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Abstract—In this paper, we present the design and imple-
mentation of ConXsense, a framework utilizing context sensing
for easy-to-use and adaptive context-aware access control for
mobile devices. Previous work often require either users to
laboriously specify detailed policies or they rely on pre-specified,
non-personalized and error-prone policies for generic context
classes. Recent approaches attempt to address these deficiencies
by learning from context data. Our approach improves on this by
using context data to automatically estimate the sensitivity and
safety of the user’s context and using the estimates for dynami-
cally enforcing access control rules in a highly personalized, non-
intrusive and usable manner. Our initial implementation of the
framework addresses two smartphone-related problem scenarios
for context-aware access control: 1) how to prevent unauthorized
apps (like sensory malware) from gathering information about
the context of a mobile device (contextual privacy) and 2) how
to protect the data and applications on the device from physical
threats in the context (like thieves or device misuse by others). We
start with a sociological user study, and use its results to inform
the design and implementation of ConXsense. We carry out a
data collection and analysis study based on which we evaluate the
effectiveness and accuracy of ConXsense. Moreover, we integrate
ConXsense with a fine-grained access control architecture and
show how it can effectively protect against sensory malware as
well as device theft and misuse.

I. INTRODUCTION

Mobile devices today are equipped with a wide variety
of sensors. Applications that make use of the context are
becoming increasingly popular. Examples include location-
based applications like Foursquare and Google Latitude,
augmented reality applications like Layar, Wikitude, Google
Goggles HERE City Lens and many more. Even mainstream
applications like social network apps support context-based
enhancements.

However, context information and sensing capabilities of
smart devices also provide an attractive attack surface for
misuse, as the recent development of sensory malware shows:
malicious code, typically a Trojan appearing to be a legit-
imate app, uses the sensors to extract sensitive information
from the surroundings. Prominent examples are Stealthy Video
Capturer [1] (video via camera), (sp)iPhone [2] (keystrokes
via accelerometer) Soundcomber [3] (spoken secrets via mi-
crophone), or the recent PlaceRaider [4] Trojan presented at
NDSS 2013 (3D models via camera). Users may also have
granted sensor access privileges to benign apps which use them
too intrusively: for instance the user grants camera permissions

to an augmented reality app without realizing that the app
may take pictures of surroundings even when the user does
not want to use augmented reality, as a means of enriching
the app vendor’s data collection. At the same time, the task of
configuring sensible security and privacy policies is becoming
increasingly difficult for ordinary smartphone users due to
the ever-growing amount of applications and services used on
smartphones. A quick remedy for this could be the increased
use of default policies, but these can not take the personal
security and privacy needs of individual smartphone users
adequately into account. Several surveys [5], [6] point out
that many mobile users do not use idle screen locks to protect
their phones. One reason is that screen locks and other similar
access control techniques available on mobile devices today
are both too inflexible and hard to use. Exploiting context
information to configure access control may address both
problems [7].

Hence, there is a need to 1) control the use and release
of contextual information in order to encounter threats arising
from, e.g., sensory malware, and, 2) to utilize available con-
textual information to enable context-aware access control.

While context-aware access control is not new, most
previous works require pre-specified policies [8], [9], [10].
Context features and context detection are mainly used as
triggers for activating or deactivating access control rules as
specified by these policies. Only recently have researchers
started to explore how to improve the usability of context-
aware access control by using context information more
intensively [7], [11]. Our work constitutes an advancement
in this line of research, but going even further. By utilizing
a sophisticated context model and data analysis methods
grounded in real-world ground truth data, we aim at a system
that is not only capable of triggering access control rules
based on context, but that actually provides the capability
to assess the security and privacy of the context itself
dynamically. We envisage that such functionality would
be applicable also to many other security applications on
smartphones, besides access control.

Contributions and Roadmap. Our contributions are as
follows:
• A sociological survey of user perceptions as to how

the location and surroundings of a smartphone affect



the security and privacy of users (Section III). We use
survey techniques widely accepted in the social sciences
community.

• The design and implementation of ConXsense, the first
context-aware access control framework for smart-
phones that provides automatic, adaptive and personal-
ized policy decisions for context dependent access control
(Sections IV and VI). Our interdisciplinary approach
uses the results of the sociological study to design and
implement a sophisticated context model as well as data
analysis and machine learning techniques for estimating
the sensitivity and safety of contexts dynamically (Sec-
tion V). It also integrates them with operating system
security components and uses the sensitivity and safety
assessments to select appropriate access control rules thus
constructing an end-to-end context-aware access control
system (Section IV).

• The application of ConXsense to two concrete use cases
(Section II): protection of smartphone data by using
ConXsense to dynamically configure idle screen locking,
and defending against sensory malware. ConXsense,
however, is applicable to a wide range of other security
and privacy-related use cases.

After summarizing related work (Section VII), we conclude
(Section VIII) with some outlines of future work.

II. PROBLEM DESCRIPTION

Problem Setting. We focus on context-based access control
in two different flavors: First, we aim at protecting the in-
formation in the ambient “context” of the device (i.e., the
environment the device finds itself in) from malicious or
untrusted applications on the device. In particular, we want to
prevent or limit the ability of untrusted applications to gather
information from contexts that are sensitive. We can further
subdivide sensitive contexts into private contexts, where the
sensitive information in the context is private to the user
of the device, and confidential contexts where the sensitive
information belongs to someone else but the user still wants
to protect this information from untrusted apps. The user’s
home is an example of a private sensitive context, whereas
the user’s workplace is an example of a confidential sensitive
context. Second, we want to protect the applications and data
on the device from potential threats in the context: we want to
ensure safety for the applications and user data by limiting the
potential damage arising from someone physically accessing
the device without the user’s approval. In other words, we
want to assure privacy (case 1) as well as safety (case 2).
Adversary Model. For the privacy case, the adversary is
an app already installed on the device. We assume that the
application has already been granted the necessary privileges
during installation and has therefore access to the contextual
sensors on the mobile device. The application may be a Trojan
Horse (e.g., sensory malware) or a benign but somewhat
intrusive application. For the safety case, the adversary is a
person in the context with physical access to the device. The

person may be malicious (a thief) or honest-but-curious (a
colleague or sibling) or “clueless” (a small child).
Assumptions. We assume that the user’s device is equipped
with a variety of sensors capable of recording information
about its ambient context. This information typically includes
things like GPS location, information about WiFi access
points and Bluetooth devices in range, accelerometer readings,
camera snapshots, audio samples, magnetometer readings,
luminosity and proximity sensor readings, etc. We also assume
that the device has some form of a fine-grained access control
system available (such as ours), and that malware on the device
cannot circumvent the access control system. 1

Objective and validation. Our objective is to design a context
profiling framework that can use available contextual infor-
mation to automatically and dynamically configure the fine-
grained access control system in order to provide protection
against the type of adversaries we discussed above.

With the help of our framework, the device would be able to
autonomously identify relevant contexts and suitable policies
for these contexts based on limited user feedback, without the
need for the user to explicitly define these contexts and assign
policies to them beforehand.

In order to be successful, our framework must be able to
identify relevant contexts of the user, determine the sensitivity
and safety of the context from the user’s point of view and
select appropriate access control rules for the fine-grained
access control system.

In the case of privacy, we want to thwart sensory malware
applications on the affected device from collecting sensitive
information by using the mobile device sensors while the user
is in a sensitive context. On the other hand, access to context
sensors for benign third-party apps should be restricted as little
as possible when the user is not in a sensitive context. We do
not want to limit the functionality and thus the user-experience
of legitimate apps that need relevant context information to
function properly. Similarly, in the case of safety, we want
to minimize the chances that an unauthorized person in the
context has access to a user’s device. We will do this by
configuring the idle screen lock dynamically based on the
safety level of the context, while trying to strike a balance
between maximal safety and the user annoyance of having to
unlock the device in safe contexts.

In both cases, we will evaluate the effectiveness of the
framework by comparing how it performs against ground truth
data that we collect from a user data collection trial.

III. USER SURVEY

User perceptions of safety and sensitivity of contexts are im-
portant aspects for the design of our framework. To study the
factors that influence the user’s views of safety and sensitivity,
we conducted a survey that was answered by 122 participants
aged 18-56, including people from different household types

1Possible malware that would be able to use operating system (root) exploits
to circumvent the enforcement of the context-aware access control system is
outside the scope of this paper.



and representing different organizational positions, technical
and non-technical, researchers, secretaries and managers.

Following a Mixed Methods [12] approach, we designed a
statistical-quantitative survey [13] using quantitative questions
to identify facts by statistical analysis [14] combined with
open-ended, qualitative questions for investigating the under-
lying reasons for the perception of safety and sensitivity. The
text of the survey questionnaire is available for reference in
appendix A.

