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Abstract

Android’s security framework has been an appealing sub-
ject of research in the last few years. Android has been
shown to be vulnerable to application-level privilege esca-
lation attacks, such as confused deputy attacks, and more
recently, attacks by colluding applications. While most of
the proposed approaches aim at solving confused deputy at-
tacks, there is still no solution that simultaneously addresses
collusion attacks.

In this paper, we investigate the problem of designing and
implementing a practical security framework for Android to
protect against confused deputy and collusion attacks. We
realize that defeating collusion attacks calls for a rather
system-centric solution as opposed to application-dependent
policy enforcement. To support our design decisions, we
conduct a heuristic analysis of Android’s system behavior
(with popular apps) to identify attack patterns, classify dif-
ferent adversary models, and point out the challenges to be
tackled. Then we propose a solution for a system-centric and
policy-driven runtime monitoring of communication chan-
nels between applications at multiple layers: 1) at the mid-
dleware we control IPCs between applications and indirect
communication via Android system components. Moreover,
inspired by the approach in QUIRE, we establish semantic
links between IPCs and enable the reference monitor to ver-
ify the call-chain; 2) at the kernel level we realize mandatory
access control on the file system (including Unix domain
sockets) and local Internet sockets. To allow for runtime,
dynamic low-level policy enforcement, we provide a callback
channel between the kernel and the middleware. Finally, we
evaluate the efficiency and effectiveness of our framework on
known confused deputy and collusion attacks, and discuss
future directions.

1. Introduction

Google Android [1] has become one of the most popular
operating systems for various mobile platforms [23, 3, 31]
with a growing market share [21]. Concerning security and
privacy aspects, Android deploys application sandboxing
and a permission framework implemented as a reference
monitor at the middleware layer to control access to system
resources and mediate application communication.

The current Android business and usage model allows
developers to upload arbitrary applications to the Android
app market1 and involves the end-user in granting permis-
sions to applications at install-time. This, however, opens
attack surfaces for malicious applications to be installed on
users’ devices (see, for instance, the recent DroidDream
Trojan [6]).

Since its introduction, a variety of attacks have been re-
ported on Android showing the deficiencies of its security
framework. Of particular interest and importance in this con-
text are the so-called application-level privilege escalation
attacks which are the main focus of this paper.

Privilege escalation attacks at application-level. An-
droid’s security framework (enforcing sandboxing and per-
mission checks) is not sufficient for transitive policy en-
forcement allowing privilege escalation attacks as shown
by the recent attacks [16, 12, 20, 35]. Prominent examples
are confused deputy and collusion attacks. Confused deputy
attacks [26] concern scenarios where a malicious application
exploits the vulnerable interfaces of another privileged (but
confused) application2. On the other hand, collusion attacks

1One can register as an Android developer by only paying a fee of $25.
Afterwards, developers are free to publish applications on the Android
market.

2These attacks range from unauthorized phone calls [16] and text mes-
sage sending [12] to illegal toggling of WiFi or GPS service state [20].



concern malicious applications that collude to combine their
permissions, allowing them to perform actions beyond their
individual privileges. Colluding applications can communi-
cate directly [28], or exploit covert or overt channels in the
Android core system components [35]. Moreover, applica-
tions can launch privilege escalation attacks by exploiting
kernel-controlled channels and completely bypass the mid-
dleware reference monitor. Examples for such attacks are
confused deputy attacks over a locally established Internet
socket connection, or collusion attacks over the file system
[12, 35]. Hence, one needs protection at both abstraction
layers: namely the middleware and the Linux kernel.

Security extensions to Android and problems. The
problem of application-level privilege escalation attacks has
been investigated in the last few years, and various security
extensions and enhancements to Android have been pro-
posed such as Kirin [16, 17], TaintDroid [14], Saint [33],
QUIRE [13], IPC Inspection [20] to name some. However,
as we will discuss in further detail (cf. Section 8), none of the
existing approaches satisfactorily addresses both confused
deputy and collusion attacks. While the existing solutions
are either static or mostly delegate the policy enforcement to
applications, we realize that tackling collusion attacks calls
for a system-centric solution, not dependent on applications.
Moreover, previous solutions suffer from other deficiencies
such as incompatibility to legacy applications (requiring to
over-privilege some applications), or inefficiency.

Our goal and contributions. We investigate the problem
of building a security framework for Android to protect it
against confused deputy and collusion attacks. We aim for
a general framework which can capture all variations of
application-level privilege attacks, as opposite to previous
works targeting attack subclasses. To support our design
decisions, we conducted a heuristic analysis of the runtime
behavior of Android while running many popular applica-
tions to observe and identify possible attack patterns. We
point out the related challenges towards tackling this prob-
lem, and discuss the trade-offs with respect to other major
existing solutions some of which could be integrated in our
framework to improve our solution. In particular, our contri-
butions are the following:

• Security Framework. We present the design and im-
plementation of a security framework to detect and
prevent confused deputy and collusion attacks. For
this, we extend Android’s reference monitor concept at
both the middleware and the kernel level as follows:
1) runtime monitoring on direct IPC calls between
applications and indirect communication through An-
droid system components. Inspired by the approach
in QUIRE [13] we establish a semantic link between

IPC calls that are checked at runtime by our monitor to
identify call-chains to protect against confused deputy
attacks (caused by intents); 2) kernel-level Mandatory
Access Control (MAC) on the file system (files, Unix
domain sockets) and Internet sockets; 3) a runtime inter-
action between our security extensions to the Android
middleware and the kernel-level MAC, allowing for
dynamic runtime policy mapping from the middleware
to the kernel.

• Policy enforcement. Our policy enforcement is system-
centric and uses an appropriate high-level policy lan-
guage inspired by VALID [4] at the middleware
layer. At the kernel level, we have adapted TOMOYO
Linux [25] to the Nexus One smartphone. Although TO-
MOYO can intercept system calls and enforce MAC at
the kernel level, it isn’t aware of contextual information
available to the Android middleware (e.g., permissions
that Android applications possess) in order to take the
correct decision. To bridge the gap between policy
enforcement at the middleware layer and TOMOYO,
we dynamically map the policies of the middleware to
TOMOYO.

• Performance and effectiveness. Our reference imple-
mentation has a negligible performance overhead not
noticeable to the user. We evaluated our implemen-
tation on a Nexus One development phone with 50
(popular) applications from the Android Market and
25 users (students). Note that in contrast to [15, 19]
we perform our evaluation manually at runtime3, and
hence, 50 applications are already sufficient for our
purposes. We successfully evaluated our framework
against application-level privilege escalation attacks
presented in [16, 12, 20, 35]. In contrast to exist-
ing solutions, our implementation detects all of these
attacks including the sophisticated attacks of Sound-
comber [35] and an attack launched through locally
established Internet connection [12]. Finally, we dis-
cuss and evaluate the possible problems, such as the rate
of attack detection and falsely denied communication.

Outline. The remainder of this paper is organized as fol-
lows: After we recall the Android architecture in Section 2,
we introduce the general problem of privilege escalation
attacks, present our adversary model and assumptions in
Section 3. In Section 4, we present the architecture of our
security framework, describe the graph-based system repre-
sentation used in our framework, and provide a graph-based
definition of privilege escalation attacks. Section 5 is de-
voted to defining a security policy for our framework. In

3Note that automated testing of mobile phone applications has been
shown to exhibit a very low execution path coverage and is thus not suitable
for our purposes [22].
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Figure 1. Android internals: (a) Android software stack; (b) Possible communication channels

Section 6, we present the implementation of our framework
whose effectiveness and performance we evaluate in Sec-
tion 7. Finally, we elaborate on related work in Section 8,
and conclude in Section 9.

2. Android

In this section we briefly highlight the internals of the An-
droid architecture and recall its major security mechanisms.

