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Abstract

Runtime and control-flow attacks (such as code injec-
tion or return-oriented programming) constitute one of the
most severe threats to software programs. These attacks
are prevalent and have been recently applied to smartphone
applications as well, of which hundreds of thousands are
downloaded by users every day. While a framework for
control-flow integrity (CFI) enforcement, an approach to
prohibit this kind of attacks, exists for the Intel x86 plat-
form, there is no such a solution for smartphones.

In this paper, we present a novel framework, MoCFI
(Mobile CFI), that provides a general countermeasure
against control-flow attacks on smartphone platforms by en-
forcing CFI. We show that CFI on typical smartphone plat-
forms powered by an ARM processor is technically involved
due to architectural differences between ARM and Intel x86,
as well as the specifics of smartphone OSes. Our framework
performs CFI on-the-fly during runtime without requiring
the application’s source code. For our reference implemen-
tation we chose Apple’s iOS, because it has been an attrac-
tive target for control-flow attacks. Nevertheless, our frame-
work is also applicable to other ARM-based devices such
as Google’s Android. Our performance evaluation demon-
strates that MoCFI is efficient and does not induce notable
overhead when applied to popular iOS applications.

1. Introduction

Although control-flow (or runtime) attacks on software
are known for about two decades, they are still one of
the major threats to software today. Such attacks com-
promise the control-flow of a vulnerable application during
runtime based on diverse techniques (e.g., stack- or heap-

based buffer overflows [4, 5], uncontrolled format strings
vulnerabilities [23], or integer overflows [9]). Many current
systems offer a large attack surface, because they still use
software programs implemented in unsafe languages such
as C or C++. In particular, modern smartphone platforms
like Apple’s iPhone and Google’s Android have recently be-
come appealing attack targets (e.g., [25, 34, 26, 27, 44, 32])
and increasingly leak sensitive information to remote adver-
saries (e.g., the SMS or contacts database [26, 32]).

A general approach to mitigate control-flow attacks is the
enforcement of control-flow integrity (CFI) [1]. This tech-
nique asserts the basic safety property that the control-flow
of a program follows only the legitimate paths determined
in advance. If an adversary hijacks the control-flow, CFI en-
forcement can detect this divagation and prevent the attack.
In contrast to a variety of ad-hoc solutions, CFI provides a
general solution against control-flow attacks. For instance,
to detect conventional return-oriented programming attacks
one can check every return instruction the program is ex-
ecuting [12, 21, 16], but recent results show that return-
oriented programming without returns is feasible on both
x86 and ARM [11]. Moreover, CFI provides stronger pro-
tection than recent ASLR (address space layout randomiza-
tion) mainly due to the fact that existing randomization re-
alizations are often vulnerable to brute-forcing [39] or leak
sensitive information about the memory layout [41]. Sur-
prisingly, and to the best of our knowledge, there exist no
CFI framework for smartphone platforms.

In this paper, we present the design and implementa-
tion of MoCFI (Mobile CFI), a CFI enforcement frame-
work for smartphone platforms. Specifically, we focus on
the ARM architecture since it is the standard platform for
smartphones, and there is currently no smartphone avail-
able deploying an x86-based processor [28]. The imple-
mentation of CFI on ARM is often more involved than on
desktop PCs due to several subtle architectural differences



that highly influence and often significantly complicate a
CFI solution: (1) the program counter is a general-purpose
register, (2) the processor may switch the instruction set at
runtime, (3) there are no dedicated return instructions, and
(4) control-flow instructions may load several registers as a
side-effect.

Although our solution can be deployed to any ARM
based smartphone, we chose Apple’s iPhone for our refer-
ence implementation because of three challenging issues:
First, the iPhone platform is a popular target of control-flow
attacks due to its use of the Objective-C programming lan-
guage. In contrast, Android is not as prone to control-flow
attacks because applications are mainly written in the type-
safe Java programming language. Second, iOS is closed-
source meaning that we can neither change the operating
system nor can we access the application’s source code.
Third, applications are encrypted and signed by default.

Contribution. To the best of our knowledge, MoCFI is
the first general CFI enforcement framework for smart-
phone platforms. Solutions like NativeClient (NaCl) for
ARM [37] only provide a compiler-generated sandbox and
are unsuitable for smartphones. NaCl needs access to
source code and currently does not support 16-Bit THUMB
code which is typically used in modern smartphone apps.
In contrast, our solution operates on binaries and can be
transparently enabled for individual applications. MoCFI
allows us to retrofit CFI onto smartphone applications with
commonly unavailable source code. Note that a compile-
time solution would be specific to a single compiler, and
Apple currently supports two compilers (LLVM and GCC).
Hence, compiler-solutions are typically not suitable in prac-
tice, since neither the end-user nor the App store maintainer
can recompile the application.

To this end, we first implemented a system to recover the
control-flow graph (CFG) of a given iOS application in bi-
nary format. In particular, we extend PiOS [19] (a data-flow
analysis framework) to generate the CFG. Based on this in-
formation, we perform control-flow validation routines that
are used during runtime to check if instructions that change
the control-flow are valid. Our prototype is based on library
injection and in-memory patching of code which is com-
patible to memory randomization, static code signing, and
encryption. Finally, our approach only requires a jailbreak
for setting a single environment variable, installing a shared
library, and allowing our library to rewrite the application
code during load-time.

For performance evaluation, we measured the overhead
MoCFI introduces as well the average overhead for typi-
cal applications and worst-case scenarios. The evaluation
shows that our implementation is efficient. Moreover, we
proved the effectiveness by constructing a control-flow at-
tack that uses return-oriented programming [38, 10, 20, 24,

30, 11] and techniques similar to GOT (Global Offset Ta-
ble) dereferencing [46, 22], which our tool can successfully
prohibit.

Outline. The remainder of this paper is organized as fol-
lows: after briefly recalling the ARM architecture and the
iOS smartphone operating system in Section 2, we present
the problem of modern control-flow attacks, the original
concept of CFI, and technical challenges when applying
CFI to smartphones in Section 3. Afterwards, we present
the design and implementation of MoCFI in Section 4
and 5. In Section 6 we discuss the security of MoCFI and
current limitations. We present performance measurements
in Section 7, summarize related work in Section 8, and con-
clude the paper in Section 9.

2. Background

In this section, we present a brief overview of the rele-
vant aspects of the ARM processor architecture and the iOS
operating system that are closely related to our work.

2.1. ARM Architecture

ARM features a 32 bit processor and sixteen general-
purpose registers r0 to r15, where r13 is used as stack
pointer (sp) and r15 as program counter (pc). Further-
more, ARM maintains the so-called current program status
register (cpsr) to reflect the current state of the system
(e.g., condition flags, interrupt flags, etc.). In contrast to In-
tel x86, machine instructions are allowed to directly operate
on the program counter pc (EIP on x86).

In general, ARM follows the Reduced Instruction Set
Computer (RISC) design philosophy, e.g., it features ded-
icated load and store instructions, enforces aligned memory
access, and offers instructions with a fixed length of 32 bits.
However, since the introduction of the ARM7TDMI mi-
croprocessor, ARM provides a second instruction set called
THUMB which usually has 16 bit instructions, and hence, is
suitable for embedded systems with limited memory space.

The ARM architecture procedure call standard (AAPCS)
document specifies the ARM calling convention for func-
tion calls [8]. In general, a function can be called by a
BL (Branch with Link) or BLX (Branch with Link and
eXchange) instruction. BLX additionally allows indirect
calls (i.e., the branch target is stored in a register), and
the exchange (“interworking”) from ARM to THUMB code
and vice versa. Both instructions have in common that they
store the return address (which is simply the instruction suc-
ceeding the BLX/BL) in the link register lr (r14). In order
to allow nested function calls, the value of lr is usually
pushed on the stack when the called function is entered.



Function returns are simply accomplished by loading the
return address to pc. Any instruction capable of loading
values from the stack or moving lr to pc can be used as
return instruction. In particular, ARM compilers often use
“load multiple” instructions as returns meaning that the in-
struction does not only enforce the return, but also loads
several registers, e.g., POP {R4-R7,PC} loads R4 to R7
and the program counter with new values from the stack.