Our understanding of “safety” is adopted from social sci-
ences: A private place like home is perceived as safe due to
the predictability of and control over the environment and the
familiarity of people therein. Public places on the other hand,
lack these aspects and are typically not perceived as safe [15].
We explicitly exclude the notion of safety in criminal and
other social contexts, and focus specifically on the notion of
safety with regard to the usage of mobile devices. Therefore,
we follow the assumption in [7] that familiar contexts with
familiar people are “safe”, and there is no need to protect
the smartphone in such contexts (e.g., by activating the idle
screen lock). While it does not seem surprising that a highly
familiar place like “home” would be perceived as safe, some
studies report perceptions of another very familiar context,
namely “work” to be more diverse [16]. This motivated us to
specifically investigate the differences in perceptions related
to these contexts, “home” and “work”.

Another dimension in addition to the perception of a context
being “safe” or “unsafe” is the distinction between “sensitive”
and “public” contexts. We consider a context “sensitive” if
its context information is private to the user or contains
confidential information so that applications on the user’s
smartphone should not have access to it without the user’s
explicit approval. For example, a person’s workplace, the
doctor’s office, and a person’s home are likely to be perceived
as sensitive environments since these contexts typically contain
private and confidential information. In contrast, a “public”
context is of such generic or public nature, that it does not
reveal significant private or confidential information.

With our survey, we sought to identify, which are the
primary factors affecting the perception of contexts as safe
or sensitive w.r.t. to the usage of smartphones. As suggested
in earlier work [7], we aimed to particularly investigate the
role of familiar contexts and familiar people as factors.
Survey Results. As shown in table I, the majority of peo-
ple (94% and 55%, respectively) perceive familiar contexts
(Home, Work) as safe. It seems clear that the familiarity of a
place affects the perceived safety of the context positively.
However, a significant fraction of people (40%) perceive
“work” as “unsafe”, suggesting that the familiarity of the
context alone is not a sufficient indicator for safety, as we
shall see below.

The survey data in table I also suggest that a significant
fraction of respondents (46% and 42%, respectively) feel
that a familiar context (Home, Work) is also sensitive. This
dependency of the sensitivity of a context on the context’s
familiarity is, however, clearly not as strong as it is for safety.

Nevertheless we consider the familiarity of a context to be a
factor that affects the sensitivity of a context positively.

In table II we can see that the majority of respondents
(66%) found safety to depend on people present in the context.
From the responses to the open-ended questions, it is clear
that the feeling of safety is particularly caused by people
that are familiar to the user. Similarly, 68% of respondents
say the presence of people can also cause a context to be
perceived as unsafe. Answers to open-ended questions showed
that the presence of unfamiliar people implies unpredictability
and represents risk, leading to a feeling of unsafety. We can
therefore conclude, that the feeling of unsafe is caused by the
presence of people that are unfamiliar to the user.

Therefore, it seems that the following factors affect the
perception of safety of a context: On the one hand, familiar
people in the context cause a context to be considered safe.
However, the presence of unfamiliar people in the context is a
reason for that context to be considered unsafe. Keeping this
in mind, we can understand, why according to table I 40% of
respondents specified “work” as an unsafe place. While the
place “work” itself is safe as long as there are only familiar
people around, the appearance of unfamiliar people cause the
perception of a formerly safe context to change to unsafe.

From table II we see that the perception of sensitivity does
not appear to be affected by the presence of people. More
respondents (43% and 42% vs. 39% and 36%, respectively)
believe that the people present in the context do not influence
whether the context is sensitive or public. It would therefore
seem that it is the private or confidential information often
present in specific contexts that plays a more significant
role in the perception of sensivity of contexts. And in fact,
confidential information is one of the main reasons given by
respondents in open-ended question answers for why a context
is considered sensitive.

TABLE I: Perceptions of Home vs. Work

Context Sensitive Public Safe Unsafe
Home 46% 17% 94% 4%
Work 42% 21% 55% 40%

TABLE II: Influence of people on the perceived safety and
sensitivity of the context

Question Yes No
Safe depends on people 66% 14%
Unsafe depends on people 68% 11%
Sensitive depends on people 39% 43%
Public depends on people 36% 42%

Based on the analysis of the survey results above, we can
identify following main factors affecting users’ perceptions of
sensitivity and safety:
• Familiar contexts tend to be regarded as safe.
• Familiar people in context tend to make contexts to be

regarded as safe.
• Familiar contexts tend to be regarded as sensitive.
• Unfamiliar people in context tend to make contexts to be

regarded as unsafe.



Since the familiarity of contexts and people seem to be
central factors affecting the perceptions of mobile device users,
we designed our context model in a way that we can build
context profiles that can 1) identify relevant contexts and
model their familiarity, and, 2) track encounters with other
persons and identify familiar people by observing their mobile
devices. As described more closely in sections IV and V, we
designed heuristic evaluation functions that attempt to capture
the logic behind these factors. Keeping these factors in mind,
we also selected context features as input data for inductive
evaluation functions that would allow machine learning models
to learn about user’s perceptions of sensitivity and safety and
make predictions about them based purely on the context
profiles and incoming context information.
Discussion. The analysis presented above supports our com-
mon understanding of the perception of safety and sensitivity
and even shows which factors influence the perception of
contexts. However, exceptions exist, like, e.g., those 4%,
who consider home (familiar context with familiar people) as
“unsafe”. Reasons for this can be various. Answers to open-
ended questions suggest that even in familiar contexts the
perception of safety changes when untrusted people appear
or it is caused by what we call the “toddler scenario”: the
influence of familiar people (e.g., a young child, or spouse)
considered as clueless or honest but curious, causing a person
to prefer her device to remain protected also in familiar
contexts. To investigate these special cases, more detailed
questions on contexts that are perceived as sensitive would
need to be included. However, sociological literature suggests
that statements about such contexts are perceived as intrusive
and will therefore not be answered [15], [16]. This concern
was also reflected in some responses we received about the
online questionnaire. Therefore, and because exceptional cases
seem to be a marginal phenomenon, we decided to focus our
investigation at this point on the common cases and address
more exceptional cases in subsequent studies.

IV. SYSTEM DESIGN

Figure 1 shows the high-level design of the ConXsense
system. The Context Sensing Layer is responsible for acquir-
ing relevant context data from the device’s sensors at regular
intervals (e.g., once a minute). These data are processed by
the ContextProfiler to identify relevant context objects and
accumulate context profiles for them. The context profiles are
used by the Context Evaluator to assess the sensitivity/safety
level of the context. The Context Evaluator regularly evalu-
ates two functions: the context sensitivity evaluation function
λ̂ providing an estimate of the sensitivity of the context and
the context safety evaluation function φ̂ providing an estimate
of the safety of the context. We will show in section V, how
these evaluation functions are computed utilizing contextual
data from the environment.

The Context Evaluator furthermore continuously informs
the Access Control Layer of changes in the device’s con-
text’s sensitivity/safety level as shown in Figure 2. Context-
dependent access control rules for sensitive functions are
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Fig. 1: ConXsense System Design

stored in the Access Control Policy. These rules describe
in which contexts, more precisely in which sensitivity/safety
level, apps of different trust levels may access sensitive
functions. Policy Enforcement Points (PEPs) in relevant
operating system functions query the PolicyServer for access
control decisions at runtime. The PolicyServer thereby acts
as a Policy Decision Point (PDP) in our access control
architecture. Furthermore, the PolicyServer proactively for-
wards changes in the current context’s sensitivity/safety level
to selected components, such as the Lockscreen, to enforce
changes in their runtime behavior.

Access-Control Layer 

Trusted 
App 

Untrusted 
App  

 
 

PEP 

Sensor 
API 

ConXSense Profiler 

Access Control 
Queries 

Inter-Component 
Communication 

Context Information 

Lockscreen 

Context 
Information 

 
 

PEP 

Camera 
API 

Access Control 
Queries 

Policy Server 

Access Control Policy 

Access Control Rules 

Fig. 2: Enforcement of Context-based Policies

In Section VI we apply the ConXsense architecture in
two different use-cases: We first show how the ConXsense
architecture can be used to protect the user from sensory
malware. We then present a context-aware device Lockscreen
which mitigates the effects of device loss and theft.

For the correctness and usability of the framework, the
performance of the Context Evaluator is of vital importance,
since the correctness of the estimates directly impacts the
degree of protection the framework provides on one side,
and, the impact on the usability on the other hand. We model
therefore the goodness of the system using following figures
of merit to estimate the performance of the framework.

