - <2 Pa, WY Pe,
{L..G.,E.,LE, .GE,,NE,} l
A z
(a) Interface (b) Topology

Fig. 3. PPB:COMPc

6 FairplaySPF - A General Framework for SPF-SFE

We have implemented a general framework for Secure Evaluation of Semi-Private
Functions (SPF-SFE) called FairplaySPF [l by extending the Fairplay SFE

! FairplaySPF is available for download at http://www.trust.rub.de/FairplaySPF|
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framework [I3], both written in JAVA. Fairplay provides two languages: The
high-level Secure Function Description Language (SFDL) allows users to spec-
ify the functionality to be computed with elements known from other high-level
hardware description languages like VHDL or Verilog (e.g., variables, arrays,
procedures, arithmetic- and logic expressions, control structures, etc.). Fairplay
optimizes the function described in SFDL and automatically transforms it into
a boolean circuit described in Fairplay’s low-level Secure Hardware Description
Language (SHDL). This language consists of wires, input wires, gates, and out-
put gates only. Using the SHDL circuit as input for both parties, Alice and Bob
invoke their respective programs of the Fairplay runtime environment to exe-
cute the two-party SFE protocol. These programs evaluate the function on their
respective private inputs over a TCP connection.

FairplaySPF Framework. In FairplaySPF, we extend the Fairplay framework
[13] to secure evaluation of semi-private functions that are known to Bob only. In
the following we describe the workflow of the FairplaySPF framework. Bob com-
poses his semi-private function from several available privately programmable
blocks (as described in §8) in our newly designed Secure Programmable Block
Description Language (SPBDL) explained later in this section. Our FairplaySPF
compiler automatically translates this SPBDL program into an SHDL circuit.
Alternatively, SHDL circuits that are generated by the original Fairplay compiler
from SFDL descriptions can be used. Bob’s private input data is automatically
incorporated into the SHDL circuit and optimized afterwards by the FairplaySPF
circuit optimizer as described in §8l resulting in a smaller SHDL circuit. This
optimized SHDL circuit (containing the combination of Bob’s semi-private func-
tion and his private data) is evaluated by the FairplaySPF runtime environment
(RE) which is only a slight modification of the Fairplay RE for semi-private
functions: In FairplaySPF RE only Bob inputs the SHDL circuit but not Alice.
The topology of the circuit (but without the types of the gates) is sent to Alice
and afterwards the SPF-SFE protocol as described in §2] is executed between
Alice and Bob over a TCP connection.

Secure Programmable Block Description Language (SPBDL). Our
new SPBDL language allows to easily specify semi-private functions by com-
bining different PPBs. SPBDL extends the basic functionality of SHDL to input
wires (input), multi-wires (vector), privately programmable blocks (block),
programmable gates (gate), and output wires (output). The formal specifica-
tion of the syntazx of SPBDL in Extended Backus-Naur Form (EBNF) is given
in the full version of this paper [I5]. In the following, we briefly describe the
semantics of SPBDL. Please see Fig. [ for an example SPBDL description of a
semi-private function. As in SHDL, each line of a SPBDL program starts with
a line number beginning with 0. In following lines, this number refers to the
output of the element defined in this line. Line comments start with //.

A SPBDL program starts with the definition of inputs as input Player [w],
where Player defines from which party the input is given (alice or bob). The
optional parameter [w] specifies that the input consists of w bits (default w = 1).
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Afterwards, three kinds of elements can be specified - gate, vector, and block:
A programmable gate is defined as gate in [Wires] p [Bits], where Wires is
its list of inputs and Bits is the programming of its function table. A list of Wires
can be grouped into a vector with vector [Wires]. The single wires of a vector
can be accessed via Vector.Index, e.g., 4.2 denotes the second wire of vector 4.
A PPB is defined as block [Btypel out Num in [Vects] p [Bprogl, where
Btype is the type of the PPB (e.g., comp for PPBcoump described in §5)), Num
specifies the number of output bits, and Vects is the list of input vectors. The
programming of the PPB specified in Bprog depends on the type of the PPB
Btype. All types of PPBs Btype and corresponding programming parameters
Bprog available in SPBDL are given in the full version of this paper [13]. Finally,
outputs are defined as output Player Vect, where Player defines which party
obtains the output (alice or bob) and Vect is the vector to be output.