Android Software Stack. Android is an open source soft-
ware stack for mobile devices. It builds on top of a Linux
kernel and includes a middleware framework and an appli-
cation layer (as depicted in Figure 1a). The Linux kernel
provides basic system services to upper layers, such as pro-
cess isolation and scheduling, file system support, device
drivers and networking. The middleware layer includes the
Dalvik Virtual Machine (DVM), Java and native libraries,
and provides system services, such as the application life
cycle management. Further, it provides a Mandatory Access
Control system for application communication. On top, the
Android application layer includes pre-installed and third
party applications. Android applications are mainly written
in Java, but may incorporate C/C++ code through the Java
Native Interface (JNI). Further, applications basically con-
sist of components, where Android provides four basic kinds
of components: Activities, Services, Content Providers and
Broadcast Receivers. Activities are associated with a user
interface, Services implement functionalities of background
processes, Content Providers are SQL-like databases, and
Broadcast Receivers serve as application mailboxes for event
notifications.

Application Communication Channels. Possible com-
munication channels are shown in Figure 1b. Typically,
Android applications communicate through a standard mech-
anism provided by the middleware, namely a Binder-based
lightweight Inter-Process Communication (IPC) channel.

Binder IPC calls occur at the granularity of application
components. Thus, the resulting application communica-
tion is often referred to as inter-component communication
(ICC) [18] to differentiate it from IPCs at the kernel level.
To establish an ICC channel, application components send a
special message called Intent. Intents typically encapsulate
data that describe the task to perform (e.g., launch activity).

Besides ICC, applications may communicate over chan-
nels that bypass Android’s middleware, but are controlled by
the underlying Linux kernel. For instance, communication
can be established via Linux’s standard IPC mechanisms
(e.g., Unix domain sockets, files) or via Internet sockets.
Currently, only TrustDroid [9] is able to provide a means
to enforce Mandatory Access Control to prevent communi-
cation between applications over these channels. However,
TrustDroid attempts to solve the problem of domain isola-
tion in a corporate context and is not intended as a solution
against privilege escalation attacks.

Android Sandboxing. The underlying Linux kernel en-
forces process isolation and discretionary access control to
resources (files, devices) by user ownership. To sandbox ap-
plications, every application instance in Android is assigned
a unique user identifier (UID), while system resources are
owned by either the system or root user. Applications can
only access their own files, or files that are explicitly defined
as world-wide readable.

Android Permission Framework. Security sensitive re-
sources such as a phone call interface, Internet access or user
contacts database are protected by permissions: namely se-
curity labels that are defined by the Android system. The list
of standard Android permissions contains 110 items4 [24].
Most security sensitive resources of Android are provided by
a system application called Android. Application develop-
ers must declare which permissions are required to properly

4Although Android offers many different kinds of permissions, only a
few of them are actively used [2].
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Figure 2. Classification of application-level privilege escalation attacks

execute the application. Moreover, they may define new per-
missions in order to protect access to sensitive application
interfaces. Both newly defined and required permissions
are included in a Manifest file, which is part of an appli-
cation’s installation package. At install time, applications
request the necessary permissions from the user. The user
can either grant all the requested permissions, or abort the
installation process. Once granted, application permissions
cannot be changed. Further, Android’s middleware layer
enforces Mandatory Access Control (MAC) on ICC calls.
Android’s reference monitor checks permission assignments
at runtime and denies ICC calls in case the caller does not
have the required permissions.

Exceptionally, several permissions (such as INTERNET,
BLUETOOTH, WRITE EXTERNAL STORAGE) are not
controlled by Android reference monitor, but are mapped
onto Linux groups and are enforced by a low-level access
control of Linux.

3. Problem Description

In the following, we propose a classification of
application-level privilege escalation attacks and define our
adversary model, requirements and assumptions.

3.1. Attack Classification and Adversary Model

We classify application-level privilege escalation attacks
into two major classes as depicted in Figure 2: (i) confused
deputy attacks and (ii) attacks by colluding applications.

The first class concerns malicious applications (under
the adversary’s control) leveraging unprotected interfaces
of a benign application. Recent research results show that
confused deputy vulnerabilities are common in both third
party applications [12, 20] and Android default applications
such as Phone [16], DeskClock, Music, and Settings [20].
Further, confused deputy attacks can be classified based on

the channel used for privilege escalation i.e., either ICC-
based [16, 20] or socket-based [12].

The second class concerns malicious applications that
collude to merge their permissions and gain a permission
set which has not been approved by the user. For instance,
in the Soundcomber [35] attack, one application has the
permission to record audio and monitor the call activity,
while a second one owns the Internet permission. When
both applications collude, they can capture the credit card
number (spoken by the user during a call) and leak it to a
remote adversary. In general, colluding applications can
communicate either directly, e.g., by establishing direct ICC
channels, or via a locally established socket connection,
or indirectly, e.g., by sharing files or through overt/covert
channels in system components of Android (as performed
by Soundcomber [35]).

We consider a scalable adversary model with the follow-
ing types of adversaries: WeakAdversary is able to launch
known5 confused deputy attacks over ICC channels. The
BasicAdversary can launch all kinds of confused deputy
attacks, including unknown attacks and attacks over Internet
sockets. AdvancedAdversary can launch any confused
deputy attack and also (unknown) collusion attacks that oc-
cur via direct ICC calls. Finally, StrongAdversary can
launch any privilege escalation attack (at application-level),
including collusion attacks that are performed via indirect
communication, e.g., by sharing files, through Internet con-
nection, or through channels established in system compo-
nents such as Android.

Note that previous research works [33, 13, 20] aim at
tackling only the problem of unknown confused deputy at-
tacks over ICC channels, while we aim to work towards
a framework that addresses all types of attacks mentioned
above.

5Obviously, known attacks can be fixed, however, this adversary targets
a policy-based approach offering hot fixes. Note that, remote app kill is not
an appropriate solution against this adversary, as confused deputies are not
malicious, and even system apps have been shown to suffer from confused
deputy vulnerabilities [20].



3.2. Objectives and Requirements

Ideally, we aim to address the StrongAdversary model,
and discuss in Section 7 that there are several challenges
to tackle when designing and implementing a framework
which is both general and fine-grained at the same time.
Hence, there is usually a trade-off between attack coverage
and granularity of system analysis and policy enforcement.
Too coarse-grained analysis may result in negative effects,
e.g., in false positives, thereby limiting the usability, whereas
attack-specific solutions are obviously limited and may fail
in defeating other attacks in realistic scenarios. Further,
the intuitive idea of combining the existing attack-specific
protection mechanisms may not suffice either, as those may
not be compatible with each other and will likely induce
significant cumulative performance overhead.

To address this challenge, we require a configurable
framework which is flexible and can be adjusted to meet dif-
ferent trade-offs between security and usability. In particular,
we require a solution which can be configured to be effective
in WeakAdversary, BasicAdversary, AdvancedAdver-
sary and StrongAdversary models depending on the re-
quirements imposed by the underlying scenario. We further
require (i) a system-centric protection because delegating
the policy enforcement to applications is risky since the ap-
plications themselves might be either vulnerable or even
malicious (given the huge number of applications available
on the market), (ii) legacy compatibility since recompilation
of (many or even all) applications in the Android market
would be impractical, and (iii) low performance overhead
since in mobile usage scenarios, the imposed performance
overhead due to security mechanisms should not affect us-
ability.

3.3. Assumptions

We make the following assumptions with regard to our
Trusted Computing Base (TCB): we assume that the Linux
kernel and Android’s middleware are not malicious. More-
over, we assume that default Android applications are not
malicious6, but they may suffer from confused deputy vul-
nerabilities. Further, the Android application may suffer
from design deficiencies that allow malicious applications to
establish indirect communication links (see e.g., [35]).

4. Framework Architecture

After providing a short overview of our security archi-
tecture, we will describe in detail the involved components
in our architecture and how they interact with each other.

6This is reasonable, since in general one may have more trust in genuine
vendors (e.g., Google, Microsoft, and Apple) not to maliciously attack
end-users.