2.2. Selected Security Features of Apple iOS

Apple iOS is a closed and proprietary operating system
designed for mobile Apple devices such as iPhone, iPad,
and iPod Touch. A remarkable security feature of iOS is
that only binaries and libraries signed by Apple are allowed
to execute, which reduces the attack surface for malicious
software. Furthermore, Apple only signs applications after
inspecting the code. However, Apple provides no informa-
tion how code inspection is enforced. Further, Apple only
has access to the application binary (and not to the actual
source code).

Since iOS v2.0, Apple enables the W ⊕ X (Writable
xor eXecutable) security model, which basically marks a
memory page either writable or executable. W ⊕ X pre-
vents an adversary from launching a code injection attack,
e.g., the conventional stack buffer overflow attack [4]. Fur-
thermore, iOS deploys dynamic code signing enforcement
(CSE) at runtime [49] to prevent the injection of new (mali-
cious) code. In contrast to systems that only enable W ⊕X
(e.g., Windows or Linux), CSE on iOS prevents an appli-
cation from allocating new memory (e.g., via mprotect)
marked as executable. On the other hand, CSE at runtime in
conjunction with W ⊕ X has practical drawbacks because
it does not support self-modifying code and code generated
by just-in-time (JIT) compilers. Therefore, iOS provides the
so-called dynamic-codesigning entitlement that allows ap-
plications to generate code at runtime. At the time of writ-
ing, only the Mobile Safari Browser and full-screen web ap-
plications are granted the dynamic-codesigning entitlement.
However, a very recent attack demonstrates that the current
CSE implementation is vulnerable allowing an adversary to
apply the dynamic-codesigning to arbitrary market applica-
tions [36]. Moreover, neither CSE at runtime nor W ⊕ X
can prevent return-oriented programming attacks that only
leverage existing and signed code pieces.

To detect stack-based buffer overflow attacks, iOS de-
ploys the Stack-Smashing Protector (SSP). Basically, SSP
uses canaries, i.e., guard values that are placed between lo-
cal variables and control-flow information to detect simple
stack smashing attacks. Moreover, SSP features bounds-
checking for selected critical functions (like memcpy and
strcpy) to ensure that their arguments will not lead to
stack overflows. However, bounds-checking is only per-

formed for a limited set of functions and SSP cannot de-
tect heap overflows or any other control-flow attack beyond
stack smashing.

A very recent feature of iOS (since iOS v4.3) is address
space layout randomization (ASLR). Basically, ASLR ran-
domizes the base addresses of libraries and dynamic areas
(such as stack and heap) thereby preventing an adversary
from guessing the location of injected code (or useful li-
brary sequences). However, it has been shown that exist-
ing randomization realizations are vulnerable to various at-
tacks [39, 41, 13]. In addition, we present an own developed
iOS exploit (see Appendix B) that successfully circumvents
ASLR on iOS.

3. Problem Description

In the following, we discuss the problem of modern
control-flow (runtime) attacks, present the basic idea of
control-flow integrity (CFI), and finally elaborate on the
technical obstacles to overcome when designing CFI en-
forcement for smartphone platforms.

3.1. Control-Flow Attacks

Figure 1 depicts a sample control-flow graph (CFG) of
an application. Basically, the CFG represents valid execu-
tion paths the program may follow while it is executing.
It consists of basic blocks (BBLs), instruction sequences
with a single entry, and exit instruction (e.g., return, call,
or jump), where the exit instruction enables the transition
from one BBL to another. Any attempt of the adversary to
subvert the valid execution path can be represented as a de-
viation from the CFG, which results in a so-called control-
flow or runtime attack.

In particular, Figure 1 illustrates two typical control-flow
attacks at BBL3: (i) a code injection attack (transition 2a),
and (ii) a code reuse attack (transition 2b). Both attacks
have in common that the control-flow is not transferred to
BBL 5, but instead to a piece of code not originally covered
by the CFG. A conventional control-flow attack is based on
the injection of malicious code into the program’s memory
space. For instance, the adversary may overflow a buffer
on the stack by first injecting his own malicious code and
then overwriting a function’s return address with the start
address of the injected code [4]. However, modern oper-
ating systems (such as iOS) enforce the W ⊕ X security
model that prevents an adversary from executing injected
code. On the other hand, code-reuse attacks such as return-
into-libc [35, 40] and modern return-oriented programming
(ROP) [38, 10, 20, 24, 30, 11] bypassW ⊕X by redirecting
execution to code already residing in the program’s mem-
ory space. In particular, ROP allows an adversary to induce
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Figure 1. Schematic overview of control-flow attacks

arbitrary program behavior by only combining small code
pieces from different parts of linked libraries.

Recent news underline that control-flow attacks are a se-
vere problem on smartphones. In particular, control-flow
attacks can be utilized to steal the user’s SMS or contacts
database [26, 32], to open a remote reverse shell [27], or to
launch a jailbreak [13]. Unfortunately, there is no general
countermeasure to defeat such attacks on smartphones.

3.2. Control-Flow Integrity (CFI) on x86

A general approach to defeat control-flow attacks is the
enforcement of control-flow integrity (CFI) [1]. Basically,
CFI guarantees that a program always follows a valid exe-
cution path in the CFG, where the CFG is created ahead of
time by means of static analysis. This is achieved by check-
ing branch instructions of the BBLs: such instructions are
overwritten with a new block of instructions that validates
if the branch instruction targets a valid execution path in the
CFG. For instance, in Figure 1, CFI would check if the exit
instruction of BBL3 targets BBL5. In particular, the CFI
prototype implementation presented by Abadi et al. [1] in-
serts unique labels just above each entry instruction. Hence,
the CFI validation routine only has to check whether the
branch address targets an instruction that is preceded by a
valid label. However, the adoption and adaption of CFI (as
presented in [1]) to smartphone platforms involves several
difficulties and challenges.

3.3. Technical Challenges on Smartphone Platforms

The technical challenges are due to the architectural dif-
ferences between ARM (RISC design) and Intel x86 (CISC
design), and because of the specifics of smartphone operat-
ing systems. These highly influence and often complicate a
CFI solution as we argue in the following.

No Dedicated Return Instruction. As mentionend in
Section 2.1, ARM does not provide dedicated return in-
structions. Instead, any branch instruction can be used as
a return. Moreover, returns may have side-effects, meaning
that the return does not only enforce the return to the caller,
but also loads several registers within a single instruction.
Hence, in contrast to Intel x86, a CFI solution for ARM has
to handle all different kinds of returns, and has to ensure
that all side effects of the return are properly handled.

Multiple Instruction Sets. CFI on ARM is further com-
plicated by the presence of two instruction sets (ARM and
THUMB), which can even be interleaved. Hence, it is nec-
essary to distinguish between both cases during the analysis
and enforcement phase, and to ensure the correct switching
between the two instruction sets at runtime.

Direct Access to the Program Counter. Another differ-
ence is that the ARM program counter pc is a general-
purpose register which can be directly accessed by a number
of instructions, e.g., arithmetic instructions are allowed to
load the result of an arithmetic operation directly into pc.
Furthermore, a load instruction may use the current value
of pc as base address to load a pointer into another register.
This complicates a CFI solution on ARM, since we have
to consider and correctly handle all possible control-flow
changes, and also preserve the accurate execution of load
instruction that use pc as base register.

Application Signing and Encryption. Smartphone oper-
ating systems typically feature application encryption and
signing. Since the traditional CFI approach [1] performs
changes on the stored binary, the signature of the applica-
tion cannot be verified anymore.
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Closed-Source OS. Several smartphone OSes (such as
iOS) are closed-source. Hence, we cannot change the actual
OS to deploy CFI on smartphones. Moreover, end-users and
even App Store maintainers (e.g., Apple’s App Store) have
no access to the application source code. Hence, a compiler-
based CFI solution is not practicable from the end-user’s
perspective.