7 Applications

Our general framework and tools for SPF-SFE presented in this paper can be
used to specify and implement many privacy-preserving applications. Examples
are Blinded Policy Evaluation [3[6/4], Privacy-Preserving Credit Checking [5], or
provably secure evaluation of Private Neural Networks [16].

In the following we concentrate on privacy-preserving credit checking [5] which
demonstrates how the evaluated function can be partitioned into semi-private
and private parts which are both supported by our framework.

Privacy-Preserving Credit Checking. Typically, before granting a loan from
a lender (Bob), the credit worthiness of the borrower (Alice) is checked to have
the confidence that she will be able to pay it back later. The borrower is asked for
her credit report that contains a large amount of private information including
for example gender, age, income, salary, or other sensitive information like how
many trade lines she owns, the number of overdrafts, or the number of late
payments. However, revealing this data should be avoided as the lender may not
always be a credible organization or, even worse, dishonest employees (so called
insiders) could sell such private information on customers to third parties.

Additionally, the evaluation criteria of the lender are highly sensitive informa-
tion that must be protected as revelation of these may cause loss of intellectually
property or loss of repudiation for the lender.

As suggested by Frikken et al. [5], this scenario can be reduced to SPF-SFE,
where Alice inputs her private credit report and Bob evaluates his semi-private
function that checks if the credit report fulfills his criteria. To ensure that Alice
inputs correct data into the SPF-SFE protocol, the authors describe how to
replace the oblivious transfer step by a Credit Report Agency, i.e., a trusted
third party, that checks and accredits Alice’s inputs instead.

Bob’s semi-private credit checking function can be expressed in our framework
for SPF-SFE as shown in the tiny example of Fig. [ which is due to space
limitations not intended to give the complete solution but merely to show the
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credit_req age gender
416 7 0 input alice [7] // age
COMP. <=18|[COMPE. c=65 1 input alice // gender
GE, L, 2 input alice [16] // credit_req
3 block [compc] out 1 in [0] p [GE 18]
BOOL 4 block [compc] out 1 in [0] p [L 65]
& 5 block [bool] out 1 in [4 1] p [AND]
I 6 vector [2 3 5]
uc k =50 7 block [uc]l out 1 in [6] p [50 f.shdl]
f.shdl 8 output alice 7 // credit_grant
9 output bob 7 // credit_grant

credit_grant

Fig. 4. Example for Privacy-Preserving Credit Checking

main concepts. The upper part of the circuit performs some obvious computation
on Alice’s data, e.g., compare her age with a private constant, or combine this
result with her gender. The sensitive information in this part of the function
are the private constants, e.g., grant credit only to female persons (gender = 1)
that are younger than 65 (age < 65), which are hidden from Alice, whereas the
obvious topology can safely be revealed.

The highly sensitive part of the functionality that combines these results de-
pending on the amount of credit requested (credit _req) is hidden entirely from
Alice within the universal circuit UC. This PPB can be programmed to com-
pute any functionality computable by a circuit of up to k£ = 50 gates with arbi-
trary topology. The specific functionality intended by Bob is the SHDL circuit
described in f.shdl, which can automatically be generated from a high-level
description in SFDL with the Fairplay compiler.

This example shows how our framework for SPF-SFE can be used to imple-
ment an application-specific, reasonable tradeoff between efficiency while reveal-
ing irrelevant information (SPF-SFE with PPBs) and complete function privacy
(PF-SFE with UC).

Comparison of SPF-SFE and PF-SFE. Revealing the topology of obvious
parts of the functionality while hiding the sensitive parts in a UC results in a
smaller circuit as UC overhead can be substantially reduced due to less simulated
gates k and less inputs into UC. This reduced size of the evaluated circuit directly
translates into corresponding speedups in any implementation of the underlying
SPF-SFE protocol as their performance must be at least linear in the size of the
evaluated circuit.

As concrete example, Table[I] shows the number of gates that can be saved in
the privacy-preserving credit checking example of Fig. [ compared to hiding the
functionality entirely in a UC in PF-SFE. For different maximum size k (row A)
of the part of the functionality which is hidden in UC we give the achieved
performance improvements when extracting the obvious part of the functionality
into the upper part of the circuit (COM P. blocks and BOOL block in Fig. [)).
In our example, these blocks consist of 14 gates, i.e., row B contains the fraction
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Table 1. Improved UC Overhead in the Example of Fig. @