Given a context c(t) at timepoint t the Context Evalua-
tor evaluates regularly two functions, the context sensitivity
evaluation function λ̂ : {c(t) | t ∈ T } → {sensitive, public}



and the context safety evaluation function φ̂ : {c(t) | t ∈ T } →
{safe, unsafe}. In addition, we denote the ’true’ sensitivity and
safety levels of a context c(t) at time point t with λ(c(t)) and
φ(c(t)), respectively.
Protection level. The protection level that our framework pro-
vides is defined by the fraction of times the system correctly
identifies contexts as sensitive or unsafe and thus causes the
system to enforce appropriate access control rules to protect
against sensory malware or device theft/misuse.

The protection level πλ̂ ∈ [0, 1] of the context sensitivity
evaluation function λ̂ is defined as the fraction of times
during which Context Evaluator correctly identifies sensitive
contexts as sensitive:

πλ̂ =

∑
t∈T 1{sensitive}(λ̂(c(t)))× 1{sensitive}(λ(c(t)))∑

t∈T 1{sensitive}(λ(c(t)))

where 1A(x) is an indicator function, s.t. 1A(x) = 1, if
x ∈ A, and 0 otherwise.

Similarly, for the context safety evaluation function φ̂, we
define the protection level πφ̂ ∈ [0, 1] as the fraction of times
the Context Evaluator correctly identifies unsafe contexts as
unsafe:

πφ̂ =

∑
t∈T 1{unsafe}(φ̂(c(t)))× 1{unsafe}(φ(c(t)))∑

t∈T 1{unsafe}(φ(c(t)))

The higher the protection level that the evaluation functions
provide, the better the framework is able to protect the user
against aforementioned threats.
Usability deterioration. Each time the ConXsense framework
causes the Access Control Layer to enforce access control
limitations because the context is estimated to be sensitive
(by limiting access to sensors) or unsafe (by activating the
Lockscreen), the usability of the device inevitably deterio-
rates. In truly sensitive/unsafe contexts this is inevitable, but
we want to limit the unnecessary enforcement of limiting
access control rules as much as possible in order to provide
better user experience for the user in such contexts in which
strict protection measures are not needed. To be able to
measure the unnecessary deterioration of user experience, we
define the following figures of merit. For the context sensitivity
evaluation function λ̂, we define the usability deterioration
ξλ̂ ∈ [0, 1] to be the fraction of times the Context Evaluator
incorrectly identifies a public context as sensitive:

ξλ̂ =

∑
t∈T 1{sensitive}(λ̂(c(t)))× 1{public}(λ(c(t)))∑

t∈T 1{public}(λ(c(t)))

Similarly, for the context safety evaluation function φ̂, we
define the usability deterioration ξφ̂ ∈ [0, 1] as the fraction
of time the Context Evaluator incorrectly identifies a safe
context as unsafe:

ξφ̂ =

∑
t∈T 1{unsafe}(φ̂(c(t)))× 1{safe}(φ(c(t)))∑

t∈T 1{safe}(φ(c(t)))

The lower the usability deterioration scores ξλ̂ and ξφ̂ are,
the better usability for users our framework is capable to
provide.

In section VI, we will use the above figures of merit to
evaluate the implementation of our system based on real data
collected from a user study. In the following, we present the
context model based on which the input data for the sensitivity
and safety evaluation functions λ̂ and φ̂ are generated.

V. CONTEXT MODEL

In this section, we present our context model that we apply
in our current implementation of the ConXsense framework.
Based on the learnings of the user survey (section III), we
base our context model on two important aspects: i) Location
Context and Contexts of Interest (CoI) for modeling contexts
and their familiarity and ii) the Social Context for modeling
familiar and unfamiliar people in context.
Contexts-of-Interest (CoI). For our purpose, Contexts-of-
Interest (CoIs) correspond to locations that a user visits often
and/or spends a significant amount of time in, e.g., home,
workplace, grocery store, etc. Some places might be best
identified by profiling the GPS observations and identifying
geographical areas that accumulate particularly many GPS
observations. For other CoIs, however, especially for CoIs
located indoors, using GPS alone might not be feasible, since
the structure of buildings often obstructs reception of required
GPS signals. Therefore, such CoIs are better identified by
using the set of WiFi access points observed at these locations
as ’signatures’ for the CoI. Hence, we adopt both GPS and
WiFi as means for identifying CoI and use them in parallel to
capture important places of the user.
Social context. In order to capture different social contexts of
users, we model people in the user’s surroundings through
their mobile devices that can be sensed through proximity
sensing technologies like Bluetooth (BT).

To capture only devices that are typically carried by persons,
we filter the BT observations by their device class so that we
consider only mobile devices like cell phones, headsets, PDAs
and other portable devices.

In the following we will define the metrics and algorithms
for measuring the above parameters and how to validate
them to estimate the context the user is in. For the reader’s
convenience, the relevant parameters used in the following def-
initions can be found in concise format also in the Appendix,
Table IV.

A. Detection of Contexts of Interest (CoIs)
We consider two kinds of CoIs: GPS-based CoIs which

are geographical areas on the surface of the earth, and WiFi-
based CoIs that are characteristic sets of WiFi access points
usually observed in a specific place and thus identifying the
RF environment there. GPS CoIs capture significant places of
the user in outdoor areas, and WiFi CoIs cover also indoor
locations in urban areas, where typically coverage of WiFi
access points is available. By combining both types of CoIs,
we are able to identify and detect most significant places that
users typically visit.



1) GPS-based CoIs: The identification of GPS-based CoIs
is based on position observations posi = (lati, loni) obtained
via GPS.

We denote with t(posi) ∈ N the timestamp associated with
the observation, and with dist(posi, posj) the geographical
distance of position observations posi and posj .

The sequence of GPS observations is divided into GPS stay
points, which represent visits of the user to different places,
during which the user stays within a radius of rsp from the
first GPS observation. In order for a visit to be considered a
stay point, the visit is also required to last longer than t minsp

and not to contain observation gaps longer than t gapsp .
Definition 1 (GPS stay point): A GPS stay point gps sp =

(pos1, pos2, . . . , posn) is a sequence of position observations
posi, such that ∀i, 1 < i ≤ n : dist(pos1, posi) ≤ rsp and
t(posi) − t(posi−1) ≤ t gapsp and dur(sp) = t(posn) −
t(pos1) ≥ t minsp .

We calculate for each stay point an average position poss̄p

as the average of all position observations belonging to the
stay point, i.e., poss̄p = (lats̄p, lons̄p), s.t. lats̄p =

∑n
k=1 latk
n ,

and lons̄p =
∑n

k=1 lonk

n . The average position of a stay point
represents the predominant location where the user has been
located during her visit to the stay point.

The average positions poss̄p of individual stay points are
aggregated to form rectangular geographical areas of at most
gpsmax width and length. An area is a GPS-based Context-of-
Interest, if (i) the user has visited the area more than f mincoi

times and (ii) has spent in the area longer than t mincoi in
total. More formally,

Definition 2 (GPS-based CoI): Let us denote a rectangular
area with Ci = (latmin, lonmin, latmax, lonmax) and let
gps sp(Ci) denote the set of stay points sp whose average
position poss̄p is contained in Ci. The area Ci is a GPS-based
CoI, if following conditions hold:
(1) |gps sp(Ci)| ≥ f mincoi ,
(2)
∑

spj∈gps sp(Ci)
dur(spj) ≥ t mincoi ,

(3) latmax− latmin ≤ gpsmax ∧ lonmax− lonmin ≤ gpsmax .
An observation pos falls in CoI Ci, if latmin ≤ latpos ∧
lonmin ≤ lonpos ∧ latpos ≤ latmax ∧ lonpos ≤ lonmax.
Example. As an illustrative running example, let us consider
a user who is a full-time working professional, regularly com-
muting between her place of work and home, predominantly
using public transport. Other places she regularly visits are a
grocery store close to her home, a public sports facility and the
home of a close relative. She usually carries her smartphone
with her, which continuously senses her context and context
data of her GPS location and WiFi access points.

Assume now, our example user goes to the grocery store
and stays there for 32 minutes, i.e., longer than t minsp = 10
minutes and moves only within a radius of rsp = 100 meters,
a stay point sp (Def. 1) of duration dur(sp) = 32 minutes
will be generated. The average of all position observations
posi during the stay point visit will be the stay point average
position poss̄p , most likely located in or near the grocery store.
Waypoints along her daily commuting routes, however, would

not generate any stay points, since on her way she does not
spend sufficiently long time in the same limited area.

Now, if our user visits the grocery store 10 times and stays
each time for 32 minutes, ten stay points will be generated with
average positions poss̄p located in or near the grocery store.
These average positions will be aggregated into a GPS-based
CoI C (Def. 2), because their total stay duration of 5 hours and
20 minutes is longer than the required t mincoi = 30 minutes
and there are more than the required f mincoi = 5 stay points
falling inside the CoI. The area of the CoI will be the smallest
rectangle containing all the stay point average positions poss̄p

associated with the stay point visits. The same holds for GPS-
based CoIs covering, e.g., her home or the sports facility.