Finally, we introduce the graph-based system representation
of our architecture.

4.1. Overview

Our security framework performs runtime monitoring and
analysis of communication links across applications in order
to prevent potentially malicious communication based on a
defined system-centric security policy. We maintain a system
state that includes the applications installed on the platform,
files, Unix sockets and Internet sockets, as well as direct
and indirect communication links established among appli-
cations. Direct communication links are ICC calls, while
indirect channels are, e.g., shared files. Our extension is
invoked when applications attempt to establish an ICC con-
nection, access files or connect to sockets. The framework
validates whether the requested operation can potentially
be exploited for a privilege escalation attack (based on the
underlying security policy).

4.2. Component Interaction

The architecture of our framework is shown in Figure 3.
Generally, it builds on our previous work, a framework called
XManDroid [8] that enhances Android’s middleware. In this
work, we extend XManDroid with a kernel-level module.
In the following paragraphs, we shall describe the compo-
nents in our architecture and their interaction in the follow-
ing use cases: ICC call handling (steps 1-11), application
(un)installation (steps a-b), file/socket creation (steps α - γ),
file/socket read/write access (steps i-iv), and policy installa-
tion (steps I-III).

ICC call handling. At runtime, all ICC calls are inter-
cepted by the Android ReferenceMonitor (step 1). It ob-
tains information about permissions from the AndroidPer-
missions database (step 2) and validates permission assign-
ments. If ReferenceMonitor allows an ICC call to pro-
ceed, it invokes DecisionEngine (step 3) to ensure that the
communication additionally complies with the underlying
system security policy. DecisionEngine first requests for
a record corresponding to this particular ICC call from the
PolicyDecisions database (step 4). If a matching record
is found, it means that a previously made decision can be
applied. Otherwise, DecisionEngine makes a fresh deci-
sion based on inputs from AndroidPermissions (step 5),
SystemPolicy (step 6) and SystemView (step 7). In par-
ticular, the SystemView is represented as a graph, where
entities such as applications are represented as nodes, and
their established communication links as edges (more details
are provided in Section 4.3). Subsequently, the resulting
decision is stored in the PolicyDecisions database (step 8),
and if it is positive, SystemView is updated to reflect the
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Figure 3. Framework Architecture

fact that a communication link exists among the components
of applications A and B (step 9). Further, DecisionEngine
informs ReferenceMonitor about the decision it has made
(step 10), and ReferenceMonitor either allows (step 11) or
denies the ICC call.

Application (un)installation. The installation procedure
involves the standard PackageManager of Android. Typ-
ically, it extracts the application permissions from the
Manifest file and stores them in the AndroidPermissions
database (step a). In addition, PackageManager adds a
new app into SystemView (step b). Upon application unin-
stallation, PackageManager removes all entries of the unin-
stalled application from the AndroidPermissions database
(step a) and removes the app from SystemView (step b).

Operations on files, Unix domain sockets and Internet
sockets. When an application performs a file or Unix do-
main socket operation (create, read/write, connect, etc.), or
tries to establish a connection over an Internet socket, the
operation is intercepted by KernelMAC: a Mandatory Ac-
cess Control (MAC) module in the Linux kernel. When a
file/socket is created (step α), KernelMAC updates Sys-
temView accordingly (step β) and performs the requested
action (step γ). Upon request for read access to files, connect-
ing to Unix sockets, or connecting to local Internet sockets
(step i), KernelMAC looks up its internal policy file to check
if the requested operation can be allowed to proceed. If
such a rule does not exist in its internal policy file, Ker-
nelMAC requests a policy decision from DecisionEngine
(steps ii and iii), and subsequently denies/grants the opera-
tion accordingly (step iv). Furthermore, KernelMAC could

be instructed to cache policy decisions (relayed by Decisio-
nEngine) in its internal policy file for future use. Doing
so reduces the performance overhead induced by context
switches between the kernel and the middleware.

Policy installation. PolicyInstaller writes (updates) the
system policy rules to the SystemPolicy database (step I).
Next, it removes all decisions previously made by the Deci-
sionEngine, as those may not comply with the new system
policy (step II). Also, SystemView component is reset to
a clean state (step III), i.e., all previously allowed commu-
nication links among applications are removed. Note that
SystemView state is only reset upon update of SystemPol-
icy and persists across reboots.

Intent tagging. An important feature for fine-grained anal-
ysis of communication links that can lead to confused deputy
attacks is to establish causal relations between different ICC
calls and/or Intents. Inspired by the solution of QUIRE [13],
our framework builds a call-chain of the UIDs in cohering
ICCs. In contrast to QUIRE, we opted for a system-centric
call-chain. We started to integrate such a mechanism into
Android’s Binder code to cover all kinds of IPC. Our first
experiments demonstrate that such a mechanism is feasible
and can be done efficiently. However, in our current design,
we chose an Intent-based approach by automatically tagging
newly created Intents with the UID of the calling application.
This information is used by DecisionEngine to re-create
the path in the graph (which is part of the SystemView) that
lead to the current ICC.



4.3. System View Instantiation

Graph-based representation. We opted for a graph-
based instantiation of the system state SystemView, where
vertices represent entities such as application sandboxes,
system components, files7 and Internet sockets while edges
represent the communication and access links (among them).
In our design, we record file system access as well as access
to Internet sockets in the graph, as edges inserted between,
e.g., a file and an application writing or reading this file.8

Generally, a graph-based representation allows different lev-
els of system abstractions: for instance applications can be
represented at the level of application sandboxes, application
packages, or application components, while communication
links can be seen as directed or undirected edges, thus either
providing exact information about the direction of informa-
tion or control flows or always assuming a bidirectional flow
between graph vertices. Hence, we consider the Android
system as a graph G consisting of a set V(G) of vertices and
a set E(G) of direct edges. An edge e ∈ E(G) is an ordered
pair e = (i; j), where i, j ∈ V: i 6= j.

Graph Vertices. We represent applications at the sandbox
level because applications residing within the same sandbox
have the same privileges, and thus cannot escalate privileges
inside the sandbox9. However, the Android system applica-
tion is an exceptional case and requires a more fine grained
representation. It consists of system services and system
content providers, which, by design, provide overt as well as
covert channels between applications. For instance, applica-
tions can insert data into and read data from system content
providers such as the contacts database (overt channel), or
perform synchronized write-read operations on the settings
of a system service such as the audio manager (covert chan-
nel). Thus, Android can mediate communication of other
applications, and hence we take this into account in our
analysis.

If represented as a single vertex in the graph, Android
would cause transitive closure for many vertices because
many applications access Android (cf. Figure 4a) to get
system services. However, a finer-grained representation
of Android, e.g., at the level of application components
is challenging because Android system application is real-
ized as a monolithic application. To resolve this issue, we

7We do not distinguish files and Unix sockets because Unix domain
sockets have much in common with files (e.g., file system address name
space and access permissions) and can be treated in the same way.

8Alternative approaches may, e.g., rely on theorem solvers such
as Prolog (see [16]). However, our early experiments (with tuProlog
http://alice.unibo.it/xwiki/bin/view/Tuprolog/) showed that a Prolog-based
approach suffers from manageability problems at runtime and induces
user-notable performance overhead.

9The problem of malware comprising a single application or an appli-
cation sandbox is orthogonal to the problem of privilege escalation and is
addressed by previous research, e.g., by Kirin [17].
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introduced two important design extensions (discussed in
more details in our technical report [8]): (i) extraction of
the system content providers and services from the mono-
lithic Android and representing them in the system graph
as virtual nodes, because they are assigned virtual UIDs (cf.
Figure 4b), and (ii) fine-grained policy-based filtering of data
in those providers and services (cf. Section 6). Hence, we
define four types of graph vertices A,S,F , I representing
the set of of application sandboxes, system components, files,
and Internet sockets.