4. Design of our CFI Framework

Our general architecture is shown in Figure 2. From a
high-level point of view, our system is separated in two dif-
ferent phases: static analysis and runtime enforcement. The
static tools perform the initial analysis of the compiled ap-
plication binary file. In the preprocessing phase, we first
decrypt and disassemble the binary (step 1). Afterwards,
we thoroughly analyze the application binary and its struc-
ture (step 2): In particular, we generate the control-flow
graph (CFG) of the application and employ a branch de-
tector to identify all branches contained in the binary and
extract all information that is necessary to enforce CFI at
runtime. Note that these steps have to be performed only
once after compilation and can be integrated as an addi-
tional step in the deployment phase of a typical smartphone
application. Finally, we monitor the application at runtime
by applying our MoCFI shared library that rewrites the bi-
nary at load-time (step 3) and enforces control-flow restric-
tions while the application executes (step 4).

Although the depicted design applies in general to all
CFI solutions, our design requires a number of changes,
mainly due to (i) the architectural differences between ARM
and Intel x86, (ii) the missing binary rewriter and automatic
graph generation for ARM, and (iii) the specifics of smart-
phone operating systems. In the following we describe each
involved system component and our approach in more de-
tail.

Preprocessor. The first step of our static analysis phase is
performed within the preprocessor component, which has
mainly two tasks: (1) decrypting, and (2) disassembling the
target application binary. In particular, we faced the chal-
lenge that smartphone applications are often encrypted by
default (e.g., iOS applications). We thus obtain the unen-
crypted code of a binary through process dumping [19].
For disassembling the application binary we deploy stan-
dard disassembler tools that support the ARM architecture.

Binary Analysis. The original CFI work for Intel x86 [1]
employs the binary instrumentation framework Vulcan [18]
to automatically derive the CFG and to statically rewrite an
application binary. However, such a framework does not ex-
ist for ARM. Hence, we developed own techniques to accu-
rately generate the CFG. After our preprocessor decrypted
and disassembled the application binary, we identify all
relevant branches contained in the binary. By relevant
branches, we refer to branch instructions that an adversary
may exploit for a control-flow attack. These mainly com-
prise indirect branches, such as indirect jumps and calls,
and function returns. Moreover, we include direct function
calls to correctly validate function returns, i.e., to be able
to check if a function return targets the original caller. We
do not instrument direct jump instructions for obvious rea-
sons: the target address for these are fixed (hard-coded), and
hence cannot be manipulated by an adversary. Finally, we
store meta information for each indirect branch and func-
tion call (e.g., instruction address, length, type, etc.) in a
separate patchfile.

Based on the result of the branch detector, we generate
the CFG by static tools that we developed ourselves. In
particular, our static tools calculate possible target addresses
for each indirect branch. Finally, a binary representation of
the CFG is stored in a separate file (denoted as Control-
Flow Graph), which is linked to the smartphone application
at runtime.



MoCFI Load-Time Module: Binary Rewriting. The
binary rewriting engine is responsible for binding addi-
tional code to the binary that checks if the application fol-
lows a valid path of the CFG. Typically, one replaces all
branch instructions in the binary with a number of new in-
structions that enforce the control-flow checks [1]. How-
ever, replacing one instruction with multiple instructions
requires memory adjustments, because all instructions be-
hind the new instructions are moved downwards. The
Intel x86 approach uses the Vulcan binary instrumenta-
tion framework [18] which automatically accomplishes this
task. However, memory adjustment without a full binary
rewriting framework requires high implementation efforts.

Due to the limited possibilities to change smartphone
binaries (due to code signing) and the missing full bi-
nary rewriter, we opted for the following rewriting ap-
proach (which has been originally proposed by Winwood
et al. [45]). At load-time we replace all relevant branches
(based on the extracted rewriting) with a single instruction:
the so-called dispatcher instruction. The dispatcher instruc-
tion redirects the control-flow to a code section where the
CFI checks reside, namely to the runtime module of our
MoCFI shared library.

This approach also raises several problems: First, accu-
rate branch instructions have to be implemented that are
able to jump to the correct CFI check. Second, the CFI
checks require information from where the dispatch origi-
nated. As we will demonstrate in the rest of the paper, our
solution efficiently tackles the above mentioned problems.

MoCFI Runtime Module: Control-Flow Integrity En-
forcement. The key insight of CFI is the realization of
control-flow validation routines. These routines have to val-
idate the target of every branch to prevent the application
from targeting a BBL beyond the scope of the CFG and
the current execution path. Obviously, each branch target
requires a different type of validation. While the target ad-
dress of an indirect jump or call can be validated against a
list of valid targets, the validation of function returns re-
quires special handling because return addresses are dy-
namic and cannot be predicted ahead of time. To address
this issue, MoCFI reuses the concept of shadow stacks that
hold valid copies of return addresses [12], while the return
addresses are pushed onto the shadow stacks when a func-
tion call occurs.

5. Implementation Details

Our prototype implementation targets iOS 4.3.1, and we
successfully applied to 4.3.2 as well. We developed the
static analysis tools (842 lines of code) with the IDC script-
ing language featured by the well-known disassembler IDA
Pro 6.0. Moreover, we used Xcode 4 to develop the MoCFI

library (1,430 lines of code). Our prototype implementa-
tion currently protects the application’s main code, but no
dynamic libraries that are loaded into the process. Hence,
an adversary may launch a control-flow attack by exploit-
ing a shared library. We leave support for shared libraries
open to future work. However, it is straightforward to ex-
tend MoCFI accordingly, there are no new conceptional ob-
stacles to overcome. We now describe how we generate the
CFG and the patchfile of an iOS binary, and in particular
present implementation details of our MoCFI library.

5.1. Static Analysis

Since iOS restricts access to source code, we apply our
static analysis techniques directly on iOS binaries to gener-
ate the CFG and to identify all branches in the binary. We
need the former one to validate if a branch follows a valid
execution path, while the latter one is used to guarantee ac-
curate binary rewriting. To perform this task, we use the
IDA Pro v6.0 Disassembler that enables us to accurately
disassemble ARM and THUMB code. Specifically, we im-
plemented IDA scripts to automate the analysis and extract
the necessary information from a given binary.

Patchfile Generation. As shown in Figure 2 in Section 4,
step 2 involves the generation of rewriting information for
each individual binary. This information is required by the
load-time module of MoCFI to replace each branch instruc-
tion with a new instruction that redirects execution to the
accurate CFI validation routine. In order to identify all rel-
evant branch instructions, we evaluate each instruction be-
longing to the text segment and check if the instruction is
relevant in the context of CFI. Afterwards, we perform a
fine-grained instruction analysis and store the derived meta
information (e.g. instruction address, mode, length, type,
etc.) in the patchfile. By bundling the patchfile with the
application, we can protect its integrity, as all application
bundle contents are code-signed.

Generation of the Control-Flow Graph. In order to gen-
erate the CFG, we utilize IDA Pro to divide the binary into
basic blocks (BBLs, see Section 3) and gather all assembly
instructions that divert the control-flow. These instructions
can be divided in two categories: (1) instructions that con-
tain their possible control-flow destination as an immedi-
ate value, (2) instructions that continue control-flow based
on the value of a register. While the first type is trivial
in a W ⊕ X environment (i.e., the destination cannot be
changed), the latter case can only be checked during run-
time. Hence, as an optimization step and as argued in Sec-
tion 4, we remove type (1) branches from the CFG. Type (2)
branches are more challenging as the value they depend on
needs to be calculated during static analysis. If this is not



possible, heuristics have to be applied at runtime to narrow
the possible control-flow destinations. Therefore, it is im-
possible to construct the CFG in all cases. Note that this is
a general shortcoming of all CFG generation methods and
not specific to our approach.

Indirect Branches and Heuristics.
To calculate the target address of an indirect branch (e.g.,

LDR pc,[r2,r3,LSL #2]), the registers have to be
tracked backwards and all of their possible values must be
calculated. In the above example, the target (pc) is calcu-
lated as pc← r2 + r3 · 4. If r2 and r3 can be tracked,
the correct value can be extracted.

0x1000: MOV r2, 0x2000
0x1004: ADD.W r2, r2, r3, LSL#2
0x1008: MOV pc, r2

0x2000: B.W 0x3000
0x2004: B.W 0x3100
0x2008: B.W 0x3200

Listing 1. Indirect Jump with jump table

Listing 1 is a common compiler-generated pattern to op-
timize switch-statements. Depending on r3, the possi-
ble control-flow targets (pc) are 0x3000, 0x3100, and
0x3200 and our analysis can recover these possibilities.