Note that our notion of stay points and CoIs is not bound
to a stationary life. Also frequent travelers would obtain GPS-
based CoIs over time, given that they visit the same places
(e.g., airports or hotels) often enough and spend sufficiently
long time there.

2) WiFi-based CoIs: For identifying WiFi-based CoIs,
WiFi access point observations rf i are used. Each observation
consists of the MAC address of a detected WiFi access
point and the timestamp of the observation, which we denote
with t(rf i). The sequence of individual WiFi observations is
divided into WiFi snapshots, which are subsequences corre-
sponding to observations obtained during a single WiFi scan
of duration t maxwifi .

Definition 3 (WiFi Snapshot): A sequence of WiFi access
point observations rf i that occur within t maxwifi consti-
tute a WiFi snapshot, denoted as wifi . That is, wifi =
(rf 1, rf 2, . . . , rf n), such that t(rf n) − t(rf 1) < t maxwifi .
We denote with t(wifi) the first timestamp belonging to the
snapshot, i.e., t(wifi) = t(rf 1).

Following the notion of stay points for GPS observations,
we extend this concept to WiFi and divide the sequence of
WiFi snapshots into so-called WiFi stay points. The similarity
between snapshots is determined by calculating the Jaccard
distance2 between the first snapshot and subsequent snapshots
one-by-one. As long as the Jaccard distance between the
snapshots is less than or equal to 0.5, which means that the
intersection of the snapshots is at least as large as half of
their union, the subsequent snapshots are assigned to the stay
point. The staypoint is considered complete, if the Jaccard
distance to new WiFi snapshots grows beyond 0.5 or there is
a gap between consecutive WiFi snapshots that is longer than
t gapsp .

Definition 4 (WiFi Stay Point): A WiFi stay point wifi sp
is a sequence of WiFi snapshots wifi , in which each snapshot
has a Jaccard distance of less than or equal to 0.5 to the first
snapshot of the sequence, no consecutive snapshots have a
time difference larger than t gapsp , and the duration of the
snapshot is greater or equal to t minsp :
wifi sp = {wifi1,wifi2, . . . ,wifin}, such that
(1) ∀i, 1 < i ≤ n : Jδ(wifi1,wifi i) ≤ 0.5,

2The Jaccard distance measures the dissimilarity between sets. It is calcu-
lated for two sets A and B as Jδ(A,B) =

|A∪B|−|A∩B|
|A∪B|



(2) t(wifi i)− t(wifi i−1) ≤ t gapsp , and
(3) dur(wifi sp) = t(wifin)− t(wifi1) ≥ t minsp .
These criteria for WiFi stay points were selected, because it
is not uncommon that WiFi access points are missed by the
context scan [17]. This is apparently not dependent on the
signal strength of the missed access point, so one needs to
take into account that even very strong access point beacons
will be missed from time to time.

Each WiFi stay point has a characteristic set of access points
char(wifi sp) which includes those access points that occur
at least in half of all WiFi snapshots belonging to the stay
point.

Definition 5 (Characteristic Set): A characteristic set
char(wifi sp) of WiFi access points rf for WiFi stay point
wifi sp is defined as
char(wifi sp) = {rf i| count(rf i,wifi sp) ≥ |wifi sp|

2 },
where count(rf i,wifi sp) = |{wifik ∈ wifi sp|rf i ∈
wifik}|.
A set of access points is a WiFi-based CoI, if there are at least
f mincoi WiFi stay points having this set of access points as
their characteristic set of access points, and the stay points
have a duration of at least t mincoi in total.

Definition 6 (WiFi-based CoIs): Let C be a set of WiFi
access points and wsp(C ) be the set of WiFi stay points that
have C as their characteristic set, i.e.,
wsp(C ) = {wifi sp | char(wifi sp) = C}.
The set C is a WiFi-based CoI, if following conditions hold:
(1) |wsp(C )| ≥ f mincoi , and
(2)
∑

wifi sp∈wsp(C ) dur(wifi sp) ≥ t mincoi .
A WiFi snapshot wifi falls within CoI C , if Jδ(C ,wifi) ≤ 0.5.

When our example user arrives at her workplace, a WiFi
snapshot wifi is recorded. This snapshot and following snap-
shots having a Jaccard distance of less than or equal to 0.5 to
the first one form a WiFi stay point wifi sp, given that the time
difference of the first and last snapshot is greater than t minsp

and there are no gaps in the WiFi snapshot observations longer
than t gapsp . The characteristic set char(wifi sp) of access
points of this stay point consists of access points mostly
observed at the workplace. During subsequent visits to the
workplace, more WiFi stay points with the same characteristic
set will be generated. If at least f mincoi such stay points
have been observed and the total visit duration dur(wifi sp)
of these stay points reaches t mincoi , the characteristic set
constitutes a WiFi-based CoI for the user’s workplace.

B. Context Detection

Once the GPS- and WiFi-based CoIs have been identified,
new incoming GPS, WiFi and Bluetooth observations can be
used to identify the location context and social context of the
user at any point in time. These are required in order to be
able to model, which places a user has visited and which other
people the user has encountered.

1) Location context: We first define the notions of visits
and visit time, which are required to determine, when and for
how long a user has been visiting a particular CoI.

Definition 7 (Visits): A user’s visit VC to a GPS-based
CoI C = (latmin, lonmin, latmax, lonmax) is a sequence of
position observations posi = (lati, loni) falling within the
CoI and having timestamps at most εV apart from each other:
VC = (pos1, pos2, . . . , posn), where ∀posi ∈ VC : latmin <
lati ∧ lonmin < loni ∧ lati < latmax ∧ loni < lonmax, and
∀i, 1 < i ≤ n : t(posi) − t(posi−1) < εV . Similarly, a visit
VC to a WiFi-based CoI C is a sequence of WiFi snapshots
wifi falling within the CoI and having timestamps at most εV
apart from each other. That is, VC = (wifi1,wifi2, . . . ,wifin),
where Jδ(C ,wifi i) ≤ 0.5 and ∀i, 1 < i ≤ n : t(wifi i) −
t(wifi i−1) < εV . We denote the set of all visits VC of the
user to CoI C with VC .

In our running example, whenever our user arrives at her
workplace, a WiFi snapshot wifi (or a position observation
pos) will fall into the workplace CoI. Beginning from this
snapshot (or position observation) all subsequent observations
falling within the CoI will be part of a visit V to the CoI, as
long as the time distance between consecutive snapshots (or
position observations) is less than εV = 5 minutes.

Definition 8 (Visit Time): We define the visit time TV of
a visit V to consist of the sequence of timestamps falling
between the first and last position observation or wifi snapshot
belonging to the visit. That is, TV = (t1, t2, . . . , tn), such
that ∀ti : t(pos1) ≤ ti ≤ t(posn) for GPS-CoI visits and
t(wifi1) ≤ ti ≤ t(wifin) for WiFi-CoI visits. If a visit V
consists of only a single position observation or WiFi snapshot,
i.e., V = (posi) or V = (wifi i), we assume that the visit
covers a timespan of half of the duration of the scanning
interval tscan: TV = (ti−k, ti−k+1, . . . , ti, . . . , ti+k−1, ti+k),
where ti+k − ti−k = tscan

2 and ti = t(posi) or ti = t(wifi i),
respectively.

Following this definition, the visit time TV of a visit V
of our example user to the grocery store CoI C covers all
timestamps ti starting from her arrival, i.e., the timestamp of
the first WiFi snapshot t(wifi1) (or GPS observation t(pos1))
falling into the CoI up until to when she leaves the CoI, i.e.,
until the timestamp t(wifin) (or t(posn)) of the last WiFi
snapshot wifin (or GPS observation posn) that falls into the
CoI.

Definition 9 (Location Context): A location context Lt at
timestamp t is the set of CoIs C that the user is visiting during
that point of time, i.e., for which there exists a visit V , whose
visit time TV contains t, i.e., Lt = {C | ∃V ∈ VC : t ∈ TV }
Note, that CoIs can be overlapping, which means that a user
can be visiting several CoIs simultaneously. If the user is
not visiting any of the CoIs at a specific point in time, the
corresponding location context will be empty.

Definition 10 (Familiar CoIs): The set of Familiar CoIs
Cfam is the set of all such CoIs that are particularly important
for the user, that is, CoIs where he has spent longer than
t minfamcoi of time during at least f minfamcoi visits. That
is, Cfam = {C1,C2, . . . ,Cn}, such that ∀Ci ∈ Cfam :∑
V ∈VCi

TV ≥ t minfamcoi ∧ |VCi | ≥ f minfamcoi .
For our example user, familiar CoIs would be identified at
places like her home or her workplace, since she has visited



these places more often than f minfamcoi = 5 times and has
spent altogether longer than t minfamcoi = 60 minutes during
these visits.