Graph Edges. We define the following three types of
edges: (i) ICC calls M, (ii) file access K, and (iii) Inter-
net sockets/connectionsH. Note that we represent ICC calls
among two application sandboxes and established Internet
connections as bidirectional edges in the graph.While repre-
senting ICC calls with bidirectional edges precludes certain
legitimate communication, this over-approximation is neces-
sary. For instance, ICC calls and Internet connections often
result in bidirectional data-flows, not observable at our level
of system abstraction. Similarly, pending Intents10 obfuscate
the actual data flow in the system graph, such that they are
currently not representable with unidirectional edges. In
contrast, the direction of data flow upon (read/write) access
to files, as well as ICC calls to system components can be
precisely distinguished. Edges inM can connect vertices
representing application sandboxes A and/or system compo-
nents S: ∀e ∈ M: e = (i, j), i, j ∈ A ∪ S, i 6= j. Edges
in K can only connect pairs of vertices, where one vertex is
an application sandbox in A and the other one is a file in F
(ordered pair representing read/write): ∀e ∈ K: e = (i, j),
(i ∈ A, j ∈ F) ∨ (i ∈ F , j ∈ A). Edges that represent In-
ternet connections can only connect pairs of vertices, where
one vertex is an application sandbox and the other one is an
Internet socket ∀e ∈ H : e = (i, j), i ∈ A, j ∈ I. Figure 5
depicts a graph snapshot with all defined types of vertices
and edges.

10The sender of an Intent delegates the insertion of payload to another
app before sending the Intent.
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Vertex Properties. Each vertex V in the system graph G
is assigned the corresponding properties: a unique identifier
U(V ) (i.e., UID for a sandbox, virtual UID for a system
component, path/file name for files and IP address and port
for Internet sockets), and a trust level T (V ) = (true, false)
where we currently distinguish two trust levels: ”untrusted”
are third party applications, while ”trusted” are default An-
droid apps and system components. Moreover, file and In-
ternet socket vertices are also considered as trusted. This is
because files or sockets themselves cannot perform a priv-
ilege escalation attack, but may mediate communication
of malicious applications in the same way as trusted sys-
tem components. Moreover, application sandboxes feature
additional properties, particularly, names of applications in-
cluded in a sandbox (e.g., package names) N (A), a list of
application components for each application C(A), and the
set of granted permissions P(A) to application A.

Path. A path L(v1, vn) = (e1, e2, ..., en−1) in a graph
G between vertices v1 and vn is a sequence of edges
e1 = (v1, v2), e2 = (v2, v3), ..., en−1 = (vn−1, vn), where
e1, ...en−1 ∈ E , vi 6= vj for i, j ∈ 1, ..., n. In other words,
a path is an acyclic sequence of edges connecting vertices.
We define two path properties: (i) a path length, which is
denoted as |L(v1, vn)| = n− 1, and (ii) a set of data D(L)
transmitted through the path.

Privilege escalation on the graph. We define patterns
of privilege escalation attacks by specifying a set of crit-
ical permissions in the system. For instance, gaining of
privileges allowing both to access the Internet and location
information can be defined as an attack pattern correspond-
ing to a location tracker. We denote the critical permissions
set by Z . In a confused deputy attack, an unprivileged ap-
plication A ∈ A can obtain a critical set of permissions
Z by invoking a privileged application B ∈ A, if there
exists a communication path L(A,B). The privilege esca-
lation attack by colluding applications A,B ∈ A can occur,
when there is a communication link L(A,B) ∨ L(B,A) be-
tween two applications, and each individual set of privileges
P(A) and P(B) does not match the critical set of privileges,

while a union of both does so, i.e., Z* P(B)∧ Z* P(A)∧
(Z⊆ (P(A) ∪ P(B))).

5. Policy

Different policy profiles can be created in order to cover
different adversary models and user requirements. For in-
stance, the following profiles can be specified: Default-
Profile, BasicProfile, AdvancedProfile and StrongProfile,
that correspond to adversary models WeakAdversary, Basi-
cAdversary, AdvancedAdversary and StrongAdversary
(defined in Section 3) respectively. DefaultProfile can be
activated by default, in the form of policy rules that help
defend against known confused deputy attacks occurring via
an ICC channel. Furthermore, policy rules could be defined
such that they do not result in false positives (confirmed
by our evaluation results, Section 7) thereby not affecting
usability. This profile can be updated, e.g., by Google, in
form of security patches upon discovery of new attacks. The
profiles BasicProfile, AdvancedProfile and StrongProfile
can be activated by users with higher security requirements
who are willing to tolerate (a small number of) possible false
positives in favor of increased security. For instance, these
profiles can be useful in a corporate context, where an enter-
prise issues mobile devices to its employees and allows them
to use their devices for both private and business purposes.
The company’s system administrators may then have the
possibility of generating custom policy profiles that address
the security requirements of the company.

For expressing policy rules, we define a policy language
inspired by VALID [4], a formal security assurance language
developed for virtualized infrastructure topologies. VALID
has been shown to be effective when validating policies on
graph based models of virtualized infrastructures [5]. It
expresses high-level security goals (policy rules in our termi-
nology) for such environments in the form of attack states.
The language is very suitable for our purposes because it is
capable of expressing operations on graphs, such as infor-
mation flow in a graph model of the underlying topology.
When mapped to our system representation graph (cf. Sec-
tion 4.3), it is used to express system states that describe
privilege escalation attacks. Security goals can then state the
information flow through edges in the graph that could result
in privilege escalation. VALID describes properties of graph
vertices, but is limited in expressing path properties. For our
purposes, we extended VALID to specify path properties,
such as path source, path destination, data transmitted over
the path and so on (cf. Section 4.3).

We illustrate a policy rule to preserve privacy of phone
calls in Figure 6. For instance, we already explained the
attack scenario of Soundcomber [35] in Section 3, which
targets privacy of user phone calls. The rule defines an un-
desirable set of permissions that would allow malware to



Section types:
A,B : Application sandboxes
L(A,B) : Path

Section goals:
goal ProtectCallPrivacy(deny) := L.connects(A,B) ∧ L.type(any) ∧ A.trustLevel(

untrusted) ∧ ¬(A.hasPermission(INTERNET) ∧ (A.hasPermission(
PHONE STATE) ∨ A.hasPermission(PROCESS OUTGOING CALL)) ∧ B.
trustLevel(untrusted) ∧ ¬(B.hasPermission(PHONE STATE) ∨ B.
hasPermission(PROCESS OUTGOING CALL)) ∧ B.hasPermission(
INTERNET)

Figure 6. A policy rule to defeat attacks of
malware monitoring phone calls

record phone calls and transfer recorded data to the Internet.
Further, it only restricts communication between two appli-
cations that do not individually possess the undesirable set of
permissions, but would obtain it when their permission sets
are combined. The applications are not allowed to communi-
cate via any of possible communication channels (direct and
indirect ICC, file system, or a local Internet connection).

Further examples of policies can be found in Appendix B.

6. Implementation

In this section we present the implementation of our archi-
tecture and its main components, as presented in Section 4.2.
Our implementation is based on the Android 2.2.1 sources11.

System View. We implemented the system view graph by
means of the open-source JGraphT12 library, version 0.7.3.
The initial system graph is built upon first boot of the de-
vice. We use the PackageManager to discover installed
applications during the graph building process. In case of
a sandbox that is shared by several applications, the infor-
mation from all these applications with the shared UID is
merged in the corresponding vertex. Vertices that represent
files and Internet sockets are added to the system graph at
runtime, at first access request to the file/socket. To keep
the overhead low, we add only world-wide readable/writable
files to the graph. This is sufficient for our analysis, because
private files cannot be shared by different sandboxes (due to
the Discretionary Access Control of Linux kernel).