In case an indirect branch cannot be resolved (e.g. hand-
written assembler code), it is possible to apply a heuristic in
order to constrain the control-flow. A general constraint on
ARM is that the target address must be a multiple of the in-
struction length. For indirect calls this constraint can be nar-
rowed down to the beginning of functions. Even though it
is still possible to call arbitrary functions, the target control-
flow cannot land inside a function body.

Indirect jumps (BX) can be constrained to only take place
inside one function body, i.e., not crossing function bound-
aries. Despite there is no technical need for this restriction,
the C, C++ and Objective-C languages restrict control-
flow to the scope of one function, with the exception of
function calls. Hence, we can assume that the scope of in-
direct jumps is limited by the boundary of a function body.

Objective-C Peculiarities. Traditional CFG generation
techniques also need to be extended for iOS applications
due to a peculiarity of Objective-C. Internally, any method
call of an Objective-C object is resolved to a call to the
generic message handling function objc_msgSend. The
name of the actual method (called selector) is given as a
parameter. Consequently, we must track these parameters
in the CFG generation phase and include them in the CFG.
Otherwise, an adversary might mount an attack by modi-
fying the method parameters of objc_msgSend, thus di-
verting the control-flow to an invalid method. We built upon

PiOS [19] and former reverse-engineering work on iOS [17,
33] to generate CFG information for objc_msgSend
calls.

5.2. Control-Flow Integrity Checking with MoCFI

Most UNIX-based operating systems support the in-
jection of libraries by providing the environment variable
LD_PRELOAD that is checked by the OS loader upon ini-
tialization of each new process. The loader ensures that the
library is loaded before any other dependency of the ac-
tual program binary. iOS provides an analogous method
through the DYLD_INSERT_ LIBRARIES environment
variable [6]. Setting this variable to point to MoCFI enables
us to transparently instrument arbitrary applications. To
force loading MoCFI into every application started though
the touchscreen, we only need to set this environment vari-
able for the SpringBoard process.

We stress that MoCFI is initialized before any other de-
pendency of the program and after the signature of the ap-
plication was verified (i.e., the program binary itself is unal-
tered). Subsequently, MoCFI implements the CFI enforce-
ment by rewriting the code of the application in memory.
We call this part of MoCFI the load-time module in con-
trast to the runtime module, which holds the actual valida-
tion checks. The load-time module makes sure that all rele-
vant control-flow instructions are diverted to a correspond-
ing validation routines in MoCFI. If validation succeeds,
execution continues at the desired branch location.

5.2.1. Load-Time Module: Binary Rewriting
Upon initialization of MoCFI, the load-time module first

locates the correct patchfile. Afterwards, it rewrites the
binary according to the information stored in the patch-
file. Since Apple iOS enforces W ⊕ X , code cannot be
writable in memory. Therefore, the code pages must be
set to writable (but not executable) first. This is usually
accomplished using the POSIX-compliant mprotect sys-
tem call. Our experiments revealed that iOS does not al-
low the code pages to be changed at all (mprotect re-
turns a permission denied error). However, this problem
can be overcome by re-mapping the corresponding memory
areas with mmap [7] first. When all relevant instructions
of a page are patched, the page permissions are set back
to executable but not writable. Note that the presence of
mmap does not give an adversary the opportunity to subvert
MoCFI by overwriting code. In order to do so, he would
have to mount an attack beforehand that would inherently
violate CFI at some point, which in turn would be detected
by MoCFI.

Trampolines. Our binary rewriting engine overwrites the
relevant control-flow instructions with the so-called dis-
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patcher instructions. The dispatcher redirects the program
flow to a short piece of assembler code, namely to the tram-
poline, which in turn transfers the execution to our MoCFI
library (see Figure 3). Hence, the trampolines are used as
bridges between the application we aim to protect and our
MoCFI library.

Specifically, we allocate dedicated trampolines for each
indirect branch (i.e., indirect jumps / calls and returns), one
generic trampoline for direct internal function calls (i.e.,
calls within the same code segment), and one generic tram-
poline for external function calls. Two example trampo-
lines are shown in Figure 3: the first one (Trampoline 1) is
used for a return instruction, while the second one (Internal
Call Trampoline) handles a (direct) internal function call. In
general, each trampoline saves the current execution state,
invokes the appropriate MoCFI validation routine, resets the
execution state, and issues the original branch. Due to the
last step, we ensure that all registers are loaded correctly,
even if the branch loads several registers as a side-effect,
e.g., the replaced return POP {R4-R7,PC} is copied by
our load-time module at the end of Trampoline 1. Hence,
we ensure that r4 to r7 are correctly loaded with values
from the stack before the return address is loaded to pc.

Note that, depending on the replaced branch instruction,
we allocate a THUMB or ARM trampoline to ensure the
correct interworking between the two instruction sets. In the
following, we present the different kinds of dispatcher in-
structions our solution utilizes. The specific implementation
of the different ARM/THUMB trampolines is described in
Appendix A.

ARM (32 bit) dispatcher instruction. Since each ARM
instruction is 32 bit long, we can use the default branch (B)
instruction as a generic dispatcher instruction, which yields
a possible target range from −224 to 224− 1 bytes (32MB).

As a consequence, the dispatcher target cannot lie within ar-
bitrary memory address ranges. We address this problem by
jumping to the mentioned trampolines rather than directly
to the validation routine. The trampolines are small in size
and are allocated near the code section of the application us-
ing mmap. Note that, theoretically, an application’s memory
image could be too large to find a free memory page for the
trampolines. However, the application image would have
to be larger than 16MB in order to break this approach. In
practice, this is very unlikely. Even if this would be the case,
one could search for memory regions within the code sec-
tion that are unused (e.g., due to alignment) and use them
as trampolines.

Note that for direct function calls, we use the BLX in-
struction instead, which provides the same target range as
the B instruction. Using BLX ensures that the return address
of the call is moved into the lr (link) register1. Further,
MoCFI can easily lookup the original call target (stored in
our patchfile) by inspecting the link register.

THUMB (16 bit and 32 bit) dispatcher instructions.
For THUMB instructions, the situation is more compli-
cated. While immediate branches are typically 32 bits in
size (i.e., one can use the same approach as discussed previ-
ously), many control-flow instructions exist that are only 16
bits long. As a consequence, the reduced range for a branch
target (only −211 to 211 − 1, i.e., 1KB) demands for a dif-
ferent solution. MoCFI addresses this issue by replacing a
16 Bit indirect branch with a 32 Bit dispatcher instruction.
However, this has the effect that we overwrite 2 Thumb in-

1Note that for indirect calls MoCFI uses B as dispatcher instruction
and correctly sets lr within the validation routine, because the value of
lr for indirect calls is dependent on whether the call is an external or
internal call. For external calls we let lr point to a specialized code piece
of MoCFI to recognize when external (indirect) library calls returned (see
also Appendix A).



structions: the original branch (POP {R4-R7,PC}) and
the instruction preceding the branch (MOV R1,R2). To
preserve the program’s semantics, we execute the latter one
at the beginning of our trampolines (step 1 in Trampoline 1).

Dispatching through exception handling. However, re-
placing 2 THUMB instructions is not possible if the instruc-
tion preceding the branch references the program counter
or is itself a branch. For instance, LDR R2,[PC,#16]
in Figure 3 uses the current value of pc to load a pointer.
Note that such instructions are not allowed on Intel x86. In
such scenarios, we use an entirely different approach: upon
initialization, we register an iOS exception handler for ille-
gal instructions. The dispatcher instruction is then simply
an arbitrary illegal instruction that will trigger our excep-
tion handler. Since this technique induces additional per-
formance overhead, we only use it for exceptional cases. To
further reduce the use of the exception handler, one could
calculate the address from which pc is loaded in the static
analysis phase and replace the relevant load instruction with
a new memory load instruction which could be placed at the
beginning of the trampoline.

Note that our exception handler forwards all exceptions
not caused by MoCFI. Furthermore, by monitoring the ex-
ception handling API, we can ensure the position of our
handler in the exception chain.