2) Social context: The notions of encounter and encounter
time are required in order to be able to identify, which devices
(representing other people) and for how long the user’s mobile
device has encountered, so that a distinction of familiar and
unfamiliar people in the social context can be made.

Definition 11 (Encounters): An encounter Ed of a user with
a device d is a sequence of Bluetooth observations bt i of
device d with timestamps that are at most εE apart from each
other: E = (bt1, bt2, . . . , btn), where ∀i, 1 < i ≤ n : bt i =
d∧t(bt i)−t(bt i−1) < εE . We denote the set of all encounters
of the user with a device d with Ed .

When our example user arrives at her workplace, her device
obtains a Bluetooth observation bt1 = d of her colleague’s
device d . This observation and any subsequent device obser-
vations bt i = d of the colleague’s device form an encounter
Ed with the colleague’s device, as long as the time distance
between consecutive device observations is less than εE = 5
minutes.

The purpose of allowing gaps of at most εE = 5 minutes
is to be able to handle missed device observations (which are
not uncommon with Bluetooth sensing) without breaking a
contiguous sequence of device observations into two separate
encounters too easily.

Definition 12 (Encounter Time): We define the encounter
time TE of an encounter E to consist of the sequence
of timestamps falling between the first and last device ob-
servation of the encounter. That is TE = (t1, t2, . . . , tn),
such that ∀ti : t(bt1) ≤ ti ≤ t(btn). If an Encounter
E consists of a single device observation, i.e., E = (bt i),
we assume that the encounter covers a timespan of half of
the duration of the scanning interval tscan and set: TE =
(ti−k, ti−k+1, . . . , ti, . . . , ti+k−1, ti+k), where ti+k − ti−k =
tscan

2 and ti = t(bt i).
The encounter time TE of an encounter of our example user

with the device of her colleague would cover all timestamps
beginning from timestamp t(bt1) of the first observation bt1

of the colleague’s device, up until timestamp t(btn) of the last
observation btn of the colleague’s device, made immediately
before she leaves work and the colleague’s device gets out of
range.

Definition 13 (Device Context): A device context Dt at
timestamp t is the set of devices d that are encountered during
that point of time, i.e., for which there exists an encounter E,
whose encounter time TE contains t, i.e., Dt = {d | ∃E ∈ Ed :
t ∈ TE}.

Definition 14 (Familiar Devices): The set of familiar de-
vices Dfam is the set of all such devices that the user has
encountered at least f minfamdev times and for which the
total duration of the encounters is at least t minfamdev . That
is, Dfam = {d1, d2, . . . , dn}, such that ∀di ∈ Dfam :∑
E∈Ed TE ≥ t minfamdev ∧ |Ed| ≥ f minfamdev .
Familiar devices d for our example user would be the

mobile devices of familiar people like her spouse or her

colleagues at work which she has encountered more often
than f minfamdev = 5 times and the total duration of these
encounters is longer than t minfamdev = 30 minutes.

However, a mobile device of a person like the member of
the house cleaning service at her office would not become a
familiar device, since even though that person’s device might
be encountered nearly daily, the encounters would typically be
of such short duration that they would not aggregate significant
amounts of total encounter time.

C. Context Profiles

Based on the above context model, the following context
profiles are aggregated for the user: a CoI profile CoIs and a
device profile Devs . The CoI profile CoIs = {C,Cfam,P}
consists of the set of all identified CoIs C, the set of fa-
miliar CoIs Cfam and mapping P : C → N × R,C 7→
(visitsC , durC ) providing the total amount of visits visitsC

and total duration of visits durC to each CoI C ∈ C.
Similarly, the device profile Devs = {D,Dfam,O} consists

of the set of all encountered devices D, the set of familiar de-
vices Dfam and a mapping O : D → N×R, d 7→ (encd , durd)
providing the total amount encd and total duration durd of
encounters with each device d ∈ D.

D. Context Evaluation Functions

Using the above context profiles, we instantiate two alter-
native versions of the context evaluation functions λ̂ and φ̂
introduced in section IV: heuristic and inductive.

1) Heuristic evaluation functions: In section III, we iden-
tified the major factors affecting the user’s perceptions of
context sensitivity and safety. Following these factors, we
formulate following heuristics for evaluating the sensitivity
and safety of contexts:
(a) If one is in a familiar CoI, the context is sensitive.
(b) If one is in a familiar CoI, the context is also safe, unless
there are unfamiliar devices in the context.

Definition 15 (Heuristic Sensitivity Evaluation): Let c(t) =
(Dt,Lt) denote the context of the user’s device at timestamp
t. The heuristic evaluation function for sensitivity λ̂heur(c(t))
evaluates context c(t) as sensitive if any CoI C in the current
location context Lt is a familiar CoI. That is

λ̂heur(c(t)) =

{
sensitive Lt ∩ Cfam 6= ∅
public Lt ∩ Cfam = ∅

Definition 16 (Heuristic Safety Evaluation):
The heuristic evaluation function for safety φ̂heur(c(t)) eval-
uates context c(t) as safe if the user is in a familiar CoI and
at most d maxunfam devices d in the device context Dt are
not familiar. That is

φ̂heur(c(t)) =

{
safe |Dt −Dfam| ≤ d maxunfam

unsafe otherwise.

2) Inductive evaluation functions: The inductive evaluation
functions λ̂ind and φ̂ind utilize statistical machine learning
models that are based on supervised learning. This means that
the models are trained with labeled training vectors (label , ~tr),
where ~tr = (f1, f2, . . . , fn). The labels for the training vectors



are obtained from user feedback, i.e., from events where the
user of the device has provided explicit feedback about the
perceived sensitivity and safety of the context:

Definition 17 (User Feedback): A user feedback
fb(t) at timepoint t is a tuple (fbsens , fbsafe), where fbsens ∈
{sensitive, public} and fbsafe ∈ {safe, unsafe}.

For each user feedback event fb(t), a training vector ~tr(t) is
generated based on the context c(t). The components fi (also
called features) of ~tr(t) are calculated based on the current
context at time of the feedback event, c(t) = (Lt,Dt) and the
aggregated context profiles CoIs and Devs . The values of the
individual components of the training vectors ~tr are detailed
in table III.

The training vectors are used to train two classifier models
M , one for predicting the sensitivity of a context, Msens, and
one for predicting the context’s safety, Msafe.

M a
sens = train(a, Fsens), M a

safe = train(a, Fsafe)

where a denotes the used machine learning algorithm and
Fsens = ((fbsens(t1), ~tr(t1)), . . . , (fbsens(tn), ~tr(tn))) and
Fsafe = ((fbsafe(t1), ~tr(t1)), . . . , (fbsafe(tn), ~tr(tn))) denote
the sequences of labeled training data vectors. Using the
trained classification models, we can now define the inductive
context evaluation functions λ̂ and φ̂ as follows:

λ̂(c(t)) = classify(a,M a
sens, ~e(t))

φ̂(c(t)) = classify(a,M a
safe, ~e(t))

where ~e(t) = (f1, f2, . . . , fn) denotes an evaluation vector
derived from the context c(t) and the context profiles CoIs
and Devs . The components of the evaluation vector are the
same as for the training vectors ~tr and are detailed in table III.

VI. IMPLEMENTATION AND EVALUATION

Our implementation of ConXsense is based on the Android
OS and comprises three main components: 1) a Context Data
Collector app for mobile devices which collects contextual
data and ground truth feedback; 2) A ContextProfiler for
preprocessing and evaluating the collected data and generating
predictions about the sensitivity/safety of contexts; 3) An
Access Control Layer based on the FlaskDroid architec-
ture [18] which enforces context-dependent access control
policies using the context predictions of the ContextProfiler.

A. Context Data Collector

1) Implementation: Our Context Data Collector app for
the Android operating system uses a background Service
to collect context data in intervals of 60 seconds. This is a
required tradeoff between the battery lifetime and the quantity
of the collected data, since for the data collection we aim at a
battery lifetime of at least 12 hours. The collected context data
comprises location information (GPS, WiFi and cellular net-
work triangulation), nearby Bluetooth devices and WiFi access
points, acceleration sensor information as well as information

about user presence and her interaction with apps (Activities).3

In order to evaluate the context evaluation algorithms, the
Context Data Collector app also collects ground truth data
from the participating users. The users regularly report their
perceived sensitivity and safety of the current context in one
of the following ways (cf. Figure 3): 1) The participants
use context feedback buttons on the device’s UI; 2) NFC
tags provided to the participants are used to trigger context
reporting; 3) If no ground truth data has been provided by the
user in the last two hours, the app reminds the user to do so
via sound, vibration and flashing LED notifications. Context
and ground truth data are stored in a SQLite database and
periodically uploaded to a server via HTTPS.