To extract system content providers from the monolithic
Android, we extended the ActivityManager of Android.
Usually, the ActivityManager detects and registers all in-
stalled content providers in the system during boot-up. We
extended this process such that the ActivityManager inserts
a vertex for each of them in the graph via an interface of
SystemView. We pre-install vertices that correspond to

11http://source.android.com
12http://www.jgrapht.org/

system services in the graph (as those are known and fixed).
We opted not to use Android’s Service Manager that main-
tains a list of the registered services, because it does not
distinguish system and third party services. Further, we mod-
ified the content providers’ interfaces to prevent colluding
applications from exchanging data over content providers.
Each data row in the database is tagged with the UIDs of the
writers. Upon writing data, these tags are updated. Upon
reading, our extension to the reading interface verifies for
each read row if the corresponding reader-writer pairs con-
stitute a policy violation. If so, the corresponding row is
filtered from the response to the reader before return.

To enforce policy checks within system services, we tag
each value of the service with the UID of the writer. Note,
in contrast to content providers, values in system services
can be only overwritten, thus we store the UID of the last
writer. Tagging of values is implemented as a mapping from
value to writer UID. Upon reading of values, we use a similar
interface as for content providers to perform a policy check
if the reading would trigger a policy violation. If so, a null
value is returned.

Package Manager. We modified the PackageManager
to update the system graph upon installation or uninstallation
of an application package. The installation adds a new vertex
for the new application UID to the graph. In case of shared
UIDs, the information of all applications under this UID are
merged. Application uninstallation causes the removal of the
corresponding vertex. Uninstallation in the case of a shared
UID is slightly more complex, since only the information
added by the uninstalled application has to be removed. We
implemented this by removing the corresponding vertex and
reconstructing it afterwards with the updated application
information.

Policy Decisions. PolicyDecisions stores a boolean for
the decision result of each checked ICC, file access or socket
connection, i.e., granted or denied. It is implemented as a
mapping from distinct ICC to decision result. The index of
the mapping is the unordered tuple {uid caller, uid callee}
for each inserted decision. PolicyDecisions is persistent
across system reboots.

Decision Engine. DecisionEngine implements a policy
checking algorithm, which determines if a new edge in the
system graph would complete a path in SystemView, which
matches a policy rule. The algorithm uses backtracking13 to
explore, in a depth-first search fashion, all paths consisting
only of vertices that match a distinct vertex description in

13Backtracking algorithms incrementally build candidates to the solution
for the targeted problem and abandon partial candidates, when they detect
that this candidate does not lead to a valid solution.



the same policy rule. This procedure is continued until it
finds a path that matches the policy rule exactly. It further
compiles the high-level policy rules (written in our adaption
of VALID [4]) into XML (based on a custom XML schema),
which is more efficiently parsed during policy checking.

Policy Installer and System Policy. The system policy is
implemented in XML, which is loaded upon system boot or
after an update of the policy, respectively. SystemPolicy
is installed or updated via the PolicyInstaller component,
which is implemented as a service running in the middleware
as part of the ActivityManager and provides an authenti-
cated channel in order to externally update the policy.

Reference Monitor. We modified the default Reference-
Monitor of Android (which is a part of ActivityManager) to
redirect the control flow to our DecisionEngine whenever
an ICC occurs. In particular, we wrapped the checkCom-
ponentPermission function with a new function, which first
calls the default checkComponentPermission function and in
case that it would allow the ICC, it invokes DecisionEngine.
To enable the DecisionEngine to make the policy check
on direct ICCs, the wrapper function provides the UIDs of
the caller and callee of the respective ICC as well as the
Intent initiating the ICC to the DecisionEngine. To handle
broadcast Intents, we followed the approach presented in
[33, Section 6]. Each sender-receiver pair is checked for a
policy violation and the broadcast receiver list is adapted
accordingly before sending the broadcast message.

Kernel MAC. To enable mandatory access control at the
kernel level, our implementation employs TOMOYO Linux14

v1.8, a path-based MAC implementation available as a kernel
patch. An alternative to TOMOYO is SELinux [29], a type-
based MAC implementation available as a Linux Security
Module (LSM). However, SELinux enforces MAC by means
of type enforcement which typically requires extended file
attributes to be enabled in the filesystem. Since Android’s
flash file system (YAFFS2) does not support extended file
attributes by default, using SELinux requires prior file sys-
tem modifications. On the other hand, TOMOYO, being a
path-based MAC implementation, does not require any file
system modifications prior to usage. Furthermore, SELinux
is harder to administer on a mobile device due to complex
policy rules that need to be adapted to meet Android’s secu-
rity requirements.

Our choice of TOMOYO over SELinux was primarily
motivated by the fact that the former has a readily available
user-space interface that can be extended in order to provide
a feedback channel between the kernel and the middleware;

14http://tomoyo.sourceforge.jp/

the latter lacks such an interface thereby precluding commu-
nication between the kernel and the middleware. To enable
communication between the two layers, we wrote a native
library with access to TOMOYO’s interfaces and compiled
it against the Java Native Interface (JNI). In order to enable
runtime policy updates, we extended an interface of TO-
MOYO which allows it to seek a decision from a supervisor
(e.g., our DecisionEngine). Further, to make the Android
middleware understand what TOMOYO is asking for and
vice-versa, we implemented a parser function in Java. To
enable the middleware to make a decision at runtime, TO-
MOYO passes the UID of the process making a system call
along with details pertaining to the call itself, e.g., path of file
to be read. The middleware’s DecisionEngine processes
the request and conveys its decision to TOMOYO.

It is important to note that the TOMOYO kernel boots
with a carefully written security policy catered for Android.
This policy file is TOMOYO specific and is loaded in the
kernel memory during device boot. On intercepting a system
call post device boot, TOMOYO inspects its internal policy
file to see if there is a policy rule that allows the system call
to proceed normally. If yes, the request is granted without
querying the DecisionEngine (in the middleware). If no,
TOMOYO queries the DecisionEngine for a decision on
the request made. If the DecisionEngine deems it safe to
grant the request, it conveys the same to TOMOYO. There
are two ways in which the DecisionEngine could relay a
grant decision: (1) It could simply request TOMOYO to
allow the specific system call to proceed normally, or (2)
It could in addition to (1) request TOMOYO to add the
decision to TOMOYO’s policy file. Such a flexibility allows
our framework to reduce the number of context switches
between the middleware and the kernel which in turn reduces
the performance overhead that could result from frequent
context switches.

7. Evaluation

We begin this section with a heuristic study of commu-
nication patterns between third party applications that, in
part, motivated our design decisions. Subsequently, we pro-
vide test results on effectiveness and performance of our
framework and discuss challenges and problems therein.

Test methodology. As methodology for our evaluation, we
opted for manual testing with a group of 25 test users, as
automated testing of mobile phone applications has been
shown to exhibit a very low execution path coverage (ap-
proximately 40% in average and only 1% in worst case [22]).
With respect to this limitation, we argue that 50 selected
applications from different market categories (e.g., games or
social tools) form a representative testing set. The test users’
task was to install and thoroughly use the provided apps, to



trigger as much as possible of the apps’ features and with
interleaving installation, uninstallation, and usage.

7.1. Study of 3rd Party Application Communication

We performed a heuristic analysis of the communication
patterns between third party applications from the Android
Market. A graphical representation of our results is given in
Appendix C, and at this point, we present our main obser-
vations and thereby motivate our design decisions (cf. Sec-
tion 4).

File system and socket based communications. Fig-
ure 10 in Appendix C depicts the observation that the appli-
cations we tested neither share their data with other appli-
cations at the file system level, nor communicate with each
other via Unix domain sockets. Consequently, an attack vec-
tor that uses files or Unix sockets as communication medium
could be easily identified making it easier to prevent such
an attack. To effectively prevent this attack vector, a kernel-
level MAC is required, since applications can make use of
native code which circumvents any security mechanisms in
Android’s middleware (cf. Section 2).

Moreover, since legitimate applications are far less likely
to communicate this way, the rate of falsely denied commu-
nications is expected to be low. To illustrate this point, we
developed sample apps that use a Unix socket or a file for
communication and this pattern is clearly distinguishable
from other applications.