A) Gates hidden in UC, k 25 50 100

B) Gates extracted, 14/(k + 14) 35.9% 21.9% 12.3%

C) UC overhead in PF-SFE (UC type) |1,861  (M3)[3,720  (M3)|8,264  (M3)
D) UC overhead in SPF-SFE (UC type)| 850 (M1)|2,571 (M3)|6,797 (M3)
E) Improvement SPF-SFE vs. PF-SFE |1, 011 (54.3%)]1, 149 (30.9%)|1, 467 (17.8%)

of the functionality which is revealed: 14/(k+14). Row C shows how many gates
are needed to hide the whole functionality of 14+ k gates in a UC with 24 inputs
(for credit_req, age, and gender) using the most efficient UC construction of
[16] which is denoted in parentheses. Row D shows how many gates are needed
to implement the UC in our mixed approach as shown in Fig.[d where UC has
18 inputs and simulates k& gates. The resulting improvements compared to the
PF-SFE solution (row E) supersede the fraction of the gates extracted (row B)
as the number of inputs into UC is also reduced.

8 Optimization of Circuits with Constant Inputs

We describe a general optimization algorithm that incorporates constant inputs
into a block (sub-circuit) B. The topology of the resulting optimized block By
is independent of the values of the constant inputs and its number of inputs and
size are smaller, i.e., the number of gates respectively their degree is reduced as
shown in Fig.[Bl Besides the well known propagation of constant inputs (step 1),
our algorithm additionally eliminates resulting gates with one input by incorpo-
rating them into surrounding gates (steps 2 and 3), which results in a smaller
circuit size. The optimization algorithm is a non-cryptographic transformation
of circuits and hence of independent interest. As outlined in §2] one possible

inq iT7,|2 113114 ZTIL5 iing N7 Z?I’L1 ing Ny zn|5 %'TL6
I
Bopt
..... pred(Gr) Gy
suce(Gr)
G,

input-gate

output-gate

¥ v ool v v v

outy outy outs outy outs outy outs outs outy outs
(a) Block with constant inputs ing and ins (b) Block after optimization

Fig. 5. Example for circuit optimization with Algorithm [I]
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application is to use this optimization to improve Yao’s protocol. In this appli-
cation, constant inputs might be public constant values known to both parties
as well as the private inputs of (semi-honest) circuit constructor Bob (if known
at the time of construction of the garbled circuit).

Terminology. The following terminology is visualized in Fig. Assume the
gates G;, 1 =1,..,n of a block B are numbered in topological order, i.e., gate G;
has no inputs that are outputs of gates with larger index G~ ;. Otherwise, this
order can be obtained efficiently via topological sorting in O(n).

An output gate is a gate whose output is also an output of B. Similarly, an
input gate is a gate, which has at least one input that is also an input of B. For
gate G;, pred(G;) denotes the set of its predecessors, i.e., gates whose output is
an input into G;. Analogously, succ(G;) denotes the set of G;’s successors, i.e.,
gates having the output of G; as input. The fan-out of a gate GG; is the number
of its successors, i.e., fanout(G;) = #succ(G;).

Optimization. We refer to the running example of Fig.Blthat optimizes a block
B with constant inputs ing and iny in the following description of Algorithm [Il

Step [l - Eliminate constant inputs. The first step of Algorithm [ eliminates
all constant inputs c;, 7 = 1,..,c of block B with respective constant value
v; € {0,1}. For all gates G; with degree d; having ¢; as k;-th input, the function
eliminateConstInput(G;, k;, v;) is called that eliminates the corresponding
input of G;. Only the lines of the function table of G; with value v; in the k;-th
position are used while the other entries are eliminated, i.e., the modified gate G
computes gir (i1, .., Mg, —1, 1Nk 41, -, 10, ) = Gi(IN1, oy Mgy —1, Vg5 INks 415 -5 110, )

Algorithm 1. Optimize block B with constant inputs

Input: Block B of gates G1, .., Gy in topological order
Output: Optimized block Byt
begin
1 # Eliminate constant inputs
forall constant inputs c; with constant value v; that are not outputs of B do
L forall gates G; having c; as k;i-th input do
| eliminateConstInput(Gi, ki, v;)

2 # Eliminate non-output gates with one input
forall non-output gates G; with d; =1 do
| integrateInSucc(G;)