(a) Feedback using Context
Feedback Buttons

(b) Feedback using Context
NFC Tags.

Fig. 3: Android Data Collector App

2) Evaluation: We installed the Context Data Collector
app on the Android smartphones of 15 test users. We then
collected data over a period of 18-68 days from different
users, 56 days per user on the average. The total dataset
contained data from 844 distinct user days. On the average,
users provided ground truth feedback on 46 days of the data
collection period, resulting in a ground truth dataset containing
3757 labeled data points about the sensitivity of the context.
Based on early results of the user survey we conducted in
parallel, we decided to also incorporate feedback about the
perceived safety of the context to the Context Data Collector.
Thereby, the ground truth dataset could be enriched with 1861
labeled data points providing also feedback about the users’
perception of the safety of the context.

Since our test participants tended to spend most of their
time in contexts that are sensitive and/or safe, the distributions
of ground truth are also skewed towards sensitive and safe
feedbacks. 80.44% of the ground truth feedback specified
contexts as being sensitive and 19.56% as public. For ’safety’
the distribution was 81.84% for safe and 18.16% for unsafe.

Some users had provided only very little feedback for

3Context Data Collector is a generic solution collecting more data than
required for the current ConXsense algorithms.



TABLE III: Features for training the inductive evaluation classifiers

Feature name Description
f1 max-gps-coi-visit-time Maximum visit time of any GPS-based CoI in Lt
f2 nbr-gps-coi-visits Number of visits to GPS-based CoI with maximum visit time
f3 max-wifi-coi-visit-time Maximum visit time of any WiFi-based CoI in Lt
f4 nbr-wifi-coi-visits Number of visits to WiFi-based CoI with maximum visit time
f5 nbr-btdev Number of Bluetooth devices in Dt, i.e. |Dt|
f6 nbr-fam-btdv Number of familiar Bluetooth devices in Dt, i.e. |Dt ∩ Dfam|
f7 avg-encounter-time Average encounter time of familiar devices in Dt
f9 avg-nbr-encounters Average number of encounters of familiar devices in Dt

some ground truth classes (especially for public and unsafe).
Training a classifier with too few data points for a class would
not provide meaningful results, and therefore we decided to
reject such users’ ground truth datasets from our evaluation
which did not contain at least 10 data points in a ground truth
class. Hence, we had to remove the data of four participants
from the sensitivity dataset, so that our evaluation dataset
contained a total of 3512 labeled data points (319.2 per user
on average). For the ground truth dataset for safety, eight
participants had provided sufficient amounts of feedback, so
that the evaluation dataset for safety contained finally a total
of 1551 labeled data points (193.9 points per user on average).

3) Battery lifetime: During the data collection a battery
lifetime of at least a working day (12h) was reported by the
users on Samsung Galaxy Nexus and Nexus S devices, which
we consider reasonable since no optimization regarding power
consumption has been performed yet.

B. Context Profiler

1) Implementation: We implemented the functionality of
the ContextProfiler as off-line data processing scripts utilizing
bash shell scripting, awk and Python. The scripts were used
to identify individual GPS and WiFi CoIs for each user, and to
calculate the familiarity of Bluetooth devices that the users had
encountered during the data collection period. The heuristic
context evaluation functions were also implemented as data
processing scripts. The scripts were also used for extracting
the feature vectors for training and evaluating the inductive
evaluation functions which were realized and evaluated by us-
ing the Weka data mining suite [19] and its provided algorithm
implementations for k-NN, Random Forest and Naı̈ve Bayes
classfiers.

2) Evaluation: The heuristic evaluation functions
λ̂heur(c(t)) and φ̂heur(c(t)) were run on all context
observations c(t) for which also ground truth feedback
fb(t) was available. The outputs of the heuristic evaluation
functions were then compared with the ground truth fb(t)
and the protection levels πλ̂heur and πφ̂heur and the usability
deterioration measures ξλ̂ and ξφ̂ (cf. section IV) were
calculated.

The same input data were used also to investigate three
alternative inductive context evaluation functions based on
popular classifier algorithms: λ̂kNNind and φ̂kNNind utilizing a k-
nearest neighbour (kNN) classifier, λ̂NBind and φ̂NBind , based on a
Naı̈ve Bayesian classifier and λ̂RFind and φ̂RFind using a Random

Forest classifier.
The k-nearest neighbours (kNN) classifier bases its pre-

diction on comparing a testing datapoint to the n closest
observations to it in the training dataset. The prediction is the
most frequent class label in this set of observations. The Naı̈ve
Bayes classifier is a simple probabilistic classifier which has
been successfully used, e.g., in spam e-mail detection [20].
Random Forest is an ensemble method, that is commonly
used for classification tasks. It randomly picks subsets of
input attributes and trains decision trees for them. It uses the
most frequently predicted label provided by this set of tree
classifiers as the final prediction.

The inductive context evaluation functions
λ̂kNNind , λ̂NBind , λ̂

RF
ind and φ̂kNNind , φ̂NBind , φ̂

RF
ind were tested using

10-fold cross-validation and the above-mentioned figures of
merit were calculated for each algorithm and each user. The
results of the evaluation are shown in figure 4.

As can be seen from figure 4a, all tested context evaluation
functions provide reasonable results for context sensitivity pro-
tection levels, the best results being provided by the Random
Forest and k-NN classifier-based functions (average of both
being > 0.9). However, looking at the usability deterioration
metrics in figure 4c, one sees that these evaluation functions
pay a high price for their high protection level: the level of
usability deterioration is for many users very significant (av-
erage being > 0.6). The Bayesian classifier-based evaluation
functions shows significantly better performance in this regard
(average being 0.18), but also has to acknowledge a lower
protection level (average being 0.63). Somewhat surprising
is, how well the very simple heuristic evaluation functions
perform in sensitivity evaluation: even though the heuristic
context sensitivity function provides relatively high protection
levels (average being 0.74), the usability deterioration mea-
sures remain acceptably moderate (average being 0.27).

For safety evaluation, the situation is very different. As seen
in figure 4b, both Random Forest and k-NN classifier-based
evaluation functions fail to provide sufficient protection levels
(average being < 0.40). This has probably to do with the
fact that contrary to the sensitivity case, here the evaluation
functions are required to predict the more infrequent (unsafe)
context labels correctly. The only evaluation functions that
perform adequately with regard to safety protection level are
the Bayesian classifier-based and heuristic-based evaluation
functions (showing average protection levels of 0.86 and
0.98, respectively). Of these, however, only the Bayesian
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(a) Protection level of sensitivity evaluation πλ̂.
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(b) Protection level of safety evaluation πφ̂.
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(c) Usability deterioration of sensitivity evaluation ξλ̂.
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(d) Usability deterioration of safety evaluation ξφ̂.

Fig. 4: Protection level and usability deterioration for sensitivity and safety evaluation functions λ̂ and φ̂

classifier-based evaluation function shows also an acceptably
low usability deterioration measure, as can be seen from figure
4d.

C. Access Control Layer

1) Implementation: For our Access Control Layer we
adopt and adapt the FlaskDroid [18] architecture, a fine-
grained mandatory access control framework for Android 4.0.4
(cf. Figure 2). FlaskDroid extends Security Enhanced An-
droid (SEAndroid) [21] with fine-grained context-aware type
enforcement on Android’s middleware layer. In FlaskDroid,
Android components which provide access to sensitive re-
sources, such as the SensorService which provides access to
sensor information, are modified to act as UserSpace Object
Managers (USOMs) which control access to the resources
they manage. More specifically, USOMs control access from
subjects (i.e., apps) to objects (e.g., data) they manage using
types assigned to subjects and objects. Thereby USOMs act
as Policy Enforcement Points (PEPs) in our architecture.

FlaskDroid uses an Access Control Policy (cf. Figure 2)
which describes types and access control rules. An access con-
trol rule defines whether a certain subject type may perform
an operation on an object type of a certain object class.
In addition, FlaskDroid supports context-dependent access
control rules by means of ContextProviders – software
components which evaluate the current context of the device
and activate/deactivate rules at runtime.

At boot time, the PolicyServer (cf. Figure 2) parses the

Access Control Policy and translates it into an in-memory
representation. It proceeds to assign app types (e.g., trusted
or untrusted) to all installed apps based on application meta-
data, such as the package name or the developer signature.
Applications installed by the user are assigned corresponding
types during the installation process. Whenever apps access
an USOM at runtime, for example the SensorService to
query the device’s sensors or the CameraService to take
pictures, the USOM queries the PolicyServer, which is part
of Android’s SystemService, for access control decisions.