ICC based communication. Our observation regarding
ICC based communication shows that applications usually
operate autonomously and do not have functional interde-
pendencies with other applications. Exceptions are custom
launcher applications which start the Activities of other apps
and apps with a “share with” functionality that receive data
from other apps for sharing (e.g., Facebook, Twitter etc.)
The usual way for apps to share data is (System) Content
Providers.

Our design accurately addresses this communication pat-
tern, since (1) it implements a very fine-grained policy en-
forcement in the system components, and (2) direct commu-
nication between apps, which is the main target of generic
system policy rules, occurs seldom and if so, with a very
distinct pattern (start Activity or share with).

7.2. Effectiveness

We evaluated the effectiveness of our solution based on
the detection rate of attacks specified in the system policy
(i.e., the false negative rate) and the rate of falsely denied
communications between applications (i.e., false positive

rate). An ideal solution would provide both a zero false neg-
ative and zero false positive rate. Our current instantiation
applies over-approximation of communication links, except
for Intents (cf. Section 4.3). This means that it assumes a
relation between communication channels where none might
exist, e.g., it has no false negatives but tends to cause false
positives.

Attack detection rate. To evaluate the detection rate of
privilege escalation attacks, we developed sample applica-
tions that implement the attacks described in [35, 20, 16, 12]
and deployed a system policy that contained rules targeting
these attacks (see Table 3 in Appendix B). Our framework
successfully detected all of the above mentioned attacks at
ICC, socket, and file system level, including all the attack
scenarios of Soundcomber [35] launched via covert chan-
nels in Android system components and a file based covert
channel.

Falsely denied communication rate. We evaluated with
our user test the impact of our security framework on the
usability of third party applications. During this test, in ad-
dition to the policy rules from the attack detection test, we
deployed generic rules to prevent the leakage of sensitive
information like the device location, contacts, or SMS via
the Internet. Moreover, we deployed a singular rule that
allows applications to launch other applications with an In-
tent if and only if the Intent does not contain any additional
data/information (see rule 12 from Appendix B)15.

To our surprise, the results of our tests showed no false
positives. This is on the one hand counter-intuitive, since
the policy rules of the AdvancedProfile and the StrongPro-
file are rather generic and are indicative of a higher rate of
false positives. On the other hand, this result confirms our
observations and conclusions on the communication patterns
between third party applications on Android (cf. Section 7.1).

7.3. Performance

Our solution imposes only a negligible runtime overhead,
not perceivable by the user. Tables 1 and 2 present our
measurement results. In particular, as Table 1 shows, our
framework performs quite steadily in terms of a very low
standard deviation; the runtime system call latency is low
considering the ratio of cached to uncached decisions. Only
the overhead on intent messages cannot be optimized through
caching. However, in our ongoing work we implemented a
higher efficient and faster system-centric ICC call-chaining
based on modifications to the Binder mechanism instead of
only Intents.

15Note, data-less Intents can be used by the adversaries to establish
covert communication. Thus, StrongProfile should include less generic
exceptional rules which, e.g., additionally specify application names.



Type Calls Average Std. dev.
(ms) (ms)

Original Reference Monitor runtime for ICC
system 11003 0.184 2.490
DecisionEngine overhead for ICC
uncached 312 6.182 9.703
cached 10691 0.367 1.930
Intents 1821 8.621 29.011
DecisionEngine overhead for file read
file read 389 3.320 4.088

Table 1. ICC timing results

Type Average Std. dev.
(ms) (ms)

Read access to System Content Providers
total number of accesses: 591
read 10.317 41.224
overhead 4.983 36.441
Read access to System Services
total number of accesses: 87
read 8.578 20.241
overhead 0.307 0.4318

Table 2. Timing results for system components

On read access to System Content Providers (Table 2), the
filtering of values conflicting with system policy imposes an
overhead of approximately 48%. On read access to System
Services, the overhead is merely about 2.4% on average.
This discrepancy stems from the fact that, on read access to
Content Providers, usually multiple reader-writer pairs have
to be checked, while access to System Services involves only
one reader-writer pair.

7.4. Impact on 3rd party applications’ usability

Although we did not observe any false positives in our
tests, any falsely denied communications must be avoided,
because they can have a severe impact on the usability of the
smartphone. Denying applications ICC that was expected to
be successful, most likely renders these application dysfunc-
tional. Moreover, application developers do not anticipate
this situation, since installed applications have been granted
all the requisite permissions, and thus often omit exception
handling code, causing applications to crash in case their
ICC call is denied.

This problem applies to all approaches based on revoking
permissions at post-install time or on denying ICC at run-
time, as we will explain in Section 8 on related work. It is
particularly hard to solve for situations where one cannot
clearly distinguish between a confused deputy attack and
a legitimate user action, e.g., when an app that provides a
“share with” functionality receives an Intent to share data or
when the browser is called to open a particular URL.

In our solution, we strive for minimizing the number of
false positives by (1) decomposing the monolithic Android
into distinct services and content providers in our system
graph and (2) by performing a heuristic analysis of the com-
munications patterns of applications. The former one facil-
itates a more fine-grained policy check on access to data
shared via system components, while the latter is used to
refine the policy design.
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Figure 7. Security extensions for Android

8. Related Work

Figure 7 shows security extensions for Android that have
been proposed in the past. Since most proposed solutions
require changes to Android’s middleware, we highlighted
the main middleware components such as the application
installer, the reference monitor, the permission database, and
the Dalvik virtual machine. Each solution requires extension
to one or more components, as we shall describe in the
following paragraphs.

As Figure 7 shows, several security extensions to An-
droid’s security framework have been proposed over the last
few years [16, 17, 33, 36, 30, 14, 11, 32, 34]. However, not
all of them target privilege escalation attacks: Porscha [32]
provides policy-oriented secure content handling; Apex [30]
allows users to selectively grant and deny permissions at
install time; CRePE [11] enables the enforcement of context-
related policies; Paranoid Android (PA) [34] aims to detect
viruses and runtime attacks. Finally, several static analysis
tools have been proposed that mainly aim to detect vulnera-



ble application interfaces [10, 15] or analyze if applications
follow the least-privilege principle [19].

Hence, in the following paragraphs, we shall discuss the
strengths and shortcomings of security extensions that are
closest to ours.

Kirin is an extension to Android’s application in-
staller [16, 17]. Kirin checks the permissions requested
by applications at install-time. It denies the installation of an
application if the permissions requested by the application
encompass a set of permissions that violates a given system-
centric policy. The main security goal of Kirin is to mitigate
malware contained within a single application. In addition,
the Kirin framework described in [16] also allows identifica-
tion of security-critical communication links by analyzing
which interfaces the new application is authorized to contact.
However, due to its static nature, Kirin has to consider all po-
tential communication links over the unprotected interfaces.
This will stop any application from being installed, since ap-
plications can potentially establish arbitrary communication
links over the unprotected interfaces. In contrast to Kirin,
our framework (1) focuses on real (runtime) communication
links rather than potential ones, (2) decides at runtime if the
link (including communications over unprotected interfaces)
to be established violates the system policy.

Saint [33] introduces a fine-grained access control model
that allows application developers to attach security policies
to their applications, in particular, to the application’s in-
terfaces. It enforces security decisions based on signatures,
configurations and contexts (e.g., phone state or location),
while security decisions themselves are enforced both at
install-time and at runtime. In order to prevent confused
deputy attacks, developers have to assign appropriate se-
curity policies on each interface, i.e., they have to specify
which permissions/configuration/signature the caller is re-
quired to have in order to access an interface. However,
if the incentives behind these policies protecting the callee
conflict with the properties of the calling application, ICC
is denied leading to the problem of caller malfunction or
crash as explained in Section 7.4. Moreover, since appli-
cation developers have to define these policies themselves,
they might fail to consider all security threats. Finally, Saint
does not address malicious developers, who will not deploy
Saint policies for the obvious reason that they might want
to mount a collusion attack. By contrast, our framework
deploys a system-centric solution which is also applied to
malicious colluding applications, and enforces its policies at
the file-system and network layer as well.