3 # Eliminate output gates with one input

forall output gates G; with di =1 do
let {G,} = pred(Gy)
if G; is not input gate and fanout(Gp) = 1 then
| integrateInPred(G:,Gp)

end
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|G;| shrinks by a factor of two for each of its constant inputs. Let #¢; denote the
number of constants of the d; inputs of G, then |G| = 2%~#¢ after Step [ of
Algorithm [ has eliminated all constant inputs. For an efficient implementation
of Algorithm [I] it is crucial that eliminateConstInput() does not copy the
entire function table of a gate G; for each elimination of a constant input as this
would result in runtime O(#c¢; - |G;|) for each gate. Instead, the constant inputs
are marked in runtime O(#c¢;) and afterwards all constant inputs are eliminated
simultaneously in runtime O(|G;|) by copying the corresponding elements of
the function table. This results in runtime O(|G;|) per gate. Counstant gates
Gy with diy = 0 are propagated into their successors by recursively calling
eliminateConstInput(G,, ks, gi(v;)) for all G5 € suce(Gy) having Gy as k-
th input. If constant gate G/ is not an output gate it is eliminated afterwards.

In the example of Fig.[Bl constant input ing is input into gate G; whose size is
reduced by half when eliminating the second input (k1 = 2). The resulting gate
G’ has one non-constant input ing and hence no further optimization is per-
formed. The other constant input in7 is input into G3 which is optimized into
a constant gate G4 by eliminating the constant input. Hence, eliminateCon-
stInput() is called recursively for successor Gs and GY% is eliminated. Similarly
to Gs, gate G is reduced to a constant gate G§ and eliminateConstInput()
is called for successor G7 which eliminates its second input. As the output of Gf
is also output of B it is not eliminated and remains as constant gate G4.

After termination of Step [ there might be gates GG; with one input left.
The next two steps of Algorithm [ try to remove these by incorporating their
functionalities into their successors (Step [2) or predecessors (Step B]).

Step [ - Eliminate non-output gates with one input. Step 2lof Algorithm [ elim-
inates non-output gates with d = 1. The functionality of each one-input gate G;
which is not an output gate is incorporated into its successors G5 € succ(G;)
by the function integrateInSucc(G;). This function eliminates G; by replac-
ing it with a wire and incorporating the functionality of g; into the function
tables of all its successors Gy € succ(G;): Let the output of G; be the k-th
input of G, and d the degree of Gs. Then, the modified gate G/, computes
gL(ing, .., ing, ..,ing) = gs(inq, .., g;(ink), ..,ing). Note that, independent of the
functionality g;, the resulting gate G, has the same size as G but additionally in-
corporates the functionality of g; while not revealing any additional information
on it. As in Step[] for runtime O(|G;|) per gate the modifications of the function
tables are not applied directly but first marked and then done simultaneously.

In the running example of Fig. Bl Step 2 eliminates G by replacing it with a
wire and modifying the function table of Gg correspondingly. Analogously, gate
G’ which only has one input from Go left after the optimizations performed in
Step [lis replaced by a wire. The function tables of its successors Gg — Gp and
G1o0 — G, are modified correspondingly.

Step [ - Eliminate output gates with one input. The third step of Algorithm [I]
tries to eliminate output gates with d = 1. The functionality of each output gate
G; with one input is incorporated into its predecessor G,,. This is only possible
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if G; is the only successor of G, i.e., fanout(G,) = 1. In this case, function
integrateInPred(G;,G,) is called which eliminates gate G; by replacing it
with a wire and incorporates its functionality into gate G, with d inputs. The
modified gate G}, computes g, (in1, .., inq) = gi(gp(in1, ..,ing)). As in Step 2] this
optimization step is independent of the functionality ¢g; and the resulting gate
G, has the same size as G, but additionally incorporates the functionality of g;
while not revealing any additional information on it.

In the running example of Fig. Bl Step Bl eliminates Gg by replacing it with a
wire and modifying the function table of G¢ — G, correspondingly. In contrast
to this, gate G, cannot be incorporated into its predecessor G as G, is not its
only successor (fanout(G2) = 2). The optimized block B,y: produced by Algo-
rithm [ is shown in Fig. [5(b)] It has size |Bop:| = 21 which is less than 62% of
the size of the original block |B| = 34.

Correctness, efficiency and security of Algorithm [ are summarized in the fol-
lowing theorem. Its proof is given in the full version of this paper [15].

Theorem 1. Algorithm [ efficiently eliminates all ¢ > 0 constant inputs that
are not outputs of block B in runtime O(|B|). The optimized block Bop: has
smaller size and computes the same functionality as B. The topology of Bopt
does not reveal anything about the values of the constant inputs.
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