5.2.2. Runtime Module: CFI Enforcement
An abstract view of the runtime module is shown in Fig-

ure 4: it mainly consists of dedicated validation routines
for each branch type, where each type is represented by a
rectangle on the left side of Figure 4. The validation rou-
tines have to validate the target of every branch to prevent
the application from targeting a BBL beyond the scope of
the CFG and the current execution path. Obviously, each
branch target requires a different type of validation, as we
will describe in the following.

Function Returns 
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Shadow Stack Branch 
valid? 

Issue original 
branch 

Raise alarm and 
stop program 

yes 

no 

Direct Calls 
Indirect 

Calls 
Objective C 
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Figure 4. Overview of the runtime module

Function Calls and Returns. To prevent return-oriented
attacks, we monitor all function calls and returns, and apply
the shadow stack paradigm [12]: whenever the program in-
vokes a subroutine (through a direct, indirect, or dispatcher

call), we copy the return address on a dedicated shadow
stack. Upon function return, we compare the return ad-
dress the program wants to use to the address stored on our
shadow stack. Since function calls (through BL or BLX) au-
tomatically store the return address in lr, we simply need
to push lr onto the shadow stack. Further, we maintain a
separate shadow stack for each execution thread to support
multi-threaded programs. Upon function return, we deter-
mine the return address the program aims to use and retrieve
the required stack pointer offset from the patchfile.

As mentioned in Section 3.3, return instructions can be
implemented in many different ways on ARM, and often
involve the loading of several general-purpose registers. We
ensure that all side-effects are correctly handled by issuing
the original return at the end of the trampoline (as described
in Section 5.2.1).

Indirect Jumps and Calls. The possible jump targets for
indirect jumps and calls have either been calculated during
static analysis (see Section 5.1) or remain completely un-
known. In the first case, the pre-calculated values have to
be compared to the outcome of the instruction that MoCFI
intercepted. In the most complex and versatile form, the
instruction is of the form LDR pc,[rX,rY,LSL#z]
which loads pc according to the given register values:
pc ← rx + ry · 2z . Consequently, MoCFI checks the cur-
rent value of the registers according to the above equation
to match one of the saved, valid jump targets. The informa-
tion which registers are used by the indirect jump is saved in
our patchfile. However, for simpler indirect jumps such as
MOV pc,rX and indirect calls (BLX rX) we simply have
to check the content of rX. In case the required information
cannot be calculated in advance during the static analysis
phase, we use heuristics (see Section 5.1) to ensure that the
jump targets reside inside the scope of the current function,
or for indirect calls, target a valid function prologue.

Objective C MsgSend Calls. Dispatcher calls via the
objc_msgSend function work like indirect calls. How-
ever, instead of a register, they use the function’s name (se-
lector) and class instance to refer to a function’s implemen-
tation address (see Section 5.1). We trust the implementa-
tion of objc_msgSend and do not check whether it re-
solved the correct address. We rather check the supplied
parameters selector and class instance. Both is necessary
as the emitted code by GCC usually de-references a regis-
ter and passes its de-referenced value to objc_msgSend.
However, the referenced memory is writable and could be
overwritten by an adversary. The selector is a simple zero-
terminated C-string. Checking whether the selector is still
correct can be verified by comparing the original string ex-
tracted during static analysis to the current string selector
points to.
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We enhanced the performance by introducing a string
cache (see Figure 5). This is possible as the strings them-
selves are write-protected. This enables us to cache the re-
sult of the comparison based on a pointer to that string.

For the class instance checking, the name of the class has
been extracted by the static analysis. This name is of the
form _OBJC_CLASS_$_NSObject, where NSObject
is the class name. The Runtime Module obtains the load
address of every symbol by using dlsym(). The class in-
stance parameter supplied to objc_msgSend must then
either directly point to that symbol address (static class) or
is an instance of that class. For class instances, the first
word (32 bit pointer) points to the symbol address of the
corresponding class.

6. Discussion and Security Considerations

Our solution adheres to the goal of detecting devia-
tions from the control-flow at runtime from the known-good
control-flow. Since iOS enforces W ⊕ X , a memory page
cannot be writable and executable at the same time. Hence,
it suffices to check branch targets that can be changed dur-
ing runtime as they depend on the value of a variable. These
include indirect branches and returns from function calls,
as they use an address popped from a potentially tampered
stack. As we check each such instruction, an adversary
cannot subvert the control-flow without MoCFI noticing it.
However, not all valid, known-good targets can be calcu-
lated in advance during the static analysis phase. If this is
not the case, we need to apply heuristics to hinder (or at
least minimize) their impact. Fortunately, for the major-
ity of tested applications, the indirect branches are used in
conjunction with jump tables (see Section 5.1), and can be
resolved during the static analysis phase. Moreover, our
static tools could be extended by enhanced backtracking
techniques to limit the set of possible branch targets. How-
ever, the design of sophisticated static tools is not within the

scope of this paper, instead our focus is a framework that
provides the foundation for system-wide and efficient CFI
enforcement on smartphone platforms with an underlying
ARM processor.

Since MoCFI performs binary rewriting after the iOS
loader has verified the application signature, our scheme
is compatible to application signing. On the other hand,
our load-time module is not directly compatible to the iOS
CSE (code signing enforcement) runtime model (see Sec-
tion 2.2). CSE prohibits any code generation at runtime on
non-jailbroken devices, except if an application has been
granted the dynamic-signing entitlement. To tackle this is-
sue, one could assign the dynamic-signing entitlement to
applications that should be executed under the protection
of MoCFI. On the one hand, this is a reasonable approach,
since the general security goal of CFI is to protect be-
nign applications rather than malicious ones. Further, the
dynamic-signing entitlement will not give an adversary the
opportunity to circumvent MoCFI by overwriting existing
control-flow checks in benign applications. In order to do
so, he would have to mount a control-flow attack before-
hand that would be detected by MoCFI. On the other hand,
when dynamic-signing is in place, benign applications may
unintentionally download new (potentially) malicious code,
or malicious applications may be accidentally granted the
dynamic-signing entitlement (since they should run under
protection of MoCFI) and afterwards perform malicious ac-
tions. To address these problems, one could constrain bi-
nary rewriting to the load-time phase of an application, so
that the dynamic-signing entitlement is not needed while the
application is executing. Further, new sandbox policies can
be specified that only allow the MoCFI library to issue the
mmap call to replace existing code, e.g., the internal page
flags of the affected memory page are not changed, or their
values are correctly reset after MoCFI completed the binary
rewriting process.

Finally, special care must be taken that an adversary can-
not tamper with the MoCFI library and thus bypass MoCFI.
Since our library is small in size, the probability for ex-
ploitable vulnerabilities is very low. Given the small code
base, we could also apply code verification tools.

Limitations. Similar to CFI for Intel x86, our current im-
plementation does not detect attacks exploiting exception
handlers: an adversary can overwrite pointers to an excep-
tion handler and then deliberately cause an exception (e.g.,
by corrupting a pointer before it is de-referenced). This is
possible because GCC pushes these pointers on the stack
on demand. We stress that this is rather a shortcoming of
the iOS operating system — similar problems have already
been solved on other platforms, such as on Windows [31].
Therefore, we encourage Apple to port these techniques
to iOS.
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Figure 6. Gensystek Lite Benchmarks

As already mentioned in Section 5, MoCFI does cur-
rently not protect shared libraries, which an adversary may
exploit to launch a control-flow attack. However, extend-
ing MoCFI accordingly is straightforward, because we al-
ready overcame the conceptional obstacles. Note that Apple
also explicitly discourages developers to employ shared li-
braries. Hence, all loaded libraries are typically from the
operating system and Objective C frameworks.

Consequently, we currently disable the return check if
an external library calls a function that resides in the main
application. Therefore, MoCFI registers when execution is
redirected to a library and disables the return address check
for functions that are directly invoked by the shared library.
However, note that this can be easily fixed by either ap-
plying our trampoline approach to function prologues (i.e.,
pushing the return address on the shadow stack at function
entry) or by applying MoCFI to shared libraries.