QUIRE [13] is a recent Android security extension which
provides a lightweight provenance system to prevent con-
fused deputy attacks via Binder IPC. In order to determine
the originator of a security-critical operation, QUIRE tracks
and records the IPC call chain, and denies the request if the
originating application has not been assigned the correspond-

ing permission. Additionally, QUIRE extends the network
module residing in the Android Linux kernel to verify the
provenance of remote procedure calls (RPCs) when they aim
to leave the device. However, similar to Saint, QUIRE is
application-centric-applications forward and propagate the
IPC call chain themselves. Due to its application-centric
nature, QUIRE cannot prevent colluding applications, be-
cause they may drop the IPC call chain and act on their own
behalf, and hence, circumvent QUIRE’s defense mechanism.
Furthermore, the unexpected denial of access by the receiver
of the call chain might lead to application dysfunction/crash
on the caller’s side (cf. Section 7.4).

IPC Inspection [20] is a very recent work that is similar
to QUIRE and tackles confused deputy attacks via Binder
IPC. IPC Inspection reduces the permissions of an applica-
tion when it receives a message from a less privileged one.
In contrast to our framework, IPC Inspection does not re-
quire a policy framework, and hence, can prevent unknown
attacks without the deployment of appropriate policies. How-
ever, IPC Inspection does not provide a solution against
maliciously colluding applications. Although the receiver’s
permissions are reduced to the sender’s permissions, the indi-
vidual application instances at the receiver’s side still reside
in one sandbox and thus are not properly isolated from each
other and can communicate freely. Moreover, IPC Inspec-
tion will induce a significant performance overhead, because
it requires the maintenance of multiple application instances
with different sets of privileges. An open question here
is: how is permission reduction performed for permissions
that are controlled by the underlying Linux discretionary ac-
cess control (DAC) system rather than Android’s reference
monitor (e.g., Internet or Bluetooth)? Further, applications
executing with an unexpectedly reduced permission set are
very likely to crash (cf. Section 7.4). This issue could be
tackled over-privileging applications that crash. However,
doing so makes the framework incompatible with legacy
applications, while in our framework we only require policy
adjustment.

TaintDroid [14] is a framework which detects unautho-
rized leakage of sensitive data. TaintDroid exploits dynamic
taint analysis in order to label privately declared data with
a taint mark, audit on-track tainted data as it propagates
through the system, and warn the user if tainted data aims
to leave the system at a taint sink (e.g., network interface).
TaintDroid is able to detect data leakage attacks potentially
initiated through a privilege escalation attack. However,
TaintDroid mainly addresses data flows, whereas privilege
escalation attacks also involve control flows. Its authors
mention that tracking the control flow with TaintDroid will
likely result in much higher performance penalties. More-
over, since TaintDroid only detects leakage, it would require
some policy-based framework on top to distinguish between
authorized and malicious data leakage, as done in AppFence



that is discussed below.
AppFence [27] builds upon and extends the current Taint-

Droid framework by allowing users to transparently enable
privacy control mechanisms. In particular, AppFence tackles
the usability problem when permissions are revoked from
applications, e.g., it provides faked or blank data when appli-
cations access content providers they should not be allowed
to access. Nevertheless, like TaintDroid, AppFence provides
no means to detect privilege escalation attacks beyond data
leakage attacks.

SELinux on Android [36] presents a prototype imple-
mentation of SELinux on an Android device. Although this
work argues for an SELinux-based solution to Android’s se-
curity vulnerabilities at the kernel level, it does not attempt to
provide a solution for the same. Furthermore, the prototype
presented in [36] lacks a coordination mechanism between
the Linux kernel and the Android middleware. During the
course of our work, we realized that such a coordination
mechanism is crucial to bridging a semantic gap between the
two layers: namely Linux kernel and Android middleware.
Our TOMOYO-based solution not only proposes a solution
against attacks employing kernel-level channels such as files
and sockets, but also enables communication between the
kernel and the middleware so that the former can query the
latter in case the former does not have sufficient information
to take a security decision at runtime.

TrustDroid [9] is a recent security extension to Android
that aims to provide domain isolation, typically between a
business domain and a private domain. Thus, TrustDroid
builds on a pre-determined basis for classifying applications
at install time. On the other hand, our work offers a more
generic solution against privilege escalation attacks. Since
there is no pre-determined basis to classify applications as in
the case of TrustDroid, access control in our solution is more
dynamic (requiring decisions to be made on the basis of
application behaviour e.g., files read/written), and is carried
out at run-time.

Orthogonal Security Frameworks. The framework we
presented in this paper is built upon former research on oper-
ating system security. First, our work relates to stack inspec-
tion (e.g., [37]), a security mechanism that enforces access
decisions by inspecting the call chain of a request. This is
also along the lines of QUIRE [13]; our framework tracks the
call chain in a system-centric way. Further, our framework is
related to the chinese-wall (CW) security model [7]: If a sub-
ject aims to access an object then the CW model grants/deny
the access based on what the subject has already accessed
in the past. The overall goal is to prevent information flow
between objects sharing the same conflict of interest class.
Similarly, our framework enforces access decisions on what
the IPC caller accessed in the past.

9. Conclusion

In this paper, we address the problem of confused deputy
and collusion attacks on Android. We propose the design
and implementation of a practical security framework for
Android that monitors application communication channels
in Android’s middleware and in the underlying Linux kernel
(namely, IPC, file system, Unix domain and Internet sockets)
and ensures that they comply with a system-centric secu-
rity policy. We propose several adversary models, define
confused deputy and collusion attacks based on a graph-
based representation of our security framework and analyze
typical communication patterns of Android applications by
means of a heuristic study. Our design accurately addresses
our observations, as it implements a very fine-grained pol-
icy enforcement in the system components, which are the
primary means for applications to share data. Inspired by
QUIRE[13], we integrate Intent tagging techniques into our
system (but in a system-centric way) in order to increase
the precision of our analysis. Moreover, a novelty of our
prototype is the runtime interaction between our security
extensions to the Android middleware and TOMOYO Linux,
allowing for dynamic runtime policy mapping from the se-
mantically rich middleware to the kernel. Our evaluation
results show that our framework is efficient, effective and
usable. It can prevent recently published privilege escalation
attacks [16, 12, 20, 35], including sophisticated attacks such
as Soundcomber [35] launched via covert channels in the
Android system components.

For our future work, we plan extensive user tests of our
security framework using a large number of applications
from the Android market. Furthermore, we aim to continue
our current work on performing system-wide ICC call-chain
verification at the Binder level. Finally, we would like to
examine how we can integrate SELinux into our security
framework.
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Appendix A List of tested applications

The Android applications that we tested are the follow-
ing: Android System Info, Angry Birds, Android Script-
ing Environment, Blast Monkeys, Bluetooth File Transfer,
Bubbles, Cheech and Chong, Chess Free, ColorNote, Com-
pass, Contact Adder, Daum Maps, Documents To Go, ES
File Explorer, Facebook, Fede Launcher, First Aid, fring,
GO Contacts, Google Chrome to Phone, Google Goggles,
Google Plus, Google Sky Map, Google Talk, Google Trans-
late, Hello Kitty, Hopstop, HowStuffWorks, Human Body
Facts, Jewels, K9 Mail, last.fm, Meebo, Mobile Andrio, Mu-
sical Lite, Öffi, Opera Mini, PagesJaunes, Paper Toss, Qik
Video, ESPN ScoreCenter, Talking Tom, Task Manager, The
Three Stooges, Time2Hunt, Twitter and Urban Dictionary.