To meet our goals we extended FlaskDroid with additional
USOMs. We furthermore implemented a ContextProvider
which feeds context tags from the ConXsense ContextProfiler
into Flaskdroid’s PolicyServer (cf. Figure 2), which in turn
activates/deactivates access control rules at runtime.

To mitigate, respectively reduce the effects of sensory
malware, such as Placeraider [4] or SoundComber [3], access
control on the sensors of a device is required. For example,
Placeraider uses the device’s camera and the acceleration
sensor to covertly construct 3D images of the surroundings
of the user. To mitigate the effect of Placeraider, we ex-
tended Flaskdroid to perform access control in Android’s
CameraService using a corresponding USOM which filters
queries to the takePicture and startPreviewMode methods
based on the type of the calling app. Furthermore, we used
Flaskdroid’s access control on sensors to filter events delivered
to SensorEventListeners registered by apps. It should be
noted that in Flaskdroid’s original implementation the enforce-



ment points in the SensorManager Java class are insufficient
to block sophisticated attacks, since the SensorManager class
is executed in the context of (potentially malicious) apps.
Thus, we replaced Flaskdroid’s SensorManager USOM with
a corresponding USOM in Android’s native SensorService.
Similarily, the combination of ConXsense and FlaskDroid can
be used to address other variants of sensory malware, such
as Soundcomber, by identifying the relevant Android APIs,
instrumenting them as USOMs and extending the FlaskDroid
policy with corresponding context-dependent access control
rules.

To allow for changes in the Android Lockscreen policy
based on the current privacy context, we modified the Policy-
Server to proactively propagate context tags to the Android
Lockscreen component. We modified Android’s Lockscreen
component to automatically dismiss the Lockscreen when the
device is used in a safe environment, while still showing the
Lockscreen in unsafe environments.

2) Evaluation: We evaluate the effectiveness and perfor-
mance of our Access Control Layer in two use cases: 1)
preventing sensory malware from gathering sensitive sensor
information in sensitive contexts, and 2) enhancing the usabil-
ity of Android’s Lockscreen security feature using context
information. For this evaluation we used a Samsung Galaxy
Nexus smartphone equipped with FlaskDroid for Android
4.0.4 and the ConXsense extensions.

2a) Mitigation of Sensory Malware: PlaceRaider [4] is a
sensory malware which generates 3D models of the user’s sur-
roundings by combining acceleration sensor information with
camera pictures. PlaceRaider registers listeners in Android’s
SensorManager to get notified about changes in the orien-
tation of the device. When a significant orientation change is
discovered, PlaceRaider takes a picture using the Camera API
without user notification. It then uploads the picture and the
corresponding sensor information to an external server. When
enough pictures are collected, the server constructs a 3D view
of the surroundings of the user.

To demonstrate the feasibility of ConXsense we designed
a FlaskDroid policy which assigns the type trusted to all
pre-installed system apps (e.g., the camera app), and the type
untrusted to all third-party apps installed by the user. In a
real-world scenario this trust level could be derived from the
reputation of the app in an app market. Our context-dependent
access control rules state that access to the CameraService
and SensorService USOMs is generally allowed for all apps
in public contexts but is prohibited in sensitive contexts for
all untrusted apps.

We tested our implementation using a slightly modified
version of the PlaceRaider malware generously provided to us
by its authors.4 By installing the malware on our device and
logging the context information and access control decisions
we verified that FlaskDroid successfully filtered all data de-
livered from Android’s SensorService and CameraService
components to the untrusted PlaceRaider app when the device

4The original PlaceRaider malware is incompatible with Android 4.0.4.

was used in a sensitive context, thus rendering the attack futile.
We further verified that trusted apps could still use the sensors
and the camera. No false positives or false negatives emerged
during the evaluation of the Access Control Layer, which is
not surprising since it merely enforces the context-dependent
access control rules.

To evaluate the performance impact we implemented an
app which automatically triggers 10000 access control queries
by reading sensor data and taking pictures. On average, our
FlaskDroid based Access Control Layer caused an over-
head µ of 4.886 ms (standard deviation σ 17.593 ms) for
the SensorService and CameraService USOMs. The high
standard deviation σ is caused by Dalvik’s garbage collector:
By analyzing Android’s system logs we verified that during
the irregularly slow access control queries responsible for the
high standard deviation the garbage collector caused a stall.
Overall, 95% of all access control decisions are handled in
less than 4.2 ms (cf. Figure 5), which we consider reasonable.
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Fig. 5: Cumulative distribution of the Access Control Layer
performance

2b) Context-Aware Device Lockscreen: Android provides
different methods for locking the device whenever the power
button is pressed or the device is not used for a pre-defined
amount of time. However, the locking mechanism is static and
does not respect the current usage context: When used in a
safe context, it might be desirable to enforce relaxed security
policies which do not require the user to manually unlock the
device using a PIN or password. However, when a context is
unsafe, the Lockscreen must always be displayed. On stock
Android, the user might be tempted to disable the Lockscreen
regardless of the current context, which is problematic in case
the device is stolen or lost.

We instrumented Android’s Settings component to be no-
tified by Flaskdroid’s PolicyServer about context changes by
means of a Broadcast Intent. To enforce context-based access
control rules we modified the LockPatternKeyguardView
class to query the Settings component for the current value of
the safety property. If the context is considered safe and hence
the Lockscreen should not be active, the LockPatternKey-
guardView class automatically dismisses the Lockscreen. We
furthermore added a low-watermark mechanism to ensure that



whenever an intermediate unsafe context has been detected
or the device has been rebooted, the Lockscreen is always
displayed regardless of the current context’s safety property.
The low-watermark mechanism is required to prevent an
attacker from unlocking a locked device stolen in an unsafe
context by moving it to a context the owner considers safe.

We instrumented the LockPatternKeyguardView class to
log when the Lockscreen was displayed and when it was
dismissed. We further modified the system to periodically
wake the device from sleep and switch on the screen. In
an automated testbed we verified that the Lockscreen was
automatically dismissed whenever the context was considered
safe unless an intermediate or current unsafe context has been
detected or the device has been rebooted.

VII. RELATED WORK

Covington et al. [8] introduce a policy framework incor-
porating context attributes in a smart home access control
setting. They utilise a Generalised Role Based Access Con-
trol (GRBAC) model and Environment Roles activated by
context observations to adapt access control decisions. They
demonstrate an XML-based definition language for the access
control policies, but require those to be set up and maintained
manually through a GUI tool.

Hull et al. [22] present the Houdini framework for speci-
fying and enforcing context-dependent privacy policies. They
introduce rule-based policy management to mitigate the com-
plexity that value-based customization of policies would im-
ply. User-provided preferences are used to generate rules
for privacy enforcement. They mention also support for
automatically-learned preferences that would be transformed
into rules, but do not provide support for such automation at
the time of writing.

Damiani et al. [23] introduce a spatially-aware RBAC model
using location as a component for access control decisions.
They focus on the theoretical aspects of the model and do
not address, how the required access control rules would be
created and maintained in real-world implementations.

A recent patent application by Bell et al. [24] discloses a
system which enables to specify context-triggered policies en-
forced on mobile devices controlling the access of applications
to sensors and other resources on the smartphone. Also in their
approach the access control policies are either pre-specified or
are uploaded to the devices by external entities.

Conti et al. [9] describe the CRePe framework for Android
for enforcement of context-dependent access control policies.
The policies are expressed in the form of rules, which allow or
deny access to specific resources depending on the currently
detected active context. Also they do not address, how the rules
should be created or updated. In the MOSES framework [10]
Rusello et al. propose a combination of dynamic taint tracking
using the TaintDroid architecture [25] and policy enforcement
on Android’s middleware layer to enable context based access
control on resources and apps with the goal of providing
isolated environments called security profiles. Similarly, the
TrustDroid [26] architecture proposed by Bugiel et al. provides

lightweight security domain isolation on Android with basic
support for context-based network access control policies.
In Saint [27], the authors describe a context-aware fine-
grained access control framework for Android, which focuses
on enabling app developers to define context-dependent run-
time constraints on Inter-Component Communication between
apps. Nauman et al. present Apex [28], a modification of the
Android operating system which extends the standard permis-
sion system with conditional permissions. It provides to some
extent support for context-based access control by allowing
the user to define context-dependent resource restrictions (e.g.,
based on the time of day).

In contrast to MOSES, TrustDroid and Apex, our access
control architecture is based on the more generic and flexible
FlaskDroid platform [18], which is also able to cover (most
of) the use cases described in Saint, and, more importantly,
our work focuses on the automatic prediction of the active
security context of a device using a probabilistic approach
based on heuristics and machine learning algorithms.