7. Evaluation

In order to evaluate the performance of MoCFI, we ap-
plied it to an iOS benchmark tool (called Gensystek Lite2),
applied it to a full-recursive own developed quicksort al-
gorithm, and performed micro benchmarks to measure the
overhead for each type of branch. As we described in Sec-
tion 6, we apply MoCFI to the main application code, and
not to the libraries. However, the benchmark tools we apply
perform most part of the computation within the applica-
tion.

Figure 6 shows the results for the Gensystek Lite ap-
plication, where the slowdown factor for each individual
benchmark is shown at bottom of the x-axis. Remarkably,
the FPU/ALU, PI calculation, and the RAM (memory read-
/write) benchmarks add the highest overhead. However,
their slowdown is still reasonable (3.85x and 5x, respec-
tively) considering that FPU/ALU and PI calculations are
computationally intensive tasks. The overhead (slowdown
greater than factor 1) for the remaining benchmarks is very
low and ranges between 1% to 21%.

2http://www.ooparts-universe.com/apps/app_
gensystek.html

n Without MoCFI With MoCFI
100 0.047 ms 0.432 ms

1000 0.473 ms 6.186 ms
10000 6.725 ms 81.163 ms

Table 1. Quicksort
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In order to approximate an upper boundary for perfor-
mance penalties, we evaluated MoCFI by running a quick-
sort algorithm. Our implemented algorithm makes use of
recursion and continuously calls a compare function which
consists of only 4 instructions and one return. Therefore,
MoCFI frequently performs a control-flow check in this
worst-case scenario. Nevertheless it performs quite well
and needs 81ms for n = 10, 000 (see Table 1).

In order to evaluate the overhead of an instruction that
has been replaced by a CFI check, we measured the exe-
cution time of three typical instructions and their replace-
ment by MoCFI (see Figure 7). The calculation of the over-
head per replaced instruction is depicted in Figure 8. For
the exemplary case of Function Calls and Returns, the ac-
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𝛽 
𝛼 

Figure 8. Overhead calculation



n 50 100 500
ψ (Indirect Jump) 2.4% 1.2% 0.2%
ψ (Func. C. & R.) 14.6% 7.4% 1.5%
ψ (ObjC MsgSend) 11.0% 5.6% 1.1%

Table 2. Total overhead ψ
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tual function bodies (α) are subtracted from the time mea-
surement between call and return (β). The actual execution
time is therefore β − α. When running with MoCFI, the
measurements (α′ and β′, respectively) are set in relation
to the measurement without MoCFI. Hence, the instruction
slowdown factor ϕ for one function replaced by MoCFI is
ϕ = β′−α′

β−α . For our tests, all the measurements have been
conducted 10, 000 times and averaged. However, in a typi-
cal program, instructions that have to be checked by MoCFI
are surrounded by other instructions. For n instructions in
between, MoCFI only has to be called every (n + 1)-th in-
struction. The total slowdown ψ is therefore ψ = n+ϕ

n+1 .
The overhead (ψ − 1) as a function of n (instructions be-
tween CFI checks) is plotted in Figure 9. An exemplary
table with exact values resulting from of n = 50, n = 100
and n = 500 instructions between CFI checks is depicted
in Table 2.

Moreover, we applied MoCFI to several popular iOS ap-
plications, among others Facebook, Minesweeper, TexasH-
oldem, and Gowalla. Our experiments showed that MoCFI
does not induce any notable overhead while the applications
execute. Further, MoCFI induces an acceptable overhead
at load-time: e.g., for the Facebook application (code size
2.3MB; 33,647 calls; 5,988 returns; 20 indirect jumps) and
TexasHoldem (2.8MB; 62,576 calls; 4,864 returns; 1 indi-
rect jump) our rewriting engine required less than half a sec-
ond to rewrite the entire application.

On the other hand, our tests on iOS applications revealed
that MoCFI raises certain false positives. A remarkable
false positive occurs for large jump tables: For theses cases,
the compiler calls dedicated switch functions that calculate
the address to be used as jump target, where the particular
function call is realized via a BLX instruction. However,

these switch functions never return; instead they use the
value of lr (loaded via BLX) as base pointer to the jump
table, and use an indirect jump after the target has been cal-
culated (i.e, a return to the initial call is missing). In order
to avoid this false positive, MoCFI could be extended if the
bytes succeeding the BLX are belonging to a jump table.
If so, MoCFI could enforce a different check in the switch
functions: rather than checking the return address, we check
if the last indirect jump of the switch function targets an ad-
dress that is used in the jump table. We aim to integrate
additional handling of exceptional cases in our future. In
general, one can apply similar policies as mentioned above,
or exception handling rules as discussed in [16].

Mitigating Advanced Attacks. In order to demonstrate
that MoCFI detects advanced attacks that hijack the control-
flow of an application, we adopted a return-oriented pro-
gramming (ROP) attack presented by Iozzo et al. [25] (de-
veloped for iOS v2.2.1) to iOS v4.3.1 and extended it in
such a way that it bypasses memory randomization on iOS.
Specifically, our sample attack exploits a buffer overflow
vulnerability and forces the device to beep and vibrate.
When protecting the vulnerable application with MoCFI,
the attack fails and we successfully prevent an exploitation
attempt. We implemented the exploit and used techniques
similar to GOT dereferencing [46, 22] to bypass ASLR on
iOS. Since constructing iOS exploits is not the main ob-
jective of this paper, we refer the interested reader to Ap-
pendix B where we describe our vulnerable program and
the payload we used.

8. Related Work

Control-flow (runtime) attacks are a prevalent attack vec-
tor since about two decades and a lot of research has been
performed to either exploit such vulnerabilities or to find
ways to protect against them. In the following, we focus on
defense strategies to prevent control-flow attacks and dis-
cuss how previous works relates to the approach presented
in this paper.

Control-Flow Integrity. The basic principle of monitor-
ing the control-flow of an application in order to enforce a
specific security policy has been introduced by Kiriansky
et al. in their seminal work on program shepherding [29].
This technique allows arbitrary restrictions to be placed on
control transfers and code origins, and the authors showed
how such an approach can be used to confine a given ap-
plication. A more fine-grained analysis was presented by
Abadi et al., who proposed Control Flow Integrity enforce-
ment [1]. We use CFI as the basic technique and show that
this principle can be applied on the ARM processor archi-
tecture to protect smartphones against control-flow attacks.



Several architectural differences and peculiarities of mobile
operating systems complicate our approach and we had to
overcome several obstacles. XFI [2] is an extension to CFI
that adds further integrity constraints for example on mem-
ory and the stack at the cost of a higher performance over-
head. The current prototype of MoCFI does not implement
these additional constraints, but our framework could be ex-
tended in the future to also support such constraints.

In contrast to the original CFI work and our MoCFI,
Write Integrity Testing (WIT) [3] also detects non-control-
data attacks. This is achieved by interprocedural points-to
analysis which outputs the CFG and computes the set of ob-
jects that can be written by each instruction in the program.
Based on the result of the points-to analysis, WIT assigns
a color to each object and each write instruction. WIT en-
forces write-integrity by only allowing the write operation
if the originating instruction and the target object share the
same color. As a second line of defense, it also enforces CFI
to check if an indirect call targets a valid execution path in
the CFG. However, WIT does not prevent return-oriented
attacks, because it does not check function returns. More-
over, it requires access to source code. In contrast, MoCFI
can protect an application against advanced attacks and our
tool works directly on the binary level.

HyperSafe [43] protects x86 hypervisors by enforcing
hypervisor code integrity and CFI. Similar to MoCFI, it
instruments indirect branch instructions to validate if their
branch target follows a valid execution path in the CFG.
However, HyperSafe only validates if the return address is
within a set of possible return addresses which has been cal-
culated offline. In contrast to HyperSafe, MoCFI enforces
fine-grained return address checks, and does not require
source code. Moreover, the dynamic nature of smartphone
applications, prevents us from calculating return addresses
offline.

Native Client (NaCl) [47, 37] provides a sandbox for un-
trusted native code in web browsers. In particular, NaCl
enforces software fault isolation (SFI [42]) and constraints
branches to an aligned address. However, this still allows
an adversary to subvert the control-flow (as long as the
target address is aligned). Moreover, NaCl does not sup-
port THUMB code (which is main instruction set on smart-
phones) and requires recompilation of applications as well.