Appendix B System Policy

In the following we provide policy rules applied for test-
ing. These rules are grouped into five categories: Default-
Rules, BasicRules, AdvancedRules, StrongRules and
ExceptionalRules. DefaultProfile includes policy rules of
category DefaultRules, BasicProfile includes policy rules
of category DefaultRules and BasicRules, AdvancedPro-
file includes rules of category DefaultRules, BasicRules
and AdvancedRules, while StrongProfile includes policy
rules of all categories. ExceptionalRules are exceptional
cases from more general rules defined in the system.

We informally describe each rule in Table 3 and further
provide definition of these rules in the policy language (Fig-
ure 8).

Appendix C Communication graphs

Figure 9 illustrates visualization of the ICC based com-
munication among third party apps and the Android system
during our user tests. Figure 10 visualizes the file system
and socket accesses by third party apps during testing.



Default rules
(1) A third party application that has no permission CALL PHONE can invoke Phone system application only if data transmitted contains

android.intent.action.DIAL parameter (that enforces user confirmation)
[16]

(2) A third party application that has no WAKE LOCK permission must not be able to invoke DeskClock system application to play an
alarm

[20]

(3) A third party application that has no WAKE LOCK permission must not be able to invoke Music system application to play music [20]
(4) A third party application that has no CHANGE WIFI STATE permission must not be able to invoke Settings system application to

toggle WiFi state
[20]

(5) A third party application that has no ACCESS FINE LOCATION permission must not be able to invoke Settings system application to
toggle GPS location state

[20]

(6) A third party application that has no BLUETOOTH ADMIN permission must not be able to invoke Settings system application to
toggle Bluetooth state

[20]

Basic rules
(7) A third party application that has no SEND SMS permission must not be able to contact Android Scripting Environment (ASE) appli-

cation
[12]

Advanced rules
(8) A third party application with permission ACCESS FINE LOCATION must not communicate to a third party application that has

permission INTERNET
(9) A third party application that has permission READ CONTACTS must not communicate to a third party application that has permission

INTERNET
(10) A third party application that has permission READ SMS must not communicate to a third party application that has permission

INTERNET
Strong rules

(11) A third party application that has permissions RECORD AUDIO and PHONE STATE or PROCESS OUTGOING CALLS must not
directly or indirectly communicate to a third party application with permission INTERNET

[35]

Exceptional rules
(12) A third party application is allowed to start a system or a third party applications by sending an Intent, if this Intent does not include

any additional information

Table 3. Policy rules applied during testing

Section types:
A,B: Application sandboxes
L: Path

Section goals:
goal ProtectDialer(deny) := L.hasSource(A) ∧ L.hasDestination(B) ∧ L.type(ICC.direct) ∧ ¬(L.hasActionString(android.internet.action.DIAL)) ∧ A.trustLevel(untrusted) ∧ ¬

(A.hasPermission(CALL PHONE)) ∧ B.trustLevel(trusted) ∧ B.name(com.android.phone)

goal ProtectDeskClock(deny) := L.hasSource(A) ∧ L.hasDestination(B) ∧ L.type(ICC.direct) ∧ L.hasActionString(com.android.deskclock.ALARM ALERT) ∧ L.
hasExtraData(intent.extra.alarm) ∧ A.trustLevel(untrusted) ∧ ¬(A.hasPermission(WAKE LOCK)) ∧ B.trustLevel(trusted) ∧ B.name(com.android.deskclock)

goal ProtectMusic(deny) := L.hasSource(A) ∧ L.hasDestination(B) ∧ L.type(ICC.direct) ∧ A.trustLevel(untrusted) ∧ ¬(A.hasPermission(WAKE LOCK)) ∧ B.trustLevel(
trusted) ∧ B.name(com.android.music) ∧ B.component(com.android.music.MediaPlaybackService)

goal ProtectSettingsWiFi(deny) := L.hasSource(A) ∧ L.hasDestination(B) ∧ L.type(ICC.direct) ∧ L.hasCategory(Intent.CATEGORY ALTERNATIVE) ∧ L.hasData(0:0#0) ∧
A.trustLevel(untrusted) ∧ A.hasPermission(CHANGE WIFI STATE) ∧ B.trustLevel(trusted) ∧ B.name(com.android.settings) ∧ B.component(com.android.settings.
widget.SettingsAppWidgetprovider)

goal ProtectSettingsLocation(deny) := L.hasSource(A) ∧ L.hasDestination(B) ∧ L.type(ICC.direct) ∧ L.hasCategory(Intent.CATEGORY ALTERNATIVE) ∧ L.hasData(3:3#3)
∧ A.trustLevel(untrusted) ∧ ¬(A.hasPermission(ACCESS FINE LOCATION)) ∧ B.trustLevel(trusted) ∧ B.name(com.android.settings) ∧ B.component(com.android.

settings.widget.SettingsAppWidgetprovider)

goal ProtectSettingsBluetooth(deny) := L.hasSource(A) ∧ L.hasDestination(B) ∧ L.type(ICC.direct) ∧ L.hasCategory(Intent.CATEGORY ALTERNATIVE) ∧ L.hasData
(4:4#4) ∧ A.trustLevel(untrusted) ∧ ¬(A.hasPermission(BLUETOOTH ADMIN)) ∧ B.trustLevel(trusted) ∧ B.name(com.android.settings) ∧ B.component(com.
android.settings.widget.SettingsAppWidgetprovider)

goal ProtectASE(deny) := L.connects(A,B) ∧ L.type(Internet) ∧ A.trustLevel(untrusted) ∧ ¬(A.hasPermission(SEND SMS)) ∧ B.trustLevel(untrusted) ∧ B.name(ASE)

goal PreventLocationLeackage(deny) := L.connects(A,B) ∧ L.type(ICC.direct) ∧ A.trustLevel(untrusted) ∧ A.hasPermission(ACCESS FINE LOCATION) ∧ B.trustLevel(
untrusted) ∧ B.hasPermission(INTERNET)

goal PreventContactsLeackage(deny) := L.connects(A,B) ∧ L.type(ICC.direct) ∧ A.trustLevel(untrusted) ∧ A.hasPermission(READ CONTACTS) ∧ B.trustLevel(untrusted) ∧
B.hasPermission(INTERNET)

goal PreventSMSLeackage(deny) := L.connects(A,B) ∧ L.type(ICC.direct) ∧ A.trustLevel(untrusted) ∧ A.hasPermission(READ SMS) ∧ B.trustLevel(untrusted) ∧ B.
hasPermission(INTERNET)

goal ProtectCallPrivacy(deny) := L.connects(A,B) ∧ L.type(any) ∧ A.trustLevel(untrusted) ∧ ¬(A.hasPermission(INTERNET) ∧ (A.hasPermission(PHONE STATE) ∨ A.
hasPermission(PROCESS OUTGOING CALL)) ∧ B.trustLevel(untrusted) ∧ ¬(B.hasPermission(PHONE STATE) ∨ B.hasPermission(PROCESS OUTGOING CALL)
) ∧ B.hasPermission(INTERNET)

goal AllowApplicationLaunch(allow) := L.hasSource(A) ∧ L.hasDestination(B) ∧ L.type(ICC.direct) ∧ L.hasActionString(android.intent.action.MAIN) ∧ L.hasCategory(
android.intent.category.LAUNCHER) ∧ A.trustLevel(untrusted) ∧ (B.trustLevel(trusted) ∨ B.trustLevel(untrusted))

Figure 8. Policy rules used for testing expressed in a policy language



Figure 9. Visualization of the ICC based communication during user tests. Selected System Services
and Content Providers are illustrated as separate nodes

Figure 10. Visualization of file system and socket access by third party apps. Grey nodes represent
benign applications, red nodes represent colluding applications, black nodes represent files and
blue nodes represent sockets. On the bottom left are two examples of colluding applications: one
pair of apps (WriteSD and ReadSD) collude by means of a shared file on the SDcard, while another
pair (LocalSocket Client and LocalUnixSocket Server) collude using a socket in a client-server model