Riva et al. [11] use various contextual cues to estimate the
likelihood that the legitimate user of a device is in proximity
and use this to configure the idle screen lock. Although we
have the same use case, our approach is based on estimating
the safety of the context, rather than inferring the presence of
the user.

Hayashi et al. [29] introduce Context-Aware Scalable Au-
thentication, an approach which uses the location of the
device as a passive authentication factor in a probabilistic
framework to determine the active authentication factors to be
used for user authentication (e.g., PIN or password) on smart-
phones. While the context-aware Lockscreen implemented in
ConXsense resembles their approach, our approach is different
in that it builds on relatively complex modeling of dynamic
contexts aiming at determining the dynamic safety level of the
context based on several context features. In contrast, their
approach utilizes a comparatively simple context detection
method that requires users to explicitly name and classify
contexts as “home”, “work” or “other”. Their safety classi-
ficaton of distinct contexts is also static and depends purely
on locations and safety labels users have provided for these
locations.

Danezis [30] proposes an approach for automatically defin-
ing privacy settings in social networking applications. Therein,
security contexts are determined by analyzing the social graphs
of users and identifying highly connected subgraphs. The iden-
tified subgraphs are used as a basis for social network security
settings. Similarly to us also, Danezis justifies the need for
inferring privacy policies automatically by the overwhelming
burden that managing security settings imposes on the user.

Sadeh et al. [31] investigate a policy definition and manage-
ment system for the PeopleFinder application. They argue, that
users are not very successful in defining privacy policies on
their own, reaching only accuracy levels of around 60-70% for
the policy sets that they initially define and refine. They also
use case-based reasoning (CBR) and Random Forest classifiers
in making policy decisions, reporting significant improvement



over user-defined policy sets. In a follow-up work, Kelley et
al. [32] introduced a user-controllable policy learning system
that builds on incremental policy improvements proposed to
the users based on recorded history events.

Bai et al. propose a solution for fine-grained usage control
on Android [33]. Their work extends the UCON access control
model [34] by using context information (e.g., location and
time) as an additional input for policy decisions. While they
focus on the implementation of a generic context-aware usage
control framework, we focus on the automatic prediction of the
active security context based on the surroundings of a device.

Kang et al. [35]. introduced the idea of time-based clustering
of position observations underlying our method of identifying
stay points. The concept of stay points and stay regions were
introduced by Zheng et al. [36] and developed further by
Montoliu et al. [37]. We have adopted a slightly modified
form of the notion of stay areas in our concept of GPS-
based CoIs. We also extend the notion of a stay point to non-
locational data in the form of WiFi stay points. The use of
WiFi fingerprints for identification and detection of places has
been reported by Dousse et al. [17]. We use key learnings
from them and adopt a simplified version of their scheme
considering only intersections of WiFi snapshots for our WiFi-
based CoI detection.

Gupta et al. [7] were the first to use context profiling.
Our work extends their work in several ways: First, they
did not have reliable ground truth data whereas our data
collection produced reliable ground truth data; second, they
only attempted heuristic techniques to predict safety but we
use both heuristic and inductive techniques and we predict
both safety and sensitivity. Finally, we integrated ConXsense
into a fine-grained access control enforcement architecture and
demonstrated its effectiveness.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we described how we designed and im-
plemented ConXsense, a framework for adaptive and easy-
to-use access control. We demonstrated its effectiveness in
two ways: by collecting ground truth data and using it to
evaluate our ConXsense context evaluation algorithms and
by applying ConXsense, integrated with a fine-grained access
control architecture, to defend against sensory malware and
potential device misuse. ConXsense can be extended in a
number of directions which we are currently working on: One
aspect is extending the context model and context evaluation
to enable personalization of individual contexts. This will
make it possible to address also the “toddler-scenario” that we
alluded to earlier. Moreover, having validated the effectiveness
of ConXsense context evaluation, the next step is to evaluate
its usability. We plan to implement on-device versions of
our context evaluation algorithms and create a downloadable
mobile app that we can use for user studies focusing on the
usability aspects related to our framework.
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APPENDIX A
SURVEY QUESTIONNAIRE

The purpose of this questionnaire is to study the perceptions
of smartphone users about risks of misuse related to their
smartphones. We are especially interested in these risks from
the perspective of surroundings factors of the smartphone.
We consider the following two main aspects:
1. “place” is a physical location where the smartphone is at
a given instance.
2. “situation”: is a particular configuration of a place (in
terms of the people and objects present in that place at a
given instance)
We would like to ask you to consider two kinds of risks:
1. Physical misuse: Somebody steals your smartphone or
somebody uses it without your permission.

2. Improper data capture by an application: An application
that is installed on your smartphone collects information
about your place or situation and sends it to an external party
without your permission or knowledge. This external party
can thereby gain potentially sensitive information about you
and the places you visit.
When answering the questionnaire, please consider following
definitions:
- Context information: is any information that your smartphone
can collect using its sensors. These include, e.g., your location,
the Bluetooth devices around you, the WiFi access points
around you, camera image snapshots, sound samples from
your smartphones microphone, readings of the movement
sensor (the accelerometer) of your smartphone, etc.
We will provide further explanations during the questionnaire.

(Explicit instructions were included for most questions -
questions about basic demographic features of the respondents
are excluded here for brevity.)

1) Which places you visit through your daily routine do
you expect to be “safe”?

2) Which places you visit through your daily routine do
you expect to be “unsafe”?

3) Do you experience your workplace as a “safe” place?
4) Please explain why your workplace is “safe” or “un-

safe”.
5) Does your experience of places or situations as “safe”

depend on people surrounding you?
6) Please give examples of when your experience of places

or situations as “safe” depends on peole surrounding
you or tell us why people have no influence on your
perception of “safe”.

7) Please give examples of when your experience of places
or situations as “unsafe” depends on peole surrounding
you or tell us why people have no influence on your
perception of “unsafe”.

8) Do you experience a place as “safe” when there are
friends or people you know well surrounding you?

9) Do you experience a place as “unsafe” when there are
strangers surrounding you?

10) Does your feeling of a place or situation being “safe”
or “unsafe” change during different times of day?

11) Please give examples of when you think the time of day
affects your feeling of “safe” and “unsafe” or why time
of day has no effect on your perception.

12) How well do you think you can asses the risk of your
mobile device being stolen or misused?

13) Do you think that the risk of your mobile device being
stolen or misused might change depending on where you
are?

14) Is there any tool or app installed on your phone that
protects your smartphone and data in the case your
mobile device gets stolen or misused?

15) If you have a tool or app installed, please let us know



TABLE IV: Overview of Parameters used in the Context Model

Name Description Example value
rsp max radius for GPS observations within a Stay Point 100 meters
t minsp min duration of visit to an area for it to be considered a Stay Point 10 minutes
t gapsp max length of gap in GPS observations allowed in a Stay Point 5 minutes
gpsmax max width and length of a GPS-based CoI 100 meters
f mincoi min number of visits to a place for it to be considered a CoI 5
t mincoi min total time spent in a place for it to be considered a CoI 30 minutes
t maxwifi WiFi observations within this time window belong to a single WiFi snapshot 10 seconds
εV max length of gap between CoI observations allowed within a visit V 30 minutes
f minfamcoi min number of visits to CoI for it to be considered familiar 5
t minfamcoi min total time of visits to CoI for it to be considered familiar 60 minutes
f minfamdev min number of encounters for a device for it to be considered a familiar device 5
t minfamdev min total time of encounters for a device to be considered a familiar device 30 minutes
εE max length of gap between device observations allowed within an encounter E 5 minutes
tscan Scanning interval of context scans 60 seconds
d maxunfam max amount of unfamiliar devices in familiar context still considered safe 0

which one(s). If you have no app installed, please
explain why you havent installed one.

16) Which places you visit through your daily routine do
you expect to be “sensitive”?

17) Which places you visit through your daily routine do
you expect to be “public”?

18) Do you experience your workplace as a “sensitive”
place?

19) Please explain why your workplace is “sensitive” or not.
20) Does your experience of places or situations as “sensi-

tive” depend on people surrounding you?
21) Please give examples of when you think “sensitivity”

depends on peole or why it does not depend on people.
22) Does your experience of places or situations as “public”

depend on people surrounding you?
23) Please give examples of when you think a place is

“public” because of the presence of people surrounding
you or tell us why people have no influence on your
perception of “public”.

24) Do you experience a place as “sensitive” when there are
friends or people you know well surrounding you?

25) Do you experience a place as “public” when there are
strangers surrounding you?

26) Does the time of day affect your feeling of “sensitive”
and “public”?

27) How well do you think you can asses the “sensitivity”
of a place or situation?

28) Do you believe that “sensitivity” might change depend-
ing on where you are?