In a very recent work Zeng et al. [48] showed that
CFI combined with static analysis enables the enforcement
of efficient data sandboxing. In particular, the presented
scheme provides confidentiality of critical memory regions
by constraining memory reads to uncritical data regions.
This is achieved by placing guard zones before and after
the uncritical data area. The solution has been implemented
in the LLVM compiler infrastructure (similar to the NaCl
compiler [47, 37]) and targets the Intel x86 platform.

Orthogonal Defenses. Many techniques to detect or pre-
vent control-flow attacks have been proposed in the last few
years such as for example stack canaries [15], return ad-
dress stacks [12, 21], and pointer encryption [14]. Such
techniques are orthogonal to CFI and focus on specific as-
pects of exploits. As a result, an attacker might find novel
ways to bypass them in order to exploit a given vulnerabil-
ity.

9. Conclusion and Future Work

In this paper, we focus on the problem of mitigating run-
time attacks on modern smartphone platforms. This class
of attacks on software is still one of the major threats we
need to deal with and we recently saw several runtime at-
tacks against smartphones. We showed how the principle
of control-flow integrity (CFI) enforcement can be applied
on the ARM platform. Our solution tackles several unique
challenges of ARM and smartphones operating systems,
which we discussed in detail. We solved all challenges and
implemented a complete CFI enforcement framework for
Apple iOS. Our evaluation shows that we can successfully
mitigate even advanced attacks. Moreover, our performance
measurements show that MoCFI is efficient: it performs
well in worst-case scenarios (e.g., computationally inten-
sive algorithms such as quicksort) and does not induce any
notable performance overhead when applied to popular iOS
applications.

Our current prototype implementation protects the main
application binary against control-flow attacks. Therefore,
we aim to apply MoCFI to shared iOS libraries in our fu-
ture work, which should be straightforward since there are
no conceptional obstacles to overcome. Besides working
on a formal analysis along the lines of the original CFI pro-
posal [1], we are currently investigating the possibility of
runtime attestation (a trusted computing mechanism to at-
test the software state of remote platforms) and enhanced
application sandboxing based on CFI enforcement.
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APPENDIX

In the following, we describe the implementation of our
trampolines, and present a return-oriented programming
payload that ASLR on iOS.

A. Trampoline Implementation

Listing 2 and 3 show the implementation of our ARM
and THUMB trampoline for all indirect branches (i.e., in-
direct calls / jumps, and returns). In contrast to the ARM
trampoline, the instruction which precedes the (replaced)
indirect branch is placed on the top of the THUMB trampo-
line. The subsequent instructions save the registers on the
stack, load the pointer to the patch structure into r1, and

the pointer to the specific validation routine in r2. Further-
more, sp is loaded into r0 so that the invoked validation
routine can access the register set of the current execution
state. Afterwards, the BLX instruction is used to invoke the
validation routine. Upon function return, all registers are
reset to their original state. Finally, the original branch in-
struction is executed. Note that we avoid setting lr for
indirect calls3 by transforming it to an indirect BX jump.
Otherwise, the called function would return to our trampo-
line, and not to the original caller.
c h a r customThumbTrampoline [ ] = {

0x00 , 0 xbf , 0 x00 , 0 xbf , / / p r ev . i n s t r u c t i o n
0x2d , 0 xe9 , 0 x f f , 0 x5f , / / push .w { r0−r12 , l r }
0x68 , 0 x46 , / / mov r0 , sp
0x03 , 0 x49 , / / l d r .w r1 , [ pc , 1 2 ]
0x03 , 0 x4a , / / l d r .w r2 , [ pc , 1 2 ]
0x90 , 0 x47 , / / b l x r2
0xbd , 0 xe8 , 0 x f f , 0 x5f , / / pop .w { r0−r12 , l r }
0x00 , 0 x00 , 0 x00 , 0 x00 , / / o r i g . i n s t r u c t i o n
0x00 , 0 x00 , 0 x00 , 0 x00 , / / ∗ p a t c h s t r u c t u r e
0x00 , 0 x00 , 0 x00 , 0 x00 / / ∗ v a l i d a t i o n r o u t i n e

} ;

Listing 2. THUMB Trampoline

u long customARMTrampoline [ ] = {
0 x e 9 2 d 5 f f f , / / s tmfd sp ! ,{ r0−r12 , l r }
0 xe1a0000d , / / mov r0 , sp
0 xe59f1010 , / / l d r r1 , [ pc , 1 6 ]
0 xe59f2010 , / / l d r r2 , [ pc , 1 6 ]
0 x e 1 2 f f f 3 2 , / / b l x r2
0 xe50d0004 , / / s t r r0 , [ sp ,−4]
0 x e 8 b d 5 f f f , / / ldmfd sp ! ,{ r0−r12 , l r }
0 x00000000 , / / o r i g . i n s t r u c t i o n
0 x00000000 , / / ∗ p a t c h s t r u c t u r e
0 x00000000 , / / ∗ v a l i d a t i o n r o u t i n e

} ;

Listing 3. ARM Trampoline

l ong E x t e r n a l C a l l T r a m p o l i n e [ ] = {
0 x e 9 2 d 5 f f f , / / s tmfd sp ! ,{ r0−r12 , l r }
0 xe1a0000d , / / mov r0 , sp
0 xe59f1028 , / / l d r r1 , [ pc , # 4 0 ] ; −> v a l i d a t e
0 x e 1 2 f f f 3 1 , / / b l x r1
0 xe50d0004 , / / s t r r0 , [ sp ,#−4]
0 x e 8 b d 5 f f f , / / ldmfd sp ! ,{ r0−r12 , l r }
0 xe1a0e00f , / / mov l r , pc
0 xe51df03c , / / l d r pc , [ sp ,#−60] ;
0 xe92d000f , / / push { r0 , r1 , r2 , r3}
0 xe59f1010 , / / l d r r1 , [ pc , # 1 6 ] ; −> g e t l r
0 x e 1 2 f f f 3 1 , / / b l x r1
0 xe1a0e000 , / / mov l r , r 0
0 xe8bd000f , / / pop { r0 , r1 , r2 , r3}
0 x e 1 2 f f f 1 e , / / bx l r
0 x00000000 , / / ∗ v a l i d a t i o n r o u t i n e
0 x00000000 , / / ∗ g e t l r

} ;

Listing 4. External Call Trampoline
3However, our validation routine correctly sets lr by changing the lr

value that is stored on the stack (because it has been pushed by the second
instruction of the THUMB trampoline).



Our generic trampolines for direct calls are implemented
in ARM (see Listing 4 and 5). Note that this does not raise
an interworking problem since direct calls are overwritten
with a BLX instruction.

u long I n t e r n a l C a l l T r a m p o l i n e [ ] = {
0 x e 9 2 d 5 f f f , / / s tmfd sp ! ,{ r0−r12 , l r }
0 xe1a0000d , / / mov r0 , sp
0 xe59f100c , / / l d r r1 , [ pc , # 1 2 ]
0 x e 1 2 f f f 3 1 , / / b l x r1
0 xe50d0004 , / / s t r r0 , [ sp ,#−4]
0 x e 8 b d 5 f f f , / / ldmfd sp ! , { r0−r12 , l r }
0 xe51df03c , / / l d r pc , [ sp ,#−60]
0 x00000000 , / / ∗ v a l i d a t i o n r o u t i n e

} ;

Listing 5. Internal Call Trampoline

The start of both trampolines is similar to the aforemen-
tioned custom trampolines: storing all registers, loading the
required parameters, and the final call to the validation rou-
tine. Our validation routines for direct calls save the return
address, check the parameters for Objective C msgSend
calls, and finally provide the original branch target in r0.
This value is stored on the stack, and after resetting all reg-
isters, loaded into pc. As mentioned in Section 6 calls to
external (shared libraries) require in our current implemen-
tation specific handling: we store the return address on an
external shadow stack and change lr so that it points to our
trampoline. Hence, when the external function returns, it
returns to our trampoline, where we invoke the get lr to re-
trieve the original return address. Note that the get lr func-
tion is also invoked when an external library function re-
turns that has been originally invoked via an indirect call.
Therefore our validation for indirect calls checks whether
the branch target resides in the same code segment or tar-
gets a library function. For the latter one we change lr in
such a way that get lr is invoked after the library function
returns.

B. Control-Flow Attacks Against iOS

In the following we describe how we constructed a sam-
ple iOS exploit that circumvents memory randomization
and let the device beep and vibrate.

The vulnerable program is realized as follows:

FILE ∗ s F i l e ;
void foo ( char ∗pa th , f i l e l e n g t h ) {

char buf [ 8 ] ;
s F i l e = fopen ( pa th , ‘ ‘ r ’ ’ ) ;
f g e t s ( buf , f i l e l e n g t h , s F i l e ) ;
f c l o s e ( s F i l e ) ;

}

The shown foo() function simply opens a file, where the file
path and length are provided as parameters to the function.
Further, via fgets() it reads as many characters as specified
by the file_length parameter, and finally copies them

into the local buffer buf. However, fgets() does not check
the bounds of the buffer buf. This in turn allows an ad-
versary to divert the control-flow by overflowing the buffer.
This can be achieved by providing a file which length’s ex-
ceeds the buffer’s size (here more than 8 Bytes). Hence,
the adversary can overwrite the return address of foo(),
and inject a ROP payload on the stack. In particular, our
constructed ROP gadget chain invokes (1) AudioServices-
PlaySystemSound(0x3ea) to play a sound and vibrate the
phone, and (2) exit(0) to close the application. However,
our ROP exploit will only succeed if it bypasses ASLR.

Bypassing ASLR on iOS. iOS offers two levels of ASLR
protection [49]: (1) full ASLR, and (2) ASLR only for
shared libraries and the program heap. The former one ran-
domizes each code and data segment of the program. On
the other hand, it can only be applied to applications that are
compiled as position independent executables (PIE). While
built-in applications such as the Safari Browser are com-
piled as PIEs, third-party applications typically do not sup-
port PIE [49]. Hence, for these applications, iOS only ran-
domizes the base addresses of shared libraries, but omits
the randomization of the program binary, and dynamic areas
such as the stack. Moreover, the iOS linker dyld is always
loaded at a fixed location. In the following, we focus on
applications that do not support PIE. Nevertheless, control-
flow attacks can be also launched against PIE applications,
if an adversary finds and exploits a memory disclosure vul-
nerability.

Our target function AudioServicesPlaySystemSound() is
from the AudioToolbox library that iOS randomizes af-
ter each device boot for PIE and non-PIE applications. We
successfully adopted GOT dereferencing and GOT over-
writing [22] techniques which have been recently deployed
on Intel x86 (Linux) to resolve an absolute address of a
function the adversary wants to execute. In the following,
we briefly describe how principles of GOT dereferencing
can be applied to ARM and iOS.

GOT dereferencing exploits a common data leakage
problem of the Global Offset Table (GOT). Typically, the
GOT contains references to library function addresses the
program aims to use. iOS uses a very similar data struc-
ture called indirect symbol table. By dereferencing a single
entry of the indirect symbol table, we can obtain an abso-
lute (i.e., runtime) address of a function, which in turn al-
lows us to calculate the randomization offset by subtracting
the static address of the same function. For our specific at-
tack, we read the absolute address of fgets() and subtract
its static address. We store the calculated offset value into
the indirect symbol table entry for fgets(), from where it
can be loaded each time the offset is needed. We calculate
the absolute address of AudioServicesPlaySystemSound()
by adding the randomization offset to the static address of



this function, and redirect the control-flow to the computed
address. Note that we use the non-randomized code base of
the static dyld library to compute the randomization offset
and to resolve absolute addresses of functions (or instruc-
tion sequences) from randomized libraries.

Payload and Instruction Sequences. To construct our
malicious program, we leverage six different instruction se-
quences, while several of them are used more than once.
The execution order of the instructions sequences is shown
in Listing 6.
0 x2fe16a66 : ldma sp ! , { r7 , l r }
0 x2fe16a6a : add sp , #12
0 x2fe16a6c : bx l r

0 x2fe06528 : pop { r1 , r3 , r5 , r7 , pc}

0 x2fe1e4c8 : pop { r0 , r4 , r5 , r7 , pc}

0 x 2 f e 0 e f c 2 : l d r r1 , [ r1 , #0]
0 x 2 f e 0 e f c 4 : adds r0 , r0 , r1
0 x 2 f e 0 e f c 6 : bx l r

0 x2fe06528 : pop { r1 , r3 , r5 , r7 , pc}

0 x 2 f e 0 f 0 e 4 : s t r r0 , [ r1 , #20]
0 x 2 f e 0 f 0 e 6 : bx l r

0 x2fe06528 : pop { r1 , r3 , r5 , r7 , pc}

0 x2fe1e4c8 : pop { r0 , r4 , r5 , r7 , pc}

0 x 2 f e 0 e f c 2 : l d r r1 , [ r1 , #0]
0 x 2 f e 0 e f c 4 : adds r0 , r0 , r1
0 x 2 f e 0 e f c 6 : bx l r

0 x2fe06528 : pop { r1 , r3 , r5 , r7 , pc}

0 x2fe0ec40 : mov r12 , r0
0 x2 fe0ec44 : pop { r0 , r1 , r2 , r3 , r7 , l r }
0 x2fe0ec48 : add sp , sp , #8
0 x 2 f e 0 e c 4 c : bx r12

0 x2fe1e4c8 : pop { r0 , r4 , r5 , r7 , pc}

Listing 6. Instruction Sequences

0000 : 41 41 41 41 41 41 41 41 30 30 30 30
000C : 67 ba e1 2 f 30 30 30 30 29 65 e0 2 f
0018 : 41 41 41 41 41 41 41 41 41 41 41 41
0024 : 10 30 00 00 41 41 41 41 41 41 41 41
0030 : 30 30 30 30 c8 e4 e1 2 f 1 f 61 0 c cc
003C : 41 41 41 41 41 41 41 41 30 30 30 30
0048 : c3 e f e0 2 f f c 2 f 00 00 41 41 41 41
0054 : 41 41 41 41 30 30 30 30 e5 f0 e0 2 f
0060 : 10 30 00 00 41 41 41 41 41 41 41 41
006C : 30 30 30 30 c8 e4 e1 2 f cd ca 8 a 33
0078 : 41 41 41 41 41 41 41 41 30 30 30 30
0084 : c3 e f e0 2 f 41 41 41 41 41 41 41 41
0090 : 41 41 41 41 30 30 30 30 40 ec e0 2 f
009C : ea 03 00 00 41 41 41 41 41 41 41 41
00A8 : 41 41 41 41 30 30 30 30 c8 e4 e1 2 f
00B4 : 30 30 30 30 41 41 41 41 00 00 00 00
00C0 : 41 41 41 41 41 41 41 41 30 30 30 30
00CC: dc 2 f 00 00 30 30 30 30

Listing 7. Payload

Our payload is shown in Listing 7. The first two words
of the payload fill the buffer buf. The next two words
are popped from the stack into r7 and pc upon return of
foo(). Specifically, our exploit overwrites the return ad-
dress with 0x2fe16a67 to redirect execution to the first
instruction sequence. The following five addresses point to
the subsequent sequences: 0x2fe06529, 0x2fe1e4c8,
0x2fe0efc3, 0x2fe0f0e5, and 0x2fe0ec40. Note
that code sequences compiled in THUMB mode have to be
addressed by an odd value (+1).

The address 0x33a8cacd is the static address of
AudioServicesPlaySystemSound(). Further, the address
0x3010 points to the absolute address of fgets() stored in
the indirect symbol table of the vulnerable program. The
value 0xcc0c611f is an inversion of the static address
of fgets() 0x33f39ee0. 0x03ea and 0x00 are parame-
ters for the functions AudioServicesPlaySystemSound() and
exit(), respectively. Finally, 0x2fdc is the address of the
indirect symbol table entry of exit(). We use 0x41414141
and 0x30303030 as pattern bytes to compensate the side
effects of our invoked sequences.